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An error is present in Algorithm 4 and the proof of Theorem 15 in Section 5 of the
original manuscript, as a result of an incorrect handling of the quadratic model and its
conditioning properties. Thus, we provide in this erratum a correction to this error. First,
we amend the bullet points in Section 5.1 to now say:

e Given A we will compute a low complexity constant spectral approximation B of A.
Specifically, B = E?:(f log(d)) uz-ul-T and %B < A < 2B. This is achieved by techniques
developed in matrix sampling/sketching literature, especially those of Cohen et al.
(2015). The procedure requires solving a constant number of O(dlog(d)) sized linear
systems, which we do via Accelerated SVRG.

e We then observe that the quadratic function in A is %-strongly convex and 2-smooth
w.r.t. ||-]|p (and thus has constant condition number), at which point we may follow
the standard descent analysis, accounting for the approximation error incurred when

approximately solving a system in B.

Next, we present the corrected versions of Algorithm 4 and the proof of Theorem 15.
Proof [Proof of Theorem 15 (Corrected)] We may first observe that W(v) (defined in
Algorithm 4) is %—strongly convex and 2-smooth with respect to the norm given by ||v||p £

Vv T Bv. In this case, it is well-known that running an iterative method of the form
- .1 -
Vi4l1l = Vi — EB 1VW(V75) (1)

will converge to an e-approximate minimizer of W (v) in O(log(ho/¢)) iterations, where
hg & W(¥g) — ming W(¥). Thus, all that is left is to handle the approximation error
incurred by Acc-SVRG.
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Algorithm 4 Fast Quadratic Solver (FQS) (Corrected)
Input: A=Y",(v;vl + ), b, e >0, K = O(log(1/¢)), o =0
Output : vi s.t. |[A7'b—vg| <e¢
Compute B s.t. 2B = A = 1B using REPEATED HALVING (Algorithm 3)
Define W(v) = ivTAv—b'v
fortzOtoK—lglo
Define Qi(y) = Y% — VW (¥,) Ty
Let & = min(d)e

Compute approximate minimizer y; of Q;(y) using Acc-SVRG, such that

1 5
“\lye = BT'VW (¥4)]| < mi .1
i st < s

9 Vip1 = Vi— %}A’t
10: end for
11: Output v such that |[A7'b —vg| <¢

Running Time Analysis: Define hy = W (¥;) — ming W (¥). Using the standard descent
analysis, we show that the following holds true for ¢ > 0:

hy < max{&, (0.9)'ho}.

This follows directly from the (matrix norm-based) gradient descent analysis which we
outline below. To make the analysis easier, we define a sequence of exact iterates as:

U -
Ziy1 = Vi — ZB IVW(Vt).

Furthermore, our approximate solution y; is such that

1 g
— Vil = <[[§: — B'YW()|| < mi 1, 2
7241 = Fesal = 115 m”—mmhmww+mwwz} @)

where Gy is a bound on |[VW (V)| g-1. The bound Gy can be taken as a bound on the
gradient of the quadratic at the start of the procedure (for vo = 0), so it is enough to take
Gw = |B7''/2|b], since [[VW(0)|[p-1 < [B-HIM*IVW(0)| = [B~!|'*|[b]. We now
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have that
hiz1 —hy = W(Vigr) — W(ve)
< (VW (Ve), Vig1 — Vi) + [Vigr — Vil B
= (VW (1), Ze41 = Vo) + (VW (90), Vst = Zegr) + |1 Ze41 — Vo + Vg — 2o |3
= (VW (W), 2011 — Vi) + (VW (1), Vi1 — ze1) + lzes1 — Vil B + Ve — 2o | B
+2(Vip1 — Zes1, Bz — Ve))
- - 1 oy - .
= (VW(¥),zt41 — Vi) + *(VW(Vt),VtH — z41) + ||Ze41 — Vel[B + Vi1 — 2eallB
1 1 N N
< —ZHVW( D51+ = <VW(Vt) Vitl — Ze1) + §||VW(V15)H2B*1 + [[Vi1 — ze1lB
1 - - - .
< —§||VW(vt)HQB_1 + §||VW(V)HB—1 Vi1 — zerll B + Vi1 — 2|1 B
<

1 . 1 - -
< IV EI -+ (VW@ +1) 9 = 2l

By %-strong convexity of W (-) w.r.t. ||-||g, we have that, for all x,y € R%,

W(y) > W) + VW0 (y = %)+ glly — xI%

> min{W(x) + VW (x) " (y —x) + illy - x|}
= W(x) = [[VW)[5-.

It follows that
VW ()51 < —hu,

and so
1 1 5 -
e — e < —h+ (QHVW(v)HB-I ; 1) [¥ee1 — 201l

which gives us

1 - -
ht+1 S Oght + (QIVW(V)HBl + 1> HVH_l — Zt+1HB
1 N -
< 090 + (FIVW @5+ + 1) 1B ¥ — 20
< 0.9h; + 0.01€,

where the final inequality follows by our approximation guarantee in (2).
Using the inductive assumption that h; < max{é, (0.9)'hg}, it follows that

he1 < max{Z, (0.9) 1 he}.

1 - 1 - - -
~SITW I+ (GITW @l + e =21l ) 1911~ ziall
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Using the above inequality, it follows that for ¢ > O(log(%)), we have that hy < &. Note

that W (V) is Amin(A)-strongly convex w.r.t. ||-||. Thus, we have that if h; <&, then
)\min A) . . ~ ~
2()Hvt —argmin W(v)[| < by <€,
and so it follows that oz
¥ — argmin 17 (9)] < m (4)

The running time of the above sub-procedure is bounded by the time to calculate VW (v),
which takes at most O(md) time, and the time required to compute y;, which involves
approximately solving a linear system in B at each step to € accuracy, where

éémin{ £ 1}
B 100(Gw + 1)||B||2/2" " |~

Combining these we get that the total running time is

O(md + LIN(B, €)) log (i) .

Note that we set £ = )‘“““#(A)E, and so ||[v; — argming W (V)| < . Now we can bound

LIN(B,é) by O(d* + d\/k(A)d)log(1/e) by using Acc-SVRG to solve the linear system
and by noting that B is an O(dlog(d)) sized 2-approximation sample of A, which finishes
the proof. |
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