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Fermat’s little theorem says for a prime p and all integers a 6≡ 0 mod p that ap−1 ≡
1 mod p. Conversely, if n > 1 and an−1 ≡ 1 mod n for all a 6≡ 0 mod n then n must be
prime: from an−1 ≡ 1 mod n we get (a, n) = 1, so n is relatively prime to all integers from
1 to n− 1, and thus n is a prime number.

While a 6≡ 0 mod p is the same as (a, p) = 1 for prime p and any integer a, the conditions
a 6≡ 0 mod n and (a, n) = 1 are not the same for composite n: (a, n) = 1 ⇒ a 6≡ 0 mod n
but the converse can fail (depending on a). If we write a 6≡ 0 mod p in Fermat’s little
theorem as (a, p) = 1, making the theorem “for all a ∈ Z, (a, p) = 1 =⇒ ap−1 ≡ 1 mod p,”
we have an implication that is sometimes true if we replace prime p by composite n.

Definition 1. An integer n > 1 is called a Carmichael number if n is composite and
(a, n) = 1 =⇒ an−1 ≡ 1 mod n for all a ∈ Z.1

Initially it is not clear that there are any Carmichael numbers, but the first few were
found by Robert Carmichael [3], [4] in the early 20th century, including

561, 1105, 1729, 2465, 2821.

There are infinitely many Carmichael numbers, which is a hard theorem [1].
It is possible to verify an integer n is a Carmichael number without using the definition,

which means you don’t have to check an−1 ≡ 1 mod n for all a such that (a, n) = 1. Instead
you can check properties of the prime factorization of n called Korselt’s criterion.

Theorem 2 (Korselt). A composite integer n > 1 is a Carmichael number if and only if
(i) n is squarefree and (ii) for every prime p dividing n, also (p− 1) | (n− 1).

Proof. Assume n is a Carmichael number. First we will show n is squarefree. If a prime p
divides n more than once, write n = pkn′ where k ≥ 1 and (p, n′) = 1. We want to show
k = 1, and will do this by contradiction using the Chinese remainder theorem.

Assume k ≥ 2, so n is divisible by p2. By the Chinese remainder theorem there is an
a ∈ Z such that a ≡ 1 + p mod pk and a ≡ 1 mod n′. Then (a, n) = 1, so

an−1 ≡ 1 mod n

by the definition of Carmichael numbers. Reduce the above congruence modulo p2, getting
(1+p)n−1 ≡ 1 mod p2. By the binomial theorem, (1+p)n−1 ≡ 1+(n−1)p mod p2. Since n
is divisible by p, 1+(n−1)p ≡ 1−p mod p2. Thus 1−p ≡ 1 mod p2. This is a contradiction,
so k = 1.

Next we show (p − 1) | (n − 1) for each prime p dividing n. Since n is squarefree, p
and n/p are relatively prime. Pick any b ∈ Z such that b mod p has order p − 1 (there is
a primitive root modulo any prime). By the Chinese remainder theorem there’s an a ∈ Z

1Oystein Ore, in 1948 [7, p. 331], called such n an “F number” since they have the “Fermat property”
without being prime. The term “Carmichael number” was introduced by Beeger [2] in 1950.
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such that a ≡ b mod p and a ≡ 1 mod n/p, so (a, n) = 1. Then an−1 ≡ 1 mod n. Reducing
both sides modulo p, bn−1 ≡ 1 mod p. This implies, by the choice of b, that (p−1) | (n−1).

Now assume n is squarefree and (p − 1) | (n − 1) for every prime p that divides n. We
want to show n is Carmichael. If a ∈ Z satisfies (a, n) = 1 then for each prime p dividing n
we have (a, p) = 1, so ap−1 ≡ 1 mod p. Since p−1 is a factor of n−1 we get an−1 ≡ 1 mod p.
As this holds for all primes p dividing n, and n is squarefree, we get an−1 ≡ 1 mod n. Also
n is composite (by hypothesis), so n is Carmichael. �

Korselt [6] proved this theorem about 10 years before Carmichael essentially rediscovered
it [3], [4], but Korselt did not find examples of such numbers and that is why they are
called Carmichael numbers rather than Korselt numbers. On that basis, however, these
numbers should be called S̆imerka numbers since V. S̆imerka found the first 7 examples 25
years before Carmichael. Below is an excerpt from S̆imerka’s article [8], which appeared in
a Czech math journal that was not widely read.

Figure 1. Carmichael numbers found by S̆imerka before Carmichael.

Example 3. We use Korselt’s criterion to verify a construction of Carmichael numbers due
to Chernick [5]: if k is a positive integer such that 6k+ 1, 12k+ 1, and 18k+ 1 are all prime
then the product n = (6k + 1)(12k + 1)(18k + 1) is a Carmichael number. For instance,
7 · 13 · 19 = 1729 is a Carmichael number.

The first condition of Korselt’s criterion, that n be squarefree, obviously holds. To check
the second criterion we want to show n− 1 is divisible by 6k, 12k, and 18k. Since 6 | 12 it
suffices to look at n mod 12k and n mod 18k. Modulo 12k we have n ≡ (6k + 1)(6k + 1) ≡
1 mod 12k, and modulo 18k we have n ≡ (6k + 1)(12k + 1) ≡ 1 mod 18k. Thus n − 1 is
divisible by the desired factors, so it is a Carmichael number when its three factors are all
prime.

This method of Chernick is very convenient if you want to construct an example of a
large Carmichael number, such as if you are giving a lecture on Carmichael numbers and
want to give an example other than the examples that are in all the books. Run a computer
algebra package to find big k where 6k + 1, 12k + 1, and 18k + 1 are all prime (it’s believed
this should happen infinitely often, and in any case it usually doesn’t take long to find such
a choice of k), take their product, and you’re done.

As an exercise, verify with Korselt’s criterion that if 6k+ 1, 12k+ 1, 18k+ 1, and 36k+ 1
are all prime then the product of these four numbers is a Carmichael number.

Corollary 4. A composite integer n is a Carmichael number if and only if an ≡ a mod n
for all a ∈ Z.
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Proof. If an ≡ a mod n for all a ∈ Z, then when (a, n) = 1 we can cancel a from both sides
and get an−1 ≡ 1 mod n, so n is a Carmichael number since it is composite.

Conversely, assume n is Carmichael. To prove, for each a ∈ Z, that an ≡ a mod n it
suffices since n is squarefree to prove an ≡ a mod p for each prime p dividing n. This
congruence is obvious if a ≡ 0 mod p. If a 6≡ 0 mod p then ap−1 ≡ 1 mod p by Fermat’s
little theorem, and p−1 is a factor of n−1, so an−1 ≡ 1 mod p, and thus an ≡ a mod p. �

Here are some further properties (but not characterizations) of Carmichael numbers.

Theorem 5. Every Carmichael number n is odd, has at least three different prime factors,
and every prime factor of n is less than

√
n.

Proof. Since n − 1 is relatively prime to n, we have (n − 1)n−1 ≡ 1 mod n, so (−1)n−1 ≡
1 mod n and we know (−1)n−1 = ±1. Since n > 2 we have −1 6≡ 1 mod n, so (−1)n−1 = 1.
Thus n− 1 is even, so n is odd.

Suppose n = pq for primes p and q. Since n is squarefree, p 6= q. We may assume without
loss of generality that p > q. By Korselt’s criterion, (p− 1) | (n− 1). Since

n− 1

p− 1
=

pq − 1

p− 1
=

(p− 1)q + q − 1

p− 1
= q +

q − 1

p− 1
,

we must have (p − 1) | (q − 1). But this is impossible since q − 1 < p − 1. Thus n has at
least three different prime factors.

If p is a prime factor of n, then

n− 1

p− 1
=

p(n/p)− 1

p− 1
=

(p− 1)(n/p) + n/p− 1

p− 1
=

n

p
+

n/p− 1

p− 1
,

so (p− 1) | (n/p− 1). Thus p ≤ n/p, and the inequality must be strict (otherwise n = p2,
which is impossible), so p <

√
n. Incidentally, this gives another proof that n has at least

three prime factors: if n = pq with p <
√
n and q <

√
n then n = pq <

√
n
√
n = n, which

is a contradiction. �
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