
Duan et al. Journal of Cloud Computing (2023) 12:126
https://doi.org/10.1186/s13677-023-00492-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

MFGAD‑INT: in‑band network telemetry
data‑driven anomaly detection using
multi‑feature fusion graph deep learning
Yunfeng Duan1†, Chenxu Li2†, Guotao Bai1, Guo Chen1, Fanqin Zhou2*, Jiaxing Chen1, Zehua Gao3* and
Chun Zhang1 

Abstract 

As the cloud services market grows, cloud management tools that detect network anomalies in a non-intrusive man-
ner are critical to improve users’ experience of cloud services. However, some network anomalies, such as Microburst,
in cloud systems are very discreet. Network monitoring methods, e.g., SNMP, Ping, are of coarse temporal granularity
or low-dimension metrics, have difficulty to identify such anomalies quickly and accurately. Network telemetry is able
to collect rich network metrics with fine temporal granularity, which can provide deep insight into network anoma-
lies. However, the rich features in the telemetry data are insufficient exploited in existing research. This paper proposes
a Multi-feature Fusion Graph Deep learning approach driven by the In-band Network Telemetry, shorted as MFGAD-
INT, to efficiently extract and process the spatial-temporal correlation information in telemetry data and effectively
identify the anomalies. The experimental results show that the accuracy performance of the proposed method
improves about 10.56% compared to the anomaly detection method without network telemetry and about 9.73%
compared to the network telemetry-based method.

Keywords  Anomaly detection, Time series analysis, In-band network telemetry, Deep learning, Data stream mining,
Cloud computing

Introduction
With the Digital transformation of various industries,
an increasing number of AI-driven services [1] that rely
heavily on data and computing power are being run on
edge and center cloud facilities [2]. The pooling and vir-
tualization of computing and storage resources in clouds

[3–5], as well as smart scheduling and maintenance
techniques [6, 7], have shielded the management details
of the infrastructure, providing convenience for enter-
prises’ digital transformation, but also making network
anomalies more concealed. At the same time, emerging
intelligent businesses [8, 9], such as splitting learning
for large neural network models and federated learning
models [10], put more stringent requirements on cloud
data center networks. Network anomalies that are insen-
sitive to traditional businesses, such as Microburst, can
cause delays or packet loss during the parameter transfer
process of split learning, severely affecting the efficiency
and convergence of model training. Common network
anomaly monitoring methods mainly utilize simple net-
work manage protocol (SNMP), active network probes,
etc., to obtain network status data [11]. The frequency of
obtaining network status data using such methods is very

†Yunfeng Duan and Chenxu Li contributed equally to this work.

*Correspondence:
Fanqin Zhou
fqzhou2012@bupt.edu.cn
Zehua Gao
zhgao@bupt.edu.cn
1 China Mobile Information Technology Co., Ltd., 102206 Beijing, China
2 State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, 100876 Beijing, China
3 School of Information and Communication Engineering, Beijing
University of Posts and Telecommunications, 100876 Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00492-w&domain=pdf

Page 2 of 16Duan et al. Journal of Cloud Computing (2023) 12:126

low (minute level), and the dimensions of the detected
indicators are also very limited. It is also difficult to con-
tinuously monitor the overall network performance.
Therefore, it is difficult to effectively monitor more con-
cealed network anomalies, which is one of the emerg-
ing research directions of network anomaly detection
[12–14].

Data plane network telemetry techniques, such as in-
band network telemetry (INT), offer high-precision
stream monitoring data that can uncover potential net-
work anomalies. However, the increased richness of
information provided by network telemetry significantly
increases the volume of data that needs to be processed,
posing new challenges to anomaly detection. To ensure
real-time detection of network anomalies, detection
methods need to process telemetry data streams with
utmost efficiency. Furthermore, since the data is continu-
ously streamed, it is not possible to assume its distribu-
tion or length. Lastly, network telemetry data contains a
wealth of network information, and detection algorithms
must capture as many features from the information as
possible to maximize the capabilities of INT telemetry.
Although deep learning has been widely used in a variety
of network problems, such as resource scheduling [15],
health prediction [16, 17], and shows great potential in
dealing with problems with large solution space, but the
use of deep learning in telemetry-aided anomaly detec-
tion is rare. Therefore, it is crucial to develop efficient
and effective detection methods that can extract essen-
tial information from incoming measurements using the
simplest possible operation.

Considering the above challenges, this paper proposes
the in-band network telemetry data-driven anomaly
detection method using multi-feature fusion graph deep
learning (MFGAD-INT). This method extracts multi-
modal features from different perspectives using graph
neural networks to process high-density telemetry data
streams obtained from telemetry systems, and performs
multimodal feature fusion and learning via deep neural
networks. To achieve fast network anomaly identifica-
tion based on the latest network state, MFGAD-INT
constructs an anomaly scoring model and determination
model based on network state prediction. To effectively
extract features from different perspectives, the proposed
method uses the GAT [18] mechanism to extract tem-
poral and spatial feature information of the input data
respectively [19]. Additionally, the proposed method per-
forms level-by-level data fusion of multimodal data and
long-time information learning via the gating recurrent
unit (GRU) [20] to model network state changes and pre-
dict future network states. To validate the effectiveness

of the proposed method, we conducted experiments on
a cloud data center network in Zhejiang, China, using
its INT capability and controlled injection of anomalous
states. The contributions of this paper can be summa-
rized as follows.

(1)	 This paper proposes an anomaly feature learning
framework for effectively processing INT telemetry
data for anomaly detection. It can extract features
from both spatial and temporal aspects of network
telemetry data. At the same time, the framework
realizes the gradual fusion of multimodal data and
further complements the learning of long-term
memory.

(2)	 Based on the above feature learning framework, this
paper implements a graph learning based network
anomaly detection method MFGAD-INT. By com-
bining GAT [18] and GRU to extract multimodal
feature information from INT data, MFGAD-INT
can maximize the utilization of rich information
in telemetry data when processing INT network
telemetry data.

(3)	 We evaluated MFGAD-INT in a real network environ-
ment and compared it with other anomaly detection
algorithms. The results show that MFGAD-INT out-
performs other algorithms in terms of detection accu-
racy, demonstrating stronger generalization in detect-
ing multiple types of anomalies, such as Microburst
[21] or QoS anomaly [22–24], while providing a degree
of anomaly localization.

The rest of this paper is structured as follows. Related
work section reviews the various techniques related to
network anomaly detection. In Framework of teleme-
try-based anomaly detection system section, the system
model construction of this paper is presented, along with
a general introduction of the proposed MFGAD-INT. In
Method section, the anomaly detection framework of
MFGAD-INT based on GAT and GCN is presented. Sim-
ulation and results analysis section shows the results of
our tests implemented in a real environment by INT with
programmable switches. Finally, in Conclusion section,
the paper is summarized and future work is discussed.

Related work
This section provides an overview of related work focus-
ing on the anomaly detection of streaming data in cloud
data center networks, while meticulously dividing the
related work according to its characteristics and algorith-
mic principles, as shown in Table 1. In particular, we first
introduce network anomaly detection methods based on

Page 3 of 16Duan et al. Journal of Cloud Computing (2023) 12:126 	

common network detection means, which mostly acquire
network data via SNMP, active network probes, and then
perform anomaly detection on the acquired available
data through machine learning or some deep learning
algorithms. Then, we introduce the methods for network
state detection based on network telemetry.

Anomaly detection methods
The purpose of anomaly detection is to find patterns in
the data that deviate from other observations [36]. The
purpose of using anomaly detection algorithms is to ana-
lyze the data obtained from telemetry to monitor the
network status instead of network operations and mainte-
nance personnel, to discover network anomalies [37], and
even to locate the source of network anomalies [38]. Net-
work information tends to be streaming data that con-
tains a large amount of normal data, and this streaming
data changes dynamically over time; most early anomaly
detection algorithms were based on supervised learn-
ing algorithms, among which the streaming half-space
tree [25] (HS-Tree) achieves the classification of normal
and anomalous by a decision tree that does not require
changing the tree structure. HS-Trees use the quality [39]
as a judgment marker for ranking anomalies to achieve
fast and accurate anomaly determination. Another way to
detect abnormal network states is through outlier detec-
tion. The abnormal data latent in the network state data
can be represented as outliers. The random subspace
hashing algorithm [26] (RSHash) uses random hashing to
achieve a fast and stable subspace outlier anomaly state
determination effect, and the algorithm also gives a more
reasonable anomaly score for outliers. These supervised

learning-based methods use labeled data to train algo-
rithm models for the detection of normal and abnormal
events. However, the biggest problem with such methods
is that the model needs to be trained with a balanced data
set constructed. In network anomaly detection, the peri-
ods when anomalies occur are few and a balanced data
set cannot be constructed. In addition, making labels for
the data set for this particular problem of network anom-
aly detection is also a tricky problem.

With the rapid development of neural networks in
recent years, they have been able to do predictions for
some complex problems, at this time, some researchers
have found graph neural networks to be well suited for
the graph-based prediction of network state information
and thus discriminating anomalies. Mahmoud et al. in
[27] proposed a LSTM AutoEncoder and one-class sup-
port vector machine (OC-SVM [40]) based approach to
train the model by using only normal class examples.
Liu et al. in [28] proposed a graph neural network-based
anomaly detection algorithm for industrial control net-
works that fuses the network nodes’ own attributes and
the information of neighboring nodes in the network
topology to achieve the detection of network anoma-
lies. Deng et al. in [29] proposed a method GDN for
anomaly detection in industrial sensor networks based
on graph attention mechanism and graph neural net-
work. It improves the accuracy of anomaly detection in
multidimensional data by introducing GAT in the time
dimension. Most of these neural network-based network
anomaly detection methods are based on unsupervised
learning (e.g., Hidden Markov Models, K-means clus-
tering [41]) or semi-supervised learning (i.e., training

Table 1  Related work classification table

Method Data Algorithm Technical characteristics

HS-Trees [25] No reliance ML The detection of anomaly is quickly achieved by decision tree that does not require
changes in tree structure.

RShash [26] ML Using random hashing to detect subspace anomaly

LSTM [27] CNN Using LSTM AutoEncoder pairs to extract Feature, and use SVM to complete the binary
classification of input.

ICNAD [28] GNN Network anomaly detection is achieved using GNN that fuse the nodes’ attributes
and neighboring nodes’.

GDN [29] GNN Improving the accuracy of anomaly detection by using GAT with graph neural network.

Snappy [21] Network Telemetry Statistical Analysis A Microburst detection method implemented inside programmable switches.

BurstRadar [30] Statistical Analysis A Microburst monitoring algorithm inside programmable switches for real-time detection.

INT-DETECT [31] ML Grey fault detection and localization method based on INT.

PacketScope [32] Statistical Analysis Determine whether abnormal packet loss events occur within network based on INT data.

INT-detector [33] GAAL Fast network anomaly detection based on INT and GAAL.

LossSight [34] GAN Packet loss complementary based on INT and GAN.

ODS [35] Clustering Detection of BGP anomalies based on clustering algorithm.

Page 4 of 16Duan et al. Journal of Cloud Computing (2023) 12:126

using only normal data. The trained models are then
applied to methods containing both normal and abnor-
mal event test data) neural network algorithms. These
algorithms are dedicated to mining the high-dimensional
feature relationships in the input data, and discriminat-
ing outliers (i.e., abnormal times) by learning the high-
dimensional feature change patterns of the input data.
Therefore, the performance of neural network-based
algorithms depends on both the algorithm’s ability to
extract high-dimensional features and the amount of
information in the input data.

Telemetry‑based network anomaly detection
Network measurement means cannot accurately reflect
the state changes of the network, that is, they cannot
provide rich enough input data for the subsequent dis-
criminant algorithm. The emergence of network telem-
etry has solved this problem. In-band network telemetry
is a typical representative of the new network telemetry
technology in recent years, which can accurately query
the internal state of the switch and perform fine-grained,
real-time monitoring of the network by inserting meta-
data into each packet through intermediate switching
nodes in the path, and embedding the network informa-
tion into the packet.

Some anomaly detection algorithms based on differ-
ent telemetry methods have also been proposed in recent
years, which focus on faster data processing speed and
more accurate anomaly determination for network state
information obtained by different telemetry methods.
Andrian et al. in [35] proposed a stream pattern anomaly
detection algorithm ODS, which is suitable for manipu-
lating telemetry data. Andrian performed an exhaus-
tive evaluation of the available data sets, comparing ODS
with classical offline (e.g., DBScan [42], local outlier [43])
and online methods (windowed variants of Robust Ran-
dom Cut Forest [44], ExactStorm [45], and continuous
outlier detection [46]) to validate the reliability and time-
liness of ODS. Tan et al. in [34] proposed a packet loss
monitoring system for in-band network telemetry. From
the incomplete in-band network telemetry data, the lost
telemetry information is automatically inferred and filled,
and the complete telemetry information is output. Experi-
mental results show that this method has high detection
and recovery accuracy and very low overhead, which can
further improve network monitoring, control, and man-
agement performance. Ross et al. in [32] proposed a net-
work telemetry system PacketScope. This system is also
designed around system packet loss, and obtains packet
loss information and information such as delay and for-
warding queue inside the switch to determine whether
abnormal packet loss events have occurred in the cur-
rent network. Jia et al. in [31] proposed a fast gray fault

detection and localization mechanism based on the
recently proposed in-band network telemetry. Using
INT probe packets for network-wide telemetry, all feasi-
ble paths between the source and the target are obtained.
However, this method can only identify impassable breaks
in the network environment, and cannot effectively iden-
tify other network anomalies such as congestion and
Microburst. To address the problem, Chen et al. in [21]
proposed Snappy, an algorithm that can identify Micro-
burst in real time. Snappy maintains multiple snapshots
of queue occupants over time. When each new packet
arrives, Snappy updates a snapshot and estimates the
score of queue occupancy. However, Snappy’s detection of
Microburst flows is inherently probabilistic, and the prob-
ability (recall) of identifying all Microburst flows increases
with the number of switching pipeline phases Snappy uses.
Snappy also requires division and rounding operations,
which are currently not supported by high-speed pro-
grammable switch ASIC. Joshi et al. in [30] proposed Bur-
stRadar to achieve continuous and efficient monitoring of
Microburst by capturing telemetry information of only the
packets involved in a Microburst using a programmable
switch ASIC. However, since it is a switch programming
algorithm implemented through P4, it focuses only on
Microburst monitoring and cannot perform normal moni-
toring for other kinds of anomalies. Based on this state of
affairs, Zhang et al. in [33] proposed an INT-detector, an
automatic and fast network anomaly detection system that
combines in-band network telemetry and deep learning
to detect anomalies using Generative Adversarial Active
Learning. However, this approach is more focused on pro-
viding low latency detection speed compared to giving
more accurate anomaly detection results.

In summary, according to our latest survey, the cur-
rent detection methods for handling network telemetry
data are still under development. Existing methods are
often limited to specific kinds of problems, and there
is currently no effective detection algorithm for more
widespread network anomalies. Therefore, how to better
apply the well-developed neural network-based anom-
aly detection algorithms to the detection of network
anomalies based on telemetry data, to achieve efficient,
accurate, and widespread network anomaly detection,
remains a key focus that requires further exploration and
research.

Framework of telemetry‑based anomaly detection
system
In this section, a systematic overview of the network
anomaly detection problem addressed by MFGAD-INT
is presented, and mathematical modeling is performed
to formulate the optimization problem. Specifically, in
Overall structure of MFGAD-INT section, the input

Page 5 of 16Duan et al. Journal of Cloud Computing (2023) 12:126 	

data of network anomalies processed by MFGAD-INT
is defined and corresponding mathematical calculation
methods and data acquisition methods are given. In Data
preprocessing section, the definition of network anom-
aly detection is provided, and the mathematical expres-
sions for input and output are given. In Network anomaly
detection problem description and construction section,
optimization problem analysis is carried out based on
the mathematical definitions given in Data preprocessing
section.

Overall structure of MFGAD‑INT
As shown in Fig. 1, MFGAD-INT is consisted of two
main parts: offline training and online testing. The
network telemetry module, which is common to both
parts, is normalized in the data preprocessing mod-
ule and further divided into sequences by a sliding
window of size N. The telemetry data is divided into

segments of multivariate time series for offline train-
ing. During offline training, the model learns the met-
ric change patterns during healthy network operation
and gives anomaly scores to the network state based
on the learned patterns. These scores are used to
select appropriate score thresholds. This offline model
training session can be included as a regular train-
ing schedule to accommodate the network load at dif-
ferent time periods, such as weekly or every other
week. For online detection, MFGAD-INT invokes the
model to score anomalies on the new telemetry data
Xt = {x1, x2, . . . , xm} after pre-processing, and then
makes anomaly judgments and alerts by thresholds.
When the anomaly score exceeds the threshold, the cur-
rent moment is evaluated as abnormal and the output
Yt = y0, y1, y2, y3, y4, . . . , yM , yi ∈ {0, 1} , where y0 = 1
indicates the presence of anomalies in the current
network, followed by {y1, y2, y3, y4, . . . , yM}, yi ∈ {0, 1}

Fig. 1  Overall framework of MFGAD-INT

Page 6 of 16Duan et al. Journal of Cloud Computing (2023) 12:126

indicating which specific metric triggered the anomaly.
This allows the algorithm to detect not only if there are
anomalies in the network at this time, but also which
specific metrics are anomalous as a way to explain why
the anomaly occurred.

Data preprocessing
MFGAD-INT initially obtains network state meta-
data through telemetry, and network indicators can be
obtained by calculating these metadata. During the com-
putation, some additional categorical metadata (e.g., port
number, switch number, etc.) will be cleaned up after
being used for categorical data dimensions; some data
that do not meet the range of values specified in this
section will also be cleaned up and invalidated. Finally,
standard normalization is applied to the whole data set
to complete the data preprocessing. All the metrics in
the network, such as delay, packet loss, queue length,
link bandwidth utilization and other key indicators, are
telemetry with a fixed frequency.

Switch processing delay
There is a period of time between when a packet enters
the switch and when the switch sends it out of the switch,
called the switch processing delay Xnodal . Theoretically,
the switch processing delay Xnodal = tprocess + tqueue ,
where tprocess is the processing delay, which includes the
time taken for routing and the time required for check-
ing, and tqueue is the queuing delay, whose size depends on
the current traffic in the network. There is actually also
the time between the start of the packet and its complete
delivery called transmission delay, denoted as ttransmission ,
but it is negligible as it is often very short. The method of
obtaining this value in MFGAD-INT can be simplified by
telemetry, and the exact value can be quickly calculated
by the timestamps Xin and Xout of the packets entering
and leaving the switch port, which is calculated as

Link delay
The time from when a packet is sent by the previous
switch to when it is received by the next switch is called
the link delay, denoted as Xchain . The actual value of the
link delay is calculated by the difference between the
Egress timestamp of the previous switch and the Ingress
timestamp of the current switch. The minimum value of
link delay should be its theoretical value and is calculated
as

(1)Xnodal = Xout − Xin.

(2)Xchain_min =
Channel length

Channel program rate
.

Packet loss rate
Generally, packet loss occurs at the switch node and pre-
vious means are not very easy to obtain the packet loss
rate in the network. Using telemetry, the packet loss
number is obtained by calculating the difference between
the total number of packets received by the switch and
the total number of packets sent to obtain the current
packet loss rate Xdrop at the switch node.

Link bandwidth utilization
Link bandwidth utilization is usually defined as the actual
data transfer on a physical link as a percentage of the
channel capacity. Using telemetry, the incoming and out-
going port utilization Xin_used and Xout_used of the switch
can be directly obtained, and the port utilization of the
same physical port can be summed to obtain the actual
bandwidth utilization of the port and thus can refer to
the link bandwidth utilization. Therefore, the link band-
width utilization Xchain_used is calculated as

Network anomaly detection problem description
and construction
In the network anomaly detection problem, the net-
work indicator information can be regarded as a time
series, and the telemetry information of all indicators
in the network constitutes a multivariate time series,
where each sequence affects each other. By defini-
tion, the multivariate time series can be expressed as
X = {X1,X2,X3,X4, , ,XM} , where M denotes the num-
ber of network performance indicators. Each univariate
time series Xn ∈ RN is a vector representing the data of
one network performance metric after N telemetry at a
fixed frequency. Therefore, the multivariate time series is
finally represented as X ∈ RM×N . For a given multivariate
time series input X ∈ RM×N , a sliding window of size T is
used to generate a fixed length input. Network anomaly
detection is used to evaluate the anomalous state of the
input at each moment, and this evaluation can be quan-
tified as Anomt = {anom0, anom1, anom2, anom3, anom4, , , anomM} ,
where anom0 is the network state anomaly evalua-
tion and the other parts are the network indicators of
each anomaly evaluation. The task of anomaly detec-
tion is to generate the output vector Y ∈ R(M+1)×T
by computing the quantified anomaly evaluation,
which can be expressed as Y = {Y1,Y2,Y3,Y4, . . . ,YT } .
where Yt =

{

y0, y1, y2, y3, y4, , , yM
}

, yi ∈ {0, 1} , indi-
cates whether the network as a whole is anomalous and
whether the network indicator is anomalous at the t-th
timestamp.

(3)Xchain_used = Xin_used + Xout_used .

Page 7 of 16Duan et al. Journal of Cloud Computing (2023) 12:126 	

Based on the above definition, the objective optimiza-
tion equation can be obtained. The network anomaly
detection problem can be carried out in two steps. First,
for the prediction of the network state, the input data is
predicted by a deep learning model, and the first step is
optimization by its loss function. The optimization equa-
tion is as

where xi and x̄i are the original state information and pre-
dicted state information for the i-th timestamp in the cur-
rent input data, respectively. Some indicators in the input
data have constraints in the values, and data cleaning is
performed when the input values are not in the given range.

When the algorithm starts anomaly detection, the pre-
dicted state data needs to be scored based on the true
values and the classification algorithm is optimized by
the following optimization problem.

where x denotes the true state value of the network at the
current timestamp and xanom is the anomaly score given
by the prediction algorithm when the anomaly occurs,
respectively. u is the threshold value given by the SPOT
algorithm, which is mathematically described as

For the predictions xl given by deep learning, the
anomaly score is calculated by the telemetry value xi
according to a fixed formula SPOT and a suitable thresh-
old is chosen to maximize the difference between the
score and the threshold when an anomaly occurs. We will
explain the processing process of the SPOT algorithm in
detail later.

Method
The anomaly detection methods before are mainly used
to generate clusters rather than detecting the anomalies,
which is the goal of this paper. In this section, we will
show how to move from clustering to outlier detection.
Next, the details of the components of the algorithm are
described. Finally, the usage steps of the algorithm for
online detection are presented.

Detection program design
In our work, we use INT to obtain network status infor-
mation, and the telemetry data itself can be regarded as

(4)
min

1

n

∑

(xi − xi)
2,

s.t. C1 : xi > Xchain_min , xi ∈ Xchain = {x1, x2, x3, x4, . . . , , xT },

C2 : xi < 1 , xi ∈ Xdrop = {x1, x2, x3, x4, . . . , xT },

(5)
max

1

n

∑

(xanom − x)2 − u,

s.t. xanom ≥ 0, x ≥ 0,

(6)u = SPOT (xl , xi),

a data source containing multimodal information. Each
feature in the data set contains the information from
different telemetry metadata with its own periodical
changes; meanwhile, the correlation between different
telemetry metadata constitutes the spatial information
of network state; The change pattern presented by the
features composed of all telemetry metadata under the
same time reflects the temporal information of net-
work state. The CNN and different GAT layers are used
to separately extract multimodal information from the
same data set. The advantage of separate refinement is
that different neural networks can focus on only part of
the state information in the data set during the training
process to achieve better feature extraction. Combined
with the idea of multimodal learning, the fusion of mul-
timodal data is completed in the model. Since the mul-
timodal information of MFGAD-INT is obtained by the
algorithm’s feature extraction of the same data set, fea-
ture fusion can be done simply. The temporal density of
INT telemetry data is high, up to millisecond time den-
sity, so the long-time memory in the algorithm’s input
data also retains rich real time patterns, which is cru-
cial for predicting network state information. For the
fused multi-state data, the GRU is used to achieve the
complementary extraction of long-time information.
Finally, the GRU Auto-Encoder is used to compress the
multimodal data for prediction. The data dimension is
compressed to achieve the prediction of the network
state while preserving the high-dimensional feature
information as much as possible. After the above algo-
rithm, we chose SPOT threshold selection algorithm to
judge the anomaly scores. Summarizing the algorithm
composition of MFGAD-INT.

(1)	 Data feature learning for different states in INT
telemetry data is implemented using a 1-D convolu-
tion layer and two GAT layers. Realizing the separa-
tion of multimodal information based on telemetry
data and the generation of multimodal data.

(2)	 Fusion learning of underlying features of the mul-
timodal data at the shallow level of the model. The
multimodal data are stitched together one by one,
and feature learning of long-time information is
achieved by GRU.

(3)	 Finally, to predict the network state, an AutoEn-
coder is used to implement multimodal transitions.
In this paper, we use GRU Auto-Encoder to com-
plete this step, which can achieve lower information
loss data compression by convolution neural net-
work based on attention mechanism.

The overall flow of the anomaly detection algorithm is
shown in Fig. 2. In the remainder of this subsection, the

Page 8 of 16Duan et al. Journal of Cloud Computing (2023) 12:126

principles and roles of each component in the predic-
tion algorithm are further elaborated.

The use of graph attention
In a real network environment, the values of each net-
work metric are not independent, and the variation pat-
terns among them affect each other. The changes of the
same metrics at different times in the same network envi-
ronment should also have regularity. So how to make the
algorithm discover and quantify these existing multi-
modal patterns is the focus of our concern.

GAT can be the key to solve this problem. GAT is pro-
posed to discover the influence relationship between
connected nodes in a graph. For our problem, two
graphs can be constructed for the input data accord-
ing to the time dimension and the spatial dimension.
In the spatial dimension, each univariate time series
Xi ∈ RT is considered as a node to construct a feature
graph of T-dimensional feature vectors; in the tempo-
ral dimension, the indicator data under the same time
is considered as a node to construct a feature graph of
M-dimensional feature vectors. Since the network indi-
cators affect and depend on each other, and also show
strong correlation between the time stamps of network
activities in a short period of time, both of these graphs
are complete graphs. GAT calculates the attention coef-
ficients and updates the node feature vectors based on
the neighbor nodes Xj of each node Xi . The output is
updated as

where hi denotes the node feature vector updated by
GAT, N denotes the number of neighboring nodes of
vi , vj is the feature vector of neighboring nodes, and αij
is the attention score of vj to vi , which is used to repre-
sent the correlation between two nodes and further used
to update the node feature vector. The attention score αij
can be calculated by

where ωT is a learnable row vector parameter and ⊕
denotes the Hadamard product of two feature vectors.
LeakyReLU is a nonlinear mapping activation function
used to add a nonlinear mapping to the model.

As described above, GAT is applied to learn the two
relations and achieve the generation of multimodal data.
After the multimodal data is generated, the outputs
of the two GAT layers hspace =

{

h1, h2, h3, h4, , , hM
}

 ,
htime =

{

h1, h2, h3, h4, , , hT
}

 are spliced with the original
input X = {X1,X2,X3,X4, , ,XM} to achieve the multi-
modal data The splicing formula is as

(7)hi = sigmiod(

N
∑

1

αijXj),

(8)eij = LeakerReLU(ωT · (Xi ⊕ Xj)),

(9)αij =
exp(eij)

∑N
n=1 exp(ein)

,

(10)h = hspace + hTtime + X .

Fig. 2  General structure of multivariate timing prediction model

Page 9 of 16Duan et al. Journal of Cloud Computing (2023) 12:126 	

The use of GRU​
By using GAT, we have achieved the extraction and
fusion of multimodal information, and the next step is to
learn the long-term memory information hidden in it. In
general, this can be achieved by RNNs. However, stand-
ard RNN networks are not good at handling long time
sequence data due to the gradient vanishing problem.
Therefore, in this paper, GRU is chosen to capture the
long-time memory information in multimodal data.

GRU selectively retains and uses long-time memory
by introducing RNN-based update and reset gates to
solve the gradient disappearance problem of long-time
sequences. The update gate is calculated by

where ht is the input for the current timestamp t, st−1
is the retained information for the previous timestamp
t − 1 , and UZ , WZ are two weight matrices, which are
used to make a linear change to the input information.
The update gate determine how much of the histori-
cal information needs to be retained for further trans-
mission. The reset gate is calculated by the following
equation

As with the update gate, the input to the reset gate is lin-
early varied and then the activation result is compressed
using the Sigmoid function. The role of the reset gate is to
determine how much historical information should be for-
gotten, so new memory content will use the reset gate to
store past relevant information. The formula for this step is

where the meanings of ht , st−1 , Uh and Wh remain
unchanged and r is the activation result of the reset gate.
The Hadamard product of st−1 and r can be calculated to
determine the previous information to be retained versus
forgotten. Finally, the input xt is activated using hyperbolic
tangent activation function after linear transformation with
the determined historical information vector respectively.

The network also needs to retain the information about
the current timestamp to be passed, and this is where
the result of the update gate is used. This step can be
expressed as

The Hadamard product of z and st−1 represent the
information retained in the previous step, and this

(11)z = sigmoid(htU
Z + st−1W

Z),

(12)r = sigmoid(htU
r + st−1W

r).

(13)h = tanh(htU
h + (st−1 ⊕ r)Wr),

(14)st = (1− z)⊕ h+ z ⊕ st−1.

information plus the information retained in the current
memory is the output of GRU.

The above algorithmic flow completes the learn-
ing of the multimodal data. The output is put into the
AutoEncoder and compressed to obtain the prediction
result, denoted as X̄ = {x̄1, x̄2, x̄3, x̄4, , , ¯xM} . Here we
choose GRU Auto-Encoder. This prediction result will
be used as an important component in the calculation
of the anomaly score, which is described in detail in the
next subsection.

Anomaly score and SPOT threshold selection
After the prediction results are obtained, further
abnormal scores are needed. For the anomaly scores
of individual indicators, the normal state score and the
anomaly score need to be maximized, and each score
is guaranteed to be greater than zero. Equation (15) is
used to evaluate the anomalies of the network metrics
at the specified timestamps.

where x̄i is the predicted value and xi is the real network
indicator state value observed through network teleme-
try. The network anomaly score can be obtained by aver-
aging the anomaly scores of all indicators, calculated by

where n is the number of all indicators
obtained by telemetry, and the final total output
Anomt = {anom0, anom1, anom2, anom3, anom4, , , anomM}
is obtained. By averaging, it ensures that the abnormal
state of each indicator is reflected when determining the
abnormal state of the network; it also makes it possible
that when the number of network indicators is large,
there is no problem of scoring too large values for net-
work abnormalities.

Finally, anomaly judgments are made based on anom-
aly score pairs. Here the threshold value can be used
to judge the network state. Since the state of the net-
work fluctuates more frequently, some networks have
small values of change from normal to abnormal states.
Therefore, the common SVM dichotomous threshold
selection method is not suitable for this algorithm.
MFGAD-INT uses SPOT algorithm to dynamically gen-
erate thresholds that determine anomalies in network
state and indicators, obtaining the final system judge-
ment output Yt =

{

y0, y1, y2, y3, y4, , , yT
}

, yi ∈ {0, 1}.

(15)anomi = (xi − xi)
2,

(16)anom0 =

∑n
i=1 si

n
,

Page 10 of 16Duan et al. Journal of Cloud Computing (2023) 12:126

Algorithm 1 Calculate SPOTFor the fraction anomi
of all anomaly samples, the initial threshold zq is calcu-
lated by POT, after which the outlier data is traversed
to determine whether the current outlier value exceeds
this threshold, and if it does, it is judged to be abnormal
and added to A. If it does not exceed, the current data is
judged to be a peak, and if it is a peak, the data values
exceeding the current peak are added to the set XT used
to store the anomaly peak, calculate the optimization
parameters γ̂ , σ̂ , and finally update the threshold value.

The pseudocode of the SPOT algorithm is shown
above. Here, anomi is the network anomaly value

predicted by the prediction model and scored, while A is
the data set used to store the data judged as anomalies in
the algorithm. The initial threshold zq is obtained through
executing POT operator. Then, the algorithm traverses
the anomaly value data and determines whether the cur-
rent anomaly value exceeds the threshold. If it exceeds, it
is judged as an anomaly. At this point, it is also necessary
to determine whether the current data is a peak. If it is a
peak, the values exceeding the current peak are added to
the set XT which is used to store the excess peaks, and
the optimization parameters γ̂ and σ̂ are calculated, and
finally the threshold is updated.

Simulation and results analysis
In this section, we evaluate the proposed MFGAD-INT
using data sets collected in a real data center network
environment. We first present the experimental setup,
including the simulation environment, data collection
approach, and the metrics and compared methods cho-
sen for performance evaluation. The results of differ-
ent are then analyzed to validate the advancement of
MFGAD-INT.

Experimental setup
The data set was collected from a testbed replicating the
legacy topology of the CSP data center, as shown in Fig. 3.

Fig. 3  Real testbed network topology

Page 11 of 16Duan et al. Journal of Cloud Computing (2023) 12:126 	

Although the testbed does not involve real users, it
does use real devices, protocols, and applications typi-
cal of production networks. We use a server to generate
real application data streams and are controlled to add
random anomalous events to the streams. In the context
of the study, we chose to inject both Microburst, which
occur more commonly in modern data centers, and ele-
phant flow anomalies.

Modern data center networks operate at high speeds
(bigger than 10 Gbps) and have ultra-low end-to-end
latency (10 microseconds) [30]. As a result, even a small
amount of queuing (called Microburst) occurring over
a short period of time can have a significant impact on
application performance. This manifests itself in the
form of a very large number of bursts of data received by
switch ports in a very short period of time (millisecond
level). We generate Microburst randomly in the network
environment by sending short bursts of high traffic data
streams at random.

Anomalous occurrences of large elephant flows can
also significantly impact network performance and thus
trigger network anomalies. However, if a service that gen-
erates a stream is misconfigured and enters the normal
network environment, it may cause severe congestion
in the network environment. In this paper, anomalous
events are injected by randomly sending elephant stream
data among different servers.

Different anomalous events are selected for injection
under different network load conditions, resulting in
multiple experiments as shown in Table 2 below.

As to the data set, we first collect data under nor-
mal conditions as the training set and thereafter collect

the test set based on the injection of anomaly events as
labels. We measure high and low traffic loads in terms of
the number of running services. Specifically, the services
in the network are simulated by pushing video streams.
At the same time, specific anomalous service streams are
randomly injected into the network environment using
idle servers to keep the occurrence of network anoma-
lies in a human-controllable state. All experiments lasted
for about half an hour. To verify the effectiveness of INT,
data sets were collected for each group of experiments
using the SNMP network protocol and different telem-
etry frequencies of INT.

Based on the latest INT 2.1 protocol, we select nine
of these standard metadata as shown in Table 3. These
telemetry metadata can be uniquely identified by the
name of their YANG model. According to the specifica-
tion of the protocol, the selected metadata can be clas-
sified into 4 categories, i.e., node information, ingress
information, egress information, buffer information,
which are all data plane information.

Evaluation Metrics: Since the data set for anomaly
detection is an unbalanced data set [47], i.e., most is nor-
mal data while only a little is anomaly data. In this case,
if we only focus at the correct rate, we can easily imag-
ine a scenario where 90% of the test data set is normal,
when the predicted results are all normal, and we can
expect the correct rate is about 90%. But in fact, this kind
of metrics is not meaningful for the anomaly detection
problem which is more concerned with the low-probabil-
ity anomalies. Therefore, we use Accuracy, Recall and F1
to evaluate the performance of the algorithm model.

We compare MFGAD-INT with other network anom-
aly detection methods, including ODS, GDN, HSTree,
and RShash. all of these algorithms are described in the
subsection on related work, and they are representative
of typical algorithms at various stages of the anomaly
detection field.

We implemented our approach using Python ver-
sion 3.8. All experiments were run on a server with Intel
Core i9-12900K Processor (5.20 GHz) CPU and NVIDIA
GeForce RTX 3090. We use the same sliding window size
of 100 for all models. In MFGAD-INT, we set the hidden
size of GRU and GRU AutoEncoder to 150 and use the
Adam optimizer to train the MFGAD-INT model. The

Table 2  Description of the experimental data set

No. Traffic Anomaly Events Duration

E1 High load Microburst 0.30h

E2 Low load Microburst 0.35h

E3 High load Elephant Flow 0.30h

E4 Low load Elephant Flow 0.35h

E5 High load Both 0.30h

E6 Low load Both 0.35h

Table 3  Available INT telemetry features

Node Ingress Egress Buffer Information

Node-id Ingress-identifier Egress-identifier Queue-id

Ingress-timestamp Egress-timestamp

Ingress-RX-byte-count Egress-TX-byte-count Instantaneous-queue-length

Ingres-RX-utilization Egress-TX-utilization

Page 12 of 16Duan et al. Journal of Cloud Computing (2023) 12:126

initial learning rate is 0.001 and the number of training
epochs is 50. For each data set, we independently con-
ducted 5 repeated experiments.

In addition, telemetry-based means of data collection
is an important component of MFGAD-INT. To analyze
the effectiveness of this component, for MFGAD-INT,
additional comparative experiments were performed
using SNMP-based data sets obtained.

Results and analysis
In this subsection, the experimental results are analyzed
to verify the validity and reliability of MFGAD-INT. First,
the impact of the anomaly detection effect on telemetry
parameters will be discussed mainly. Then, the perfor-
mance of the proposed algorithm is compared with other
anomaly detection algorithms. Also the generalization
and reliability of the proposed algorithm is verified by the
performance differences under multiple data sets. Finally,
an anomaly case is analyzed to show that MFGAD-INT
has the ability to locate the location of anomalies at the
same time to a certain extent.

Influence of telemetry parameters on the effect of anomaly
detection
To demonstrate the important role played by telem-
etry components in MFGAD-INT, a component validity
analysis was performed. The data set was reconstructed
in the same network environment using SNMP. Also, to
test the performance difference of MFGAD-INT under
different frequency telemetry, we also collected network
information in this environment using 25 Hz, 15 Hz, and

5 Hz telemetry frequencies respectively. Since SNMP and
low-frequency telemetry methods inevitably suffer from
missing information, the mean substitution method is
used to supplement the missing state information. The
performance comparison is shown in Table 4.

The following conclusions can be drawn from analyz-
ing the data in the above table.

First, observing the data in Table 4 with and without
INT telemetry shows that all metrics of the algorithm
model are much higher than SNMP when telemetry is
used. Focus on Recall, it can be seen that the full power
INT component can detect basically everything that
should be detected and 99.74% of the abnormal time
periods can be detected by the algorithm. Also observing
the five sets of performance comparisons it can be seen
that faster frequency telemetry corresponds to higher
performance. This is because telemetry brings more
available information and MFGAD-INT is designed to
handle high density data.

With the addition of telemetry, the accuracy of the net-
work state index assessment given by the algorithm is
significantly improved. Many network anomalies of short
duration can be reasoned and identified by the algorithm,
as shown in the comparison Fig. 4. Figure 4(a) and (b)
show the impact of anomaly detection on the processing
delay of the same switch under different network detec-
tion means, and the part above the dotted line shows the
index anomalies detected by the algorithm. In this exam-
ple, there is one elephant flow anomaly and 20 Micro-
burst in the network. The algorithm without telemetry
detects only one elephant flow anomaly and five short-
time Microburst, and the anomaly detection results lag
in elephant flow anomaly detection; while the algorithm
based on the INT telemetry component completes the
identification of all anomalies without lag in the time
period of anomaly detection, which can quickly provide
more time-sensitive detection results.

In summary, compared with SNMP, telemetry can
enrich the temporal information in the acquired network
state information, thus maximizing the performance
of MFGAD-INT and enabling high-performance and
highly interpretable network anomaly determination.

Table 4  Performance comparison of algorithmic models

Method Precision Recall F1

SNMP 0.5964 0.6274 0.6115

5Hz INT 0.8895 0.7399 0.8079

15Hz INT 0.9469 0.7624 0.8447

25Hz INT 0.9779 0.8987 0.9366

50Hz INT 0.9886 0.9974 0.9942

Fig. 4  Anomaly scores with and without telemetry components, a without telemetry b with telemetry

Page 13 of 16Duan et al. Journal of Cloud Computing (2023) 12:126 	

Meanwhile, the frequency of telemetry also significantly
affects the performance of the algorithm, and a higher
telemetry frequency will bring more accurate detection
results, which is consistent with intuition.

Validity of MFGAD‑INT
As shown in Table 5, MFGAD-INT performs signifi-
cantly better than other network anomaly detection algo-
rithms. MFGAD-INT improves about 10.56% compared
to GDN and about 9.73% compared to ODS. HSTree
and RShash are more early period anomaly detection
methods, which are not as effective when dealing with
fine-grained, highly oscillatory network indicators with
high time-density data. GDN also uses GAT to learn the
correlation of temporal features, but it is also less effec-
tive than MFGAD-INT in terms of detection because it
mainly learns the temporal patterns hidden in the time
series and is not as explanatory for the interrelationships
between network indicators.

Figure 5 shows the anomaly score comparison results of
the four algorithms. The experimental results in Fig. 5(a)
show that RShash is an algorithm that is sensitive to the
increase of data anomalies. However, for dynamic net-
work states, the fluctuation of network indicators within
a certain range does not imply the presence of anomalies
in the network. In addition, when the network operation

state reaches an extremely high load, the network state
has changed to an abnormal state, but the values of some
network indicators do not change drastically, and there
are also cases of missed detection. Meanwhile, when the
network enters a longer period of abnormal state, RShash
will consider that the current state tends to be normal,
which is obviously unreasonable. The effect of HSTree
has been greatly improved compared with RShash. When
facing a long period of abnormal state, the algorithm can
accurately determine the current abnormal situation.
However, the algorithm cannot give an accurate judg-
ment for the current state when the anomaly has just
ended, which leads to many false alarms and affects the
performance of the algorithm.

GDN and MFGAD-INT are based on GAT learning
data, so they both achieve better results than earlier
network anomaly detection algorithms when scoring
anomalies on network states. The advantages of the
new method incorporating GAT can be seen through
Fig. 5(c) and (d). The anomaly score can be stabilized
at a high level when facing the same type of persis-
tent anomaly states, while there are more significant
differences in the anomaly score values when facing
different anomaly states. This indicates that this algo-
rithm enhances the interpretability of GAT for anom-
aly judgment. At the same time, when the network is
in a normal state, the anomaly score can also be kept
at a lower state with less fluctuation, which is benefi-
cial for the algorithm to distinguish between anoma-
lies and normal states.

Since the ODS algorithm achieves the detection
of anomalies through clustering, it is different from
other algorithms in terms of judgment methods. How-
ever, it can also be seen from Table 5 that the algo-
rithm does not perform as well as the MFGAD-INT
algorithm using GNN. This is a performance-for-time
detection algorithm when dealing with larger amounts

Table 5  Performance comparison of model and baseline

Method Precision Recall F1

RShash 0.7614(0.4444) 0.9999(0.4880) 0.8645(0.4652)

HSTree 0.5475(0.4030) 0.9993(0.4759) 0.7074(0.4367)

ODS 0.8263(0.4967) 0.9999(0.4987) 0.8969(0.4976)

GDN 0.8375(0.5023) 0.9418(0.4965) 0.8866(0.4993)

MFGAD-INT 0.9886(0.5964) 0.9974(0.6274) 0.9942(0.6115)

Fig. 5  Algorithm anomaly scores of different algorithms, a RShash, b HSTree, c GDN, d MFGAD-INT

Page 14 of 16Duan et al. Journal of Cloud Computing (2023) 12:126

of data, as the clustering algorithm dynamically
adjusts the central clusters.

Figure 5(c) and (d) also show that MFGAD-INT based
on multimodal information extraction learning performs
much better than GDN with only spatial dimensional
feature learning in terms of interpretability of anomaly
scoring. For the same type of anomaly, MFGAD-INT
can give similar anomaly score, and for different types
of anomalies, MFGAD-INT’s anomaly scores also have
enough variability. This is not achievable in the other
algorithms.

Generalizability of MFGAD‑INT
In this subsection the generalizability of the proposed
algorithm is analyzed. Through a side-by-side compari-
son with other algorithms using the same experimental
scenarios, the volatility of the MFGAD-INT algorithm
is lowest for different anomaly injection methods under
different loads, and MFGAD-INT maintains excellent
detection performance under different network states.
The experimental comparison results are shown in
Table 6 below.

The performance of the anomaly detection algo-
rithms fluctuates with the difficulty of injecting anoma-
lies through the above experimental analysis. In the E3/
E4 task, the performance of all algorithms is optimal. In
the E1/E2 task, MFGAD-INT is the only algorithm with
all performance metrics above 0.9. Meanwhile, MFGAD-
INT achieves the highest value in all five metrics of all
experiments. Although it has a lower recall than RShash
and HSTree in the face of E5/E6, these two algorithms are
far below MFGAD-INT in the evaluation of other met-
rics, so MFGAD-INT proves to be highly reliable. Since

the ODS algorithm is a clustering algorithm, its detection
performance is better in the face of single anomaly injec-
tion, but the performance fluctuates greatly when facing
multiple anomalies injected at the same time. In con-
trast, MFGAD-INT performs well in the face of differ-
ent situations, which proves that MFGAD-INT has good
generality.

Case study of anomaly location
Since the MFGAD-INT pair achieves more information
extraction and thus gives a more explanatory anomaly judg-
ment, it can locate the location and start time of the anom-
aly to a certain extent. The example is detailed in Fig. 6.

Table 6  Experimental validation table for generalizability

No. Method Precision Recall F1

E3/E4 MFGAD-INT 0.9943 0.9995 0.9971

GDN 0.9053 0.9949 0.9504

ODS 0.9547 0.9991 0.9767

RShash 0.7339 0.9508 0.8322

HSTree 0.6666 0.9994 0.7999

E5/E6 MFGAD-INT 0.9886 0.9974 0.9942

GDN 0.8375 0.9418 0.8866

ODS 0.8263 0.9999 0.8969

RShash 0.7614 0.9999 0.8645

HSTree 0.5475 0.9993 0.7074

E1/E2 MFGAD-INT 0.9496 0.9999 0.9741

GDN 0.7893 0.9939 0.8822

ODS 0.8992 0.9999 0.9469

RShash 0.6606 0.8727 0.7520

HSTree 0.3788 0.9593 0.5432

Fig. 6  Anomaly score of internal processing delay of switches a Switch 130, b Switch 131, c Switch 132, and d Switch 133

Page 15 of 16Duan et al. Journal of Cloud Computing (2023) 12:126 	

In the example in Fig. 6, there is an elephant flow in the
network environment that flows through the switches
130, 132, and 133 during the time periods from 1000
to 1100. The four graphs correspond to the processing
delays of each of the four switches in the experimen-
tal network, and it can be seen that no anomalies were
detected at the time period 1000 in switch 131, while
the other four switches all detected persistent anoma-
lies, thus also locating a network link and achieving some
degree of anomaly location.

Conclusion
In this paper, we present a graph attention-based deep
learning method for INT data-driven anomaly detection
in cloud data center networks. Our proposed method,
MFGAD-INT, can accurately identify anomalies and
locates them within the network. Through experiments
on a real cloud platform, we investigate the efficacy and
accuracy of the proposed method, and compare it with
existing network anomaly detection algorithms to verify
its superiority. In the future, we plan to improve cloud
service quality by combining knowledge to explain the
root causes of network anomalies and automating the
intelligent classification of cloud data center network
anomalies.

Authors’ contributions
Yunfeng Duan proposed the main idea and principles of the research
and sketched the manuscript. Chenxu Li designed and implemented the
algorithms and experiment schemes and drafted the technical part. Fanqin
Zhou guided the design of the algorithms and experiment, prepared the
final manuscript for submission. Hao Sun helped with setting up experiment
environment, including the illustrative figures. Jiaxing Chen helped with
the implementation of the experiments and prepared the analytical figures.
Guo Chen prepared the background and related work parts of the manu-
script. Chun Zhang drafted the background and related research part of the
manuscript. Zehua Gao refined the whole text of the manuscript, and help
with preparing the final manuscript for submission. All the authors reviewed
the manuscript.
 Yunfeng Duan and Chenxu Li has equal and important contribution to the
research, so we list them as first author with ‘equal contribution’.

Funding
This work is supported by the Joint Funds of the National Natural Science
Foundation of China (Grant No. U21B2022) and CMCC and BUPT cooperative
program (Grant No. A2022256).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 6 April 2023 Accepted: 23 July 2023

References
	1.	 He Q, Dong Z, Chen F, Deng S et al (2022) Pyramid: Enabling hierarchical

neural networks with edge computing. In: Proceedings of the ACM Web
Conference 2022. Association for Computing Machinery. New York, NY,
USA. pp 1860–1870

	2.	 Zhou X, Xu X, Liang W et al (2021) Deep-learning-enhanced multitarget
detection for end-edge-cloud surveillance in smart IoT. IEEE Internet
Things J 8(16):12588–12596

	3.	 Krishnan P, Jain K, Aldweesh A, Prabu P, Buyya R (2023) Openstackdp: a
scalable network security framework for SDN-based OpenStack cloud
infrastructure. J Cloud Comput 12(1):26–26

	4.	 Yuan L, He Q, Chen F, Zhang J, Qi L, Xu X, Xiang Y, Yang Y (2021) CSEdge:
Enabling collaborative edge storage for multi-access edge computing
based on blockchain. IEEE Trans Parallel Distrib Syst 33(8):1873–1887

	5.	 Xia X, Chen F, He Q, Grundy J, Abdelrazek M, Jin H (2020) Online col-
laborative data caching in edge computing. IEEE Trans Parallel Distrib Syst
32(2):281–294

	6.	 Zhou X, Yang X et al (2021) Energy-efficient smart routing based on
link correlation mining for wireless edge computing in Iot. IEEE Internet
Things J 9(16):14988–14997

	7.	 Dai H, Yu J, Li M, Wang W, Liu AX, et al (2022) Bloom filter with noisy cod-
ing framework for multi-set membership testing. IEEE Trans Knowl Data
Eng 35(7):6710–6724

	8.	 Wu S, Shen S, Xu X, et al (2022) Popularity-aware and diverse web APIs
recommendation based on correlation graph. IEEE Trans Comput Soc
Systems 10(2):771–782

	9.	 Qi L, Lin W, Zhang X, et al (2022) A correlation graph based approach for
personalized and compatible web APIs recommendation in mobile APP
development. IEEE Trans Knowl Data Eng 35(6):5444–5457

	10.	 Jia Y, Liu B, Dou W et al (2022) CroApp: a CNN-based resource optimiza-
tion approach in edge computing environment. IEEE Trans Ind Inform
18(9):6300–6307

	11.	 Sulaiman Alhaidari MA Ali Alharbi, et al (2019) Network traffic anomaly
detection based on Viterbi algorithm using SNMP MIB data. In: Proceed-
ings of the 2019 3rd International Conference on Information System and
Data Mining. Association for Computing Machinery. New York, NY, USA.
pp 92–97

	12.	 Smieško J, Kontšek M, Hajtmanek R (2021) Anomaly recognition in bursty
IP traffic models. In: 2021 19th International Conference on Emerging
eLearning Technologies and Applications (ICETA). pp 351–358

	13.	 Tang J, Chen M, Chen H, Zhao S, Huang Y (2023) A new dynamic security
defense system based on TCP_REPAIR and deep learning. J Cloud Com-
put 12(1):21–21

	14.	 Yang Y, Yang X, Heidari M, et al (2022) Astream: Data-stream-driven scal-
able anomaly detection with accuracy guarantee in IIoT environment.
IEEE Transactions on Network Science and Engineering. pp 1–1

	15.	 Zhou X, Liang W, Yan K, et al (2022) Edge enabled two-stage scheduling
based on deep reinforcement learning for Internet of everything. IEEE
Internet of Things Journal 10(4):3295–3304

	16.	 Kong L, Wang L, Gong W, Yan C, Duan Y, Qi L (2021) LSH-aware multitype
health data prediction with privacy preservation in edge environment.
World Wide Web. Kluwer Academic Publishers. USA. 25(5):1793–1808.

	17.	 Wang F, Li G, Wang Y, et al (2022) Privacy-aware traffic flow prediction
based on multi-party sensor data with zero trust in smart city. ACM Trans
Internet Technol (TOIT). Association for Computing Machinery. New York,
NY, USA. online (just accepted):1533–5399

	18.	 Veličković P, Cucurull, et al (2017) Graph attention networks. In:
Proceedings of the 6th International Conference on Learning
Representations({ICLR}). OpenReview.net. Vancouver, BC, Canada. pp
1–12

	19.	 Li Z, Xu X, Hang T, et al (2022) A knowledge-driven anomaly detection
framework for social production system. IEEE Trans Comput Soc Systems.
early access (2022):1–14

Page 16 of 16Duan et al. Journal of Cloud Computing (2023) 12:126

	20.	 Cho K, Van Merriënboer B, Gulcehre, et al (2014) Learning phrase
representations using RNN Encoder-Decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing ({EMNLP}). Association for Computational
Linguistics. Doha, Qatar. pp 1724–1734

	21.	 Chen X, Feibish SL, et al (2018) Catching the microburst culprits with
snappy. In: Proceedings of the Afternoon Workshop on Self-Driving
Networks. Association for Computing Machinery. New York, NY, USA. pp
22–28

	22.	 de Almeida LC, Pasquini R, Verdi FL (2021) Using machine learning and
in-band network telemetry for service metrics estimation. In: 2021 IEEE
10th International Conference on Cloud Networking (CloudNet). IEEE.
Cookeville, TN, USA. pp 33–39

	23.	 Xu X, Gu J, Yan H, et al (2022) Reputation-aware supplier assessment for
blockchain-enabled supply chain in Industry 4.0. IEEE Transactions on
Industrial Informatics. 19(4):5485–5494

	24.	 Zhang H, Wang D, Zhang W, Tan L, Kibalya G, Zhang P, Igorevich KK (2023)
QoS prediction in intelligent edge computing based on feature learning.
J Cloud Comput 12(1):1–16

	25.	 Tan SC, Ting KM, Liu TF (2011) Fast anomaly detection for streaming data.
In: Twenty-second international joint conference on artificial intelligence.
AAAI Press. Barcelona, Catalonia, Spain. pp 1511–1516

	26.	 Sathe S, Aggarwal CC (2016) Subspace outlier detection in linear time
with randomized hashing. In: 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE. Piscataway, NJ. pp 459–468

	27.	 Said Elsayed M, Le-Khac NA, et al (2020) Network anomaly detection
using LSTM based autoencoder. In: Proceedings of the 16th ACM Sympo-
sium on QoS and Security for Wireless and Mobile Networks. Association
for Computing Machinery. New York, NY, USA. pp 37–45

	28.	 Liu J, Li X (2020) Anomaly detection algorithm for industrial control net-
works based on graph neural networks. Comput Syst Appl 29:234–238

	29.	 Deng A, Hooi B (2021) Graph neural network-based anomaly detection
in multivariate time series. In: Proceedings of the AAAI conference on
artificial intelligence. AAAI Press, Palo Alto, California USA. pp 4027–4035

	30.	 Joshi R, Qu T, Chan MC, Leong B, Loo BT (2018) Burstradar: Practical real-
time microburst monitoring for data center networks. In: Proceedings of
the 9th Asia-Pacific Workshop on Systems. Association for Computing
Machinery. New York, NY, USA. pp 1–8

	31.	 Teixeira R, Harrison R, Gupta A, Rexford J (2020) Packetscope: Monitoring
the packet lifecycle inside a switch. In: Proceedings of the Symposium on
SDN Research. Association for Computing Machinery. New York, NY, USA.
pp 76–82

	32.	 Jia C, Pan T, Bian Z, et al (2020) Rapid detection and localization of
gray failures in data centers via in-band network telemetry. In: NOMS
2020-2020 IEEE/IFIP Network Operations and Management Symposium.
Budapest, Hungary. pp 1–9

	33.	 Zhang Y, Pan T, Zheng Y et al (2021) Automating rapid network anomaly
detection with in-band network telemetry. IEEE Netw Lett 4(1):39–42

	34.	 Tan L, Su W, Zhang W et al (2021) A packet loss monitoring system for in-
band network telemetry: detection, localization, diagnosis and recovery.
IEEE Trans Netw Serv Manag 18(4):4151–4168

	35.	 Putina A, Rossi D (2020) Online anomaly detection leveraging stream-
based clustering and real-time telemetry. IEEE Trans Netw Serv Manag
18(1):839–854

	36.	 Wang R, Nie K, Chang, et al (2020) Deep learning for anomaly detection.
In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. Association for Computing Machin-
ery. New York, NY, USA. pp 3569–3570

	37.	 Qi L, Yang Y, Zhou X, et al (2021) Fast anomaly identification based on
multiaspect data streams for intelligent intrusion detection toward
secure Industry 4.0. IEEE Trans Ind Inf 18(9):6503–6511

	38.	 Ramirez JM, Rojo P, et al (2022) Cleaning matters! preprocessing-
enhanced anomaly detection and classification in mobile networks. In:
2022 20th Mediterranean Communication and Computer Networking
Conference (MedComNet). IEEE. Piscataway, NJ. pp 103–112

	39.	 Ting KM, Zhou GT, Liu, et al (2010) Mass estimation and its applications.
In: Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining. Association for Computing
Machinery. New York, NY, USA. pp 989–998

	40.	 Xu L, Xu Z (2020) One-class classification with deep adversarial learning.
In: Proceedings of the 2019 3rd International Conference on Computer

Science and Artificial Intelligence. Association for Computing Machinery.
New York, NY, USA. pp 103–106

	41.	 Burnaev E, Ishimtsev V (2016) Conformalized density- and distance-based
anomaly detection in time-series data. arXiv preprint arXiv:​1608.​04585

	42.	 Ester M, Kriegel HP, Sander J, Xu X, et al (1996) A density-based algorithm
for discovering clusters in large spatial databases with noise. In: kdd. AAAI
Press. Palo Alto, California USA. pp 226–231

	43.	 Breunig MM, Kriegel HP, et al (2000) LOF: identifying density-based local
outliers. In: Proceedings of the 2000 ACM SIGMOD international confer-
ence on Management of data. Association for Computing Machinery.
New York, NY, USA. pp 93–104

	44.	 Guha S, Mishra N, Roy G, Schrijvers O (2016) Robust random cut forest
based anomaly detection on streams. In: International conference on
machine learning. JMLR.org. New York, NY, USA. pp 2712–2721

	45.	 Angiulli F, Fassetti F (2007) Detecting distance-based outliers in streams
of data. In: Proceedings of the sixteenth ACM conference on Conference
on information and knowledge management. Association for Computing
Machinery. New York, NY, USA. pp 811–820

	46.	 Kontaki M, Gounaris A, et al (2011) Continuous monitoring of distance-
based outliers over data streams. In: 2011 IEEE 27th International Confer-
ence on Data Engineering. IEEE. Piscataway, NJ. pp 135–146

	47.	 Zhou X, Hu Y, Wu J et al (2022) Distribution bias aware collaborative
generative adversarial network for imbalanced deep learning in industrial
IoT. IEEE Trans Ind Inf 19(1):570–580

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1608.04585

	MFGAD-INT: in-band network telemetry data-driven anomaly detection using multi-feature fusion graph deep learning
	Abstract
	Introduction
	Related work
	Anomaly detection methods
	Telemetry-based network anomaly detection

	Framework of telemetry-based anomaly detection system
	Overall structure of MFGAD-INT
	Data preprocessing
	Switch processing delay
	Link delay
	Packet loss rate
	Link bandwidth utilization

	Network anomaly detection problem description and construction

	Method
	Detection program design
	The use of graph attention
	The use of GRU​

	Anomaly score and SPOT threshold selection

	Simulation and results analysis
	Experimental setup
	Results and analysis
	Influence of telemetry parameters on the effect of anomaly detection
	Validity of MFGAD-INT
	Generalizability of MFGAD-INT
	Case study of anomaly location

	Conclusion
	References

