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Abstract

accuracy of 99.96%.

Modern production lines for refrigerator take advantage of automated inspection equipment that relies on cameras.
As an emerging problem, refrigerator classification based on images from its front view is potentially invaluable for
industrial automation of refrigerator. However, it remains an incredibly challenging task because refrigerator is
commonly viewed against dense clutter in a background. In this paper, we propose an automatic refrigerator image
classification method which is based on a new architecture of convolutional neural network (CNN). It resolves the
hardships in refrigerator image classification by leveraging a data-driven mechanism and jointly optimizing both
classification and similarity constraints. To our best knowledge, this is probably the first time that the deep-learning
architecture is applied to the field of household appliance of the refrigerator. Due to the experiments carried out
using 31,247 images of 30 categories of refrigerators, our CNN architecture produces an extremely impressive
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1 Introduction

Being one of the most common household appliances in
industrial production, the refrigerator plays a vital role
in humans’ daily lives, globally. In recent decades, China
ranks the first in refrigerator production; the refrigerator
industry has considerably contributed to China’s econ-
omy. It has been reported by the National Bureau of
Statistics of China [1] that China produced 79.92 million
refrigerators in 2015.

Various vision-based applications in refrigerator manu-
facturing process have been brought forward along with
the development of industrial automation especially in the
emergence of industry 4.0 standardization [2—4]. As an
example, automatic classification is potentially invaluable
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for industrial automation. It helps to resolve several dis-
advantages of manual inspection which is being widely
adopted on the production line, e.g., high labor cost and
inter/intra-observer variations.

As an emerging problem, image-based automatic classi-
fication of the refrigerator is of great importance because
it can potentially provide a valuable tool for indus-
trial automation of refrigerator. There have been various
machine-learning-based image -classification methods
proposed in industrial automation. However, none of
them was designed for the automatic classification of
the refrigerator, which mainly relies on human’s visual
system at present. The machine-learning-based classifi-
cation methods can be roughly divided into two cat-
egories, including classifier combined with handcrafted
features and automatically extracted features. With exper-
iments, we respectively testify the support vector machine
(SVM)-based methods [5-8] and CNN-based methods,
in which the front-view image of the refrigerator is
exploited due to the rich information captured by this
image in recognizing and differentiating refrigerators.
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Experimental results show that the CNN-based meth-
ods outperform the state-of-the-art SVM-based methods
with handcrafted features. Both SVM-based methods and
CNN-based methods are effective in the classification of
refrigerator front-view images. However, we observe fun-
damental challenges in the front-view image of the refrig-
erator, including the dense clutter, varying backgrounds,
large homogeneous areas, sparse salient regions, and the
specular reflection.

In the field of machine learning, recent advances
[9-11] in deep learning have led to breakthroughs in long-
standing tasks such as language translation, text recog-
nition and image-related problems of feature extraction
[12, 13], image segmentation [14—16], and image classifi-
cation [17-22]. Among all these techniques, CNN is one
of the most successful methods and has acquired wide
applications in image classification [9]. Recently, there is
an increasing trend to develop variants of deep neural
networks for the tasks that were difficult to implement
previously; for instance, in [23], a deep polynomial net-
work was presented to implement the tumor classifica-
tion with small ultrasound images, and the classification
accuracy for breast ultrasound image is 92.40 + 1.1%. A
deep-learning framework for the face attribute prediction
in the wild was proposed in [24] while prediction of the
face attributes in the wild is challenging due to the com-
plex face variations. It cascades two types of CNNs, which
are fine-tuned jointly with attribute tags and pre-trained
differently.

In this paper, we present a useful tool for classifying
refrigerator based on images taken from its front view,
which is accomplished by using a novel CNN architec-
ture adapted to the specialty of refrigerator images. Our
approach is data driven and free from handcrafted image
features. It leverages a training process to automatically
extract multi-scale image features which combine both
the local and global characteristics of the refrigerator
front-view image. The mapping between the refrigera-
tor and its corresponding category, which is learned from
these features, offers a function to automatically specify
the classification of a refrigerator given a new input image.
The proposed CNN architecture takes triple images as
input, from which a triplet loss (similarity loss) is pro-
duced. Meanwhile, the traditional convolution layer is
modified into a doubly convolutional layer in our pro-
posed CNN architecture. The details of triplet loss and
the doubly convolutional layer will be fully discussed in
Section 2. Our experimental results from 31,247 refrig-
erator front-view images of 30 categories show that the
proposed CNN architecture produces an impressive clas-
sification accuracy of 99.96%, which is considerably better
than conventional classification techniques.

Our work offers at least five significant contributions as
listed below:
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() To our best knowledge, this is the first attempt to
introduce deep-learning methods into the image
classification of the refrigerators.

(I) We propose a novel CNN architecture with triple
input and the doubly convolutional layer which both
are adapted to the characteristics of refrigerator
front-view images.

Besides the softmax loss (classification loss) that was
commonly used in previous CNN frameworks, we
introduce a triplet loss (similarity loss) in our
proposed architecture. Meanwhile, different from the
original convolution layer in conventional CNN
architectures, a doubly convolutional layer is
introduced in the proposed CNN architecture.

Our approach performs with an impressive
superiority to both the state-of-the-art image
classification techniques and human’s visual
inspection.

(1)

(Iv)

The rest of this paper is organized as follows. In
Section 2, we present our proposed refrigerator image
classification approach. Section 3 contains experimental
results and our discussions. In Section 4, we present the
conclusion.

2 Our method

Our method is employed to classify refrigerator accord-
ing to the front-view images of the refrigerator. From
the observation, we have found various challenges in the
images. Aiming at solving these difficulties, we propose a
novel CNN architecture as described in Section 2.2.

2.1 The challenges in the front-view image of refrigerator
We observed there are various challenges in the front-
view images of the refrigerator including dense clut-
ter, varying backgrounds, large homogeneous areas, sub-
tle salient regions, and specular reflection, which are
described in details as follows:

e Dense clutter. With the observation, we notice there
is a dense clutter in the front-view images of the
refrigerator. The paper and sellotape attached on the
refrigerator at the left of Fig. 1 are typical clutter in
the images of the refrigerator. Compared to the
image at the right of Fig. 1, the image at the left of
Fig. 1 contains redundant information from the paper
and sellotape. Without appropriate processing, the
clutter would cause the severe distraction to the
result of classification.

e Varying backgrounds. Due to the changeable position
and the surroundings of the refrigerator on the
assembling line, the backgrounds in the images are
different from each other. Figure 2 shows two images
of refrigerators belonging to the same classification
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Fig. 1 The dense clutter in the front-view images of refrigerator

but with diverse backgrounds. As the varying
backgrounds randomly append unstable factors to
the images of the refrigerator, it would unavoidably
increase the complexity of the image classification.
Large homogeneous areas and subtle salient regions.
There are large homogeneous areas existing in the
images of refrigerator, as shown in Figs. 1, 2, 3, and 4.
Meanwhile, the salient regions including the display,
crack, ice maker, and handle of the refrigerator are
subtle compared to the overall image, e.g., in Fig. 3

(the areas confined with the red and orange squares).
Large homogeneous areas and small salient regions
both would cause misclassification and greatly affect
the classification accuracy.

Specular reflection. Due to the mirror surfaces of the
refrigerators, noticeable effects of specular reflection
are observed in the captured images. Two
refrigerators of the same classification are shown in
Fig. 4; there is more apparent specular reflection
shown on the surface of the left refrigerator than the

Fig. 2 The varying backgrounds in the front-view images of refrigerator
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Fig. 3 The large homogenous areas and subtle salient regions in the front-view images of refrigerator

right refrigerator. It would produce redundant
information of the surroundings in the front-view
images of the refrigerator.

2.2 The architecture of our proposed CNN

Based on the analysis of the challenges in the front-view
images of refrigerators, we propose a novel CNN to per-
form the image classification of refrigerators. Notably,
this CNN can also be employed to classify images of
other household appliances, including the air conditioner,

television, and washing machine. Three convolutional lay-
ers and one fully connected layer are included in each
channel of the parameter-sharing CNN. Then one soft-
max loss and a triplet loss are combined at the end of the
architecture, which is shown in Fig. 5.

Each captured image is divided into image patches with
same sizes. For each image, a positive image (same cate-
gory) and a negative image (different category) are chosen
from the captured images. Then, the three image patches
are jointly inputted into our proposed CNN, in which

Fig. 4 The specular reflection in the front-view images of refrigerator
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Fig. 5 The architecture of our proposed deep CNN. The proposed CNN takes the triple images as input (the original image, the positive image, and
the negative image). Three parameter-sharing CNNs are exploited to process the original image, the positive image, and the negative image,
respectively. Softmax loss and triplet loss are combined at the end of the architecture. L, denotes the L,-normalization

three parameter-sharing CNNs are presented to handle
the original, the positive, and the negative images, respec-
tively.

Furthermore, to extend the parameter-sharing effi-
ciency of CNN, we replace the independent convolutional
filters in the convolution layers by a set of filters that are
translated versions of each other, which is implemented
by a two-step convolution operation or so-called doubly
convolutional layer as shown in Fig. 6.

e Convolutional layer. Forty-eight kernels of
3 x 11 x 11 and 3 x 7 x 7 are applied to the input
refrigerator image patch in the first layers combined
with the rectified linear unit (ReLU) layer. To handle
the characteristics of sparseness in refrigerator image,
the operation of ReLU is performed after the
convolution operation.

e Convolutional layer. One hundred twenty-eight
kernels of 3 x 9 x 9and 3 x 5 x 5 combined with the
ReLU layer, the features in the input image are
extracted furthermore. Same as the first layer in our
CNN architecture.

e Convolutional layer. One hundred twenty-eight
kernels of 3 x 7 x 7 and 3 x 3 x 3 combined with the
ReLU layer, the features in the input image are
extracted furthermore. Same as the first layer in our
CNN architecture.

e Fully connected layer. Five hundred twelve neurons
combined with ReLU layer, which is used to perform
high-level reasoning like neural networks.

In the first convolutional layer, the input image patch is
continuously filtered with 48 feature maps of 3 x 11 x 11
and 3 x 7 x 7 kernels with a stride of 2. The second con-
volutional layer continuously filters the output of the first
convolutional layer with 128 feature maps of 3 x 9 x 9 and
3 x 5 x 5 kernels. The third convolutional layer filters the
output of the second convolutional layer with 128 feature
maps of 3 x 7 x 7 and 3 x 3 x 3 kernels, sequentially. The
following fully connected layer has 512 neurons.

The softmax loss locates at the end of the CNN for the
original image, which is expressed as:

N
SoftmaxLoss = — Z log (P (wy) | (Ly)), (1)
i=1
where N denotes the number of the input images, P(wk|L;)
indicates the probability of the kth image to image patch
label L; correctly classified as /.
Besides the softmax loss function used that has been
exploited in other CNN, the triplet loss is also presented
in our proposed CNN architecture.

N
1
TripletLoss = N ; max (0, D(o;, pi) — D(0j, n;) + m),

2)

where D(.,.) denotes the squared Euclidean distance
between two [y normalized vectors; o;, p;, and n; respec-
tively stand for the /; normalized vectors from the original
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Fig. 6 The structure of a convolutional layer (top) and a doubly convolutional layer (bottom). By adding one extra convolution operation (in the
purple rectangle), the independent filters (in the yellow rectangle) are changed into translated versions of each other (in the brown rectangle)

image, the positive image, and the negative image, as
shown in Fig. 5; m denotes the hyperparameter to con-
fine the value of Eq. (2) greater than zero as the difference
between the original image and the positive image is
expected to exceed the difference between the original
image and the negative image.

The two losses mentioned above are then integrated
into a weighted combination:

Loss = ASoftmaxLoss + (1 — A) TripletLoss, (3)

where A denotes the weight that is used to manipulate the
trade-off between the softmax loss and the triplet loss.

The feature maps hierarchically extracted by our pro-
posed CNN are shown in Fig. 7. The extracted features
include but not limited to color, shape, and texture of
the refrigerators. These extracted features consist of both
local features and global features in the front-view images
of the refrigerator.

Figure 7 shows that in the first convolutional layer
(the first column in Fig. 7), the global features including
shape and edge of the refrigerator are extracted. In the

two following convolutional layers (the second and third
columns in Fig. 7), local features are extracted hierarchi-
cally. Notable that these features, which are different from
the handcrafted features exploited in [5-8], are automati-
cally extracted through our proposed CNN.

3 Results and discussion

3.1 Experimental samples and pre-processing

All of the refrigerator images were captured by using a
digital camera (Canon EOS 760D, Japan); its setting is the
manual mode, and the exposure level is 0.0 without zoom
and flash. The color space used in the classification is the
sRGB (standard RGB). The original size of the captured
images is 3200 x 2400 (0.1 mm/pixel), and they are stored
into PNG (Portable Network Graphic) format. To reduce
the over-fitting that may exist in a few images, we enlarge
the dataset of the originally captured images of refrig-
erators with augmentation techniques, such as transla-
tions and vertical and horizontal reflections. Finally, there
are totally 31,247 images of refrigerator belonging to 30
categories.
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Fig. 7 The feature maps extracted hierarchically by our proposed CNN architecture

After the procedure of data augmentation, the images
are then resized into 227 x 227. Among all of the images,
20,000 of them are taken as training data, and the others
are used as testing data.

3.2 Training

During the training process, each pair of the captured
refrigerator image and its label of classification, a positive
image and a negative image of the original image are taken
as input to the CNN. The proposed CNN is updated with
the back propagation mechanism, which calculates the
softmax loss from the original image and the triplet loss
from the triple input images. The training is performed on
GPU of high performance; it takes 10° times of iterations.
For each iteration, it costs around 2.4 s. Through training,
our proposed CNN can establish the mapping between
the input image of refrigerator and the output refrigerator
category.

3.3 Experimental result

After the training process, we conducted experiments to
testify the performance of our proposed CNN. The exper-
imental result of the full testing data is shown in Fig. 8.
From Fig. 8, we can obtain that the classification accu-
racy of our method reaches to 99.99% after about 3000
iterations. Meanwhile, the training loss of our method

decreases to 0.01. (The decreasing process of training
loss represents the convergence of the proposed CNN
architecture.)

Notably, as numerous images of the refrigerator con-
taining challenges including dense clutter, varying back-
grounds, large homogeneous areas, subtle salient regions,
and specular reflection are included in our training pro-
cess, the negative effects brought by them to the image
classification have been sigificantly eliminated by our
method. Experimental results show that our method can
handle these challenges well.

We conducted comparing experiments between the
state-of-the-art SVM-based image classification methods
[5-8], human’s visual inspection, and our method. Dif-
ferent handcrafted features including single feature and
composite features are exploited by these SVM-based
methods, respectively.

Meanwhile, to quantitatively compare the performance
of our method and the state-of-the-art SVM methods, the
Precision and Recall are exploited, as expressed in Egs. (4)
and (5).

TP
TP + FP

TP
Recall = —— (5)
TP + FEN

(4)

Precision =
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Fig. 8 The experimental result of our proposed CNN architecture

where TP denotes true positive, FP is the false positive, TN
is the true negative, and FN denotes the false negative. The
comparing experimental results are presented in Table 1.

The second and third columns of Table 1 respectively
shows the Precision and Recall of the full testing data.
From these, we can conclude that our proposed method
outperforms the state-of-the-art methods and human’s
visual system. Note that there are 30 categories of refrig-
erators in our experiments, which greatly confine the per-
formance of human’s visual inspection. While the number
of classes is limited, the performance of human’s visual
system is promising.

To testify the performance of our proposed method in
extreme situations, we intentionally capture images with
artifacts as shown in Fig. 9.

The experimental results of these images are shown in
the fourth and fifth columns of Table 1. These results
show that the performance of our method on images with
artifacts is better than the state-of-the-art methods, too.

There are misclassifications due to the severe arti-
facts in these images. Most of the misclassifications
might be caused by extreme viewing conditions, e.g.,
the workers standing in front of the refrigerator. But
experimental result shows that even under an extreme
situation, our method can still obtain satisfactory
outcomes.

3.4 Analysis

As mentioned in Section 2.2, the local and global features
are automatically extracted by our proposed CNN. Similar
to human’s visual system, our proposed CNN can extract
the global features including the color, shape of the refrig-
erators and the local features from the display, crack, ice
maker, and handle of the refrigerators. The global fea-
tures integrated with local features form a layout for each
category of refrigerators. The whole layout is utilized to
establish the mapping between the input front-view image
of the refrigerator and the output classification label.

Table 1 The Precision and Recall of SYM methods, human'’s visual system, and our method

Methods Full testing data Partial data
Precision (%) Recall (%) Precision (%) Recall (%)

Gabor + SYM [5] 7524 7.21 7012 6.11
Wavelet + SVM [6] 76.48 6.89 7337 5.93
Wavelet + Gabor + SVM [7] 7819 6.37 77.65 531
Combined features + SVM [8] 80.21 6.01 80.33 5.75
Human's visual system 75.21 10.01 82.54 5.18
Our method 99.96 231 95.54 312
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Fig. 9 The testing data with different artifacts

Furthermore, different from the previous proposed
CNN, our proposed CNN architecture with the intro-
duced triplet loss significantly enhanced the accuracy of
image classification by jointly optimizing the classification
loss (between the label of the original image and the out-
put classification result) and the similarity loss (between
the original image, the positive image, and the negative
image), as shown in Fig. 5. The parameter A in Eq. (3) that
is used to balance the softmax loss and triplet loss plays an
essential role in the proposed CNN architecture. With A
is set to 1 or 0, the performance of the architecture would
degenerate to softmax loss or triplet loss, respectively.
According to the process of error and trial, it is reason-
able to assign a value greater than 0.5 to A, which shows
that the softmax loss should be more important than the
triplet loss in our proposed CNN architecture. However,
the introduced triplet loss contributes to the image classi-
fication due to the complementary information from both
the positive image and negative image. It is suitable for the
characteristics of the front-view of refrigerator as dense
clutter, varying backgrounds, subtle salient regions, and
the specular reflection in the images of refrigerators all
can be extracted and represented by the combination of
the softmax loss and triplet loss, and the subtle difference
between intra-category and inter-categories of refrigera-
tors can be differentiated from each other. Meanwhile,
the doubly convolutional layer presented in our approach
also positively affects the outcome of the proposed CNN
architecture. It not only enhances the parameter-sharing
efficiency but also accommodates the characteristics of
the captured images. Because the refrigerators were trans-
ported on the same conveyor belt and the position of
the camera was fixed, the captured intra-class refrigera-
tors are translated versions of each other, which is suitable
for the feature maps learned from doubly convolutional
layers.

The compared experimental results in Fig. 8 shows that
our proposed method outperforms the state-of-the-art

image classification methods. It achieves better accuracy
of image classification of refrigerators. Due to the accu-
racy of classification by our method, it can satisfy the
practical requirement of industrial automation of refriger-
ator.

4 Conclusions

In this paper, we propose a CNN-based image classifi-
cation method based on the front-view images of the
refrigerator to cope with the present challenges includ-
ing dense clutter, varying background, large homogeneous
areas, and specular reflection. Our experimental results
validate the ability of the proposed technique in solving
the refrigerator classification task in practical industrial
automation.

Meanwhile, we have the following significant contri-
butions. First of all, this is the first time to introduce
machine-learning-based method into the classification of
refrigerator instead of human’s visual system. Secondly,
the triplet loss and doubly convolutional layer both intro-
duced by our method positively affect the accuracy of
image classification. To our best knowledge, this is the
early application of both the triplet and double convolu-
tion operation into CNN-based classifier. Thirdly, similar
to human’s visual system, our proposed CNN can extract
the multi-scale features including both the local and global
features of the front-view-based images of the refrigera-
tor. As the extraction of multi-scale features of the image
plays a vital role in human’s visual system, our method
can implement it automatically. Finally, our approach per-
forms with an impressive superiority to both the state-of-
the-art image classification techniques and human’s visual
inspection. Our proposed CNN-based method is a poten-
tial tool for image classification of the refrigerator and
other images with similar characteristics as the front-view
of the refrigerator.

In the future, we will continue to explore the implicit
process of feature extraction by CNN and attempt to
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find the explicit mapping between the performance
of the CNN and the role of local and global fea-
tures extracted by CNN. Meanwhile, we will also
research on more applications of our proposed CNN-
based classification method in various fields includ-
ing medical image processing, object classification, and
recognition [25-29].
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