Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Präsenznutzung
Signatur: Nourd StHB   QR-Code
Standort: Bereichsbibl. Mathematik+ / MA-StHB
Exemplare: siehe unten
Verfasst von:Nourdin, Ivan   i
 Peccati, Giovanni   i
Titel:Normal approximations with Malliavin calculus
Titelzusatz:from Stein's method to universality
Verf.angabe:Ivan Nourdin; Giovanni Peccati
Ausgabe:1. publ.
Verlagsort:Cambridge [u.a.]
Verlag:Cambridge Univ. Press
Jahr:2012
Umfang:XIV, 239 S.
Gesamttitel/Reihe:Cambridge tracts in mathematics ; 192
Fussnoten:Literaturverz. S. 227 - 234
ISBN:1-107-01777-7
 978-1-107-01777-1
Abstract:"Stein's method is a collection of probabilistic techniques that allow one to assess the distance between two probability distributions by means of differential operators. In 2007, the authors discovered that one can combine Stein's method with the powerful Malliavin calculus of variations, in order to deduce quantitative central limit theorems involving functionals of general Gaussian fields. This book provides an ideal introduction both to Stein's method and Malliavin calculus, from the standpoint of normal approximations on a Gaussian space. Many recent developments and applications are studied in detail, for instance: fourth moment theorems on the Wiener chaos, density estimates, Breuer-Major theorems for fractional processes, recursive cumulant computations, optimal rates and universality results for homogeneous sums. Largely self-contained, the book is perfect for self-study. It will appeal to researchers and graduate students in probability and statistics, especially those who wish to understand the connections between Stein's method and Malliavin calculus"--
 "This is a text about probabilistic approximations, which are mathematical statements providing estimates of the distance between the laws of two random objects. As the title suggests, we will be mainly interested in approximations involving one or more normal (equivalently called Gaussian) random elements. Normal approximations are naturally connected with central limit theorems (CLTs), i.e. convergence results displaying a Gaussian limit, and are one of the leading themes of the whole theory of probability"--
URL:Inhaltsverzeichnis: http://www.gbv.de/dms/goettingen/688904610.pdf
 Cover: http://assets.cambridge.org/97811070/17771/cover/9781107017771.jpg
 Inhaltstext: https://zbmath.org/?q=an:1266.60001
Schlagwörter:(s)Wahrscheinlichkeitsverteilung   i / (s)Approximation   i / (s)Malliavin-Kalkül   i / (s)Stein-Schätzung   i
Sprache:eng
Reproduktion:Online-Ausg.: Nourdin, Ivan, 1978 -: Normal approximations with Malliavin calculus. - Cambridge [England]: Cambridge University Press, 2011. - Online-Ressource (xiv, 239 p.)
 Online-Ausg. bei MyiLibrary: Nourdin, Ivan, 1978 -: Normal approximations with Malliavin calculus. - Cambridge [England]: Cambridge University Press, 2012. - Online-Ressource (1 online resource (xiv, 239 p.))
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: Nourdin, Ivan, 1978 - : Normal approximations with Malliavin calculus. - Online-Ausg.. - Cambridge [England] : Cambridge University Press, 2012. - Online-Ressource (1 online resource (xiv, 239 p.))
 Erscheint auch als : Online-Ausgabe: Nourdin, Ivan, 1978 - : Normal approximations with Malliavin calculus. - Cambridge : Cambridge University Press, 2012. - 1 Online-Ressource (xiv, 239 pages)
 Erscheint auch als : Online-Ausgabe: Nourdin, Ivan, 1978 - : Normal Approximations with Malliavin Calculus. - Cambridge : Cambridge University Press, 2012. - 1 online resource (256 pages)
Notation:AMS: 60H07
RVK-Notation:SK 800   i
 SK 820   i
K10plus-PPN:688904610
Verknüpfungen:→ Übergeordnete Aufnahme
Exemplare:

SignaturQRStandortStatus
NourdQR-CodeBereichsbibl. Mathematik+InformatikPräsenznutzung
Mediennummer: 34150674, Inventarnummer: mam-1300226
Nourd StHBQR-CodeBereichsbibl. Mathematik+Informatik / MA-StHBPräsenznutzung
Mediennummer: 34149540, Inventarnummer: mam-1200214

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/67217661   QR-Code
zum Seitenanfang