Navigation überspringen
Universitätsbibliothek Heidelberg
Status: bestellen
> Bestellen/Vormerken
Signatur: UBN/UC 600 A186   QR-Code
Standort: Zweigstelle Neuenheim / Freihandbereich Monograph  3D-Plan
Exemplare: siehe unten
Verfasst von:Acquaviva, Viviana [VerfasserIn]   i
Titel:Machine learning for physics and astronomy
Verf.angabe:Viviana Acquaviva
Verlagsort:Princeton ; Oxford
Verlag:Princeton University Press
E-Jahr:2023
Jahr:[2023]
Umfang:xvi, 259 Seiten
Illustrationen:Illustrationen, Diagramme
Fussnoten:Includes bibliographical references and index ; Literaturverzeichnis: Seiten 249-256
ISBN:978-0-691-20641-7
 978-0-691-20392-8
Abstract:"A hands-on introduction to machine learning and its applications to the physical sciences. As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider. Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task. Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key conceptsIncludes a wealth of review questions and quizzesIdeal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics. Accessible to self-learners with a basic knowledge of linear algebra and calculus. Slides and assessment questions (available only to instructors)"--
URL:Cover: https://www.dietmardreier.de/annot/426F6F6B446174617C7C393738303639313230333932387C7C434F50.jpg?sq=1
 Inhaltsverzeichnis: http://www.gbv.de/dms/bowker/toc/9780691206417.pdf
Schlagwörter:(s)Physik   i / (s)Astronomie   i / (s)Maschinelles Lernen   i
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: Acquaviva, Viviana: Machine learning for physics and astronomy. - Princeton : Princeton University Press, 2023
RVK-Notation:UC 600   i
Sach-SW:SCIENCE / Physics / Mathematical & Computational
 COMPUTERS / Data Science / Machine Learning
 Astronomie, Raum und Zeit
 Astronomy, space & time
 Astrophysik
 COM094000
 Maschinelles Lernen
 Physik
 SCIENCE / Astronomy
 SCIENCE / Astrophysics & Space Science
 SCIENCE / Mathematical Physics
 SCIENCE / Research & Methodology
K10plus-PPN:1848581882
Exemplare:

SignaturQRStandortStatus
UBN/UC 600 A186QR-CodeZweigstelle Neuenheim / Freihandbereich Monographien3D-Planbestellbar
Mediennummer: 10709765
PY/UC 600 A186QR-CodeBereichsbibl. Physik + Astronomie / BPAPräsenznutzung
Mediennummer: 59850732, Inventarnummer: PYM-2400007

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69131127   QR-Code
zum Seitenanfang