

Open Message Queue
Developer's Guide for Java Clients

Release 5.0

May 2013

This guide provides information about concepts and
procedures for developing Java messaging applications (Java
clients) that work with Message Queue.

Open Message Queue Developer's Guide for Java Clients, Release 5.0

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

1 Overview

Setting Up Your Environment.. 1-1
Starting and Testing a Message Broker.. 1-2

To Start a Broker... 1-2
To Test a Broker.. 1-3

Developing a Client Application .. 1-4
To Produce Messages .. 1-4
To Consume Messages .. 1-6

Compiling and Running a Client Application ... 1-8
To Compile and Run the HelloWorldMessage Application.. 1-10

Deploying a Client Application ... 1-11
Example Application Code.. 1-12

2 Message Queue Clients: Design and Features

Client Design Considerations.. 2-1
Developing Portable Clients... 2-2
Choosing which JMS API to Use ... 2-2
Connections and Sessions ... 2-2
JMSContext.. 2-3
Producers and Consumers.. 2-3
Balancing Reliability and Performance... 2-5

Managing Client Threads ... 2-5
JMS Threading Restrictions .. 2-6
Thread Allocation for Connections ... 2-6

Managing Memory and Resources ... 2-7
Managing Memory .. 2-7
Managing Message Size .. 2-7
Managing the Dead Message Queue... 2-9
Managing Physical Destination Limits .. 2-11

Programming Issues for Message Consumers... 2-12
Using the Client Runtime Ping Feature ... 2-12
Preventing Message Loss for Synchronous Consumers.. 2-12
Synchronous Consumption in Distributed Applications.. 2-12

iv

Factors Affecting Performance.. 2-13
Delivery Mode (Persistent/Nonpersistent) .. 2-13
Use of Transactions ... 2-14
Acknowledgment Mode... 2-14
Durable vs. Nondurable Subscriptions.. 2-15
Use of Selectors (Message Filtering)... 2-15

Connection Event Notification ... 2-16
Connection Events .. 2-17
Creating an Event Listener .. 2-17
Event Listener Examples.. 2-18

Consumer Event Notification ... 2-18
Consumer Events .. 2-18
Creating a Consumer Event Listener ... 2-18
Consumer Event Listener Examples .. 2-19

Client Connection Failover (Auto-Reconnect)... 2-20
Enabling Auto-Reconnect .. 2-20
Auto-Reconnect Behaviors... 2-22
Auto-Reconnect Limitations.. 2-23
Handling Exceptions When Failover Occurs .. 2-24

Custom Client Acknowledgment... 2-48
Using Client Acknowledge Mode .. 2-48
Using No Acknowledge Mode.. 2-49

Schema Validation of XML Payload Messages ... 2-50
Communicating with C Clients .. 2-51
Client Runtime Logging .. 2-51

Logging Name Spaces, Levels, and Activities .. 2-52
Using the JRE Logging Configuration File.. 2-54
Using a Logging Configuration File for a Specific Application ... 2-54
Setting the Logging Configuration Programmatically .. 2-54

3 The JMS Simplified API

Using the Simplified API ... 3-1
Using the Autocloseable Interface ... 3-2
Simplified Extraction of Message Bodies.. 3-3

Developing a JMS Client using the Simplified API ... 3-3
Working With Connections .. 3-3
Working With Destinations.. 3-4
Working With Messages ... 3-4

Message Structure .. 3-4
Sending Messages .. 3-7
Simplified API methods for Asynchronous Sends.. 3-7
Receiving Messages ... 3-8
Processing Messages.. 3-9

4 The JMS Classic API

Messaging Domains .. 4-1
Working With Connections .. 4-2

v

Obtaining a Connection Factory .. 4-2
Using Connections ... 4-6
Creating Secure Connections (SSL) ... 4-8

Working With Destinations.. 4-9
Looking Up a Destination With JNDI ... 4-9
Instantiating a Destination... 4-11
Temporary Destinations... 4-12

Working With Sessions .. 4-12
Acknowledgment Modes... 4-13
Transacted Sessions .. 4-15

Working With Messages .. 4-16
Message Structure ... 4-16
Composing Messages ... 4-20
Sending Messages ... 4-24
Receiving Messages .. 4-27
Processing Messages... 4-33

Using the Autocloseable Interface ... 4-38

5 Using the Metrics Monitoring API

Monitoring Overview.. 5-1
Administrative Tasks... 5-2
Implementation Summary.. 5-3

Creating a Metrics-Monitoring Client.. 5-3
To Monitor Broker Metrics ... 5-3

Format of Metrics Messages ... 5-4
Broker Metrics... 5-4

Metrics Monitoring Client Code Examples... 5-7
A Broker Metrics Example.. 5-8

6 Working with SOAP Messages

What is SOAP? .. 6-1
SOAP with Attachments API for Java... 6-2
The SOAP Message .. 6-4
SOAP Packaging Models .. 6-4

SOAP Messaging in JAVA .. 6-6
The SOAP Message Object.. 6-6
Destination, Message Factory, and Connection Objects.. 6-11

SOAP Messaging Models and Examples.. 6-12
SOAP Messaging Programming Models ... 6-12
Working with Attachments ... 6-13
Exception and Fault Handling .. 6-13
Writing a SOAP Client ... 6-14
Writing a SOAP Service ... 6-16

Integrating SOAP and Message Queue .. 6-21
Example 1: Deferring SOAP Processing .. 6-21
Example 2: Publishing SOAP Messages .. 6-24

vi

Code Samples .. 6-24

7 Embedding a Message Queue Broker in a Java Client

Creating, Initializing and Starting an Embedded Broker .. 7-1
Creating a Broker Event Listener... 7-2
Arguments to Specify When Initializing an Embedded Broker.. 7-3

Creating a Direct Connection to an Embedded Broker .. 7-3
Creating a TCP Connection to an Embedded Broker.. 7-3
Stopping and Shutting Down an Embedded Broker .. 7-4
Embedded Broker Example .. 7-4

A Warning Messages and Client Error Codes

Warning Messages and Error Codes .. A-1

vii

Preface

This book provides information about concepts and procedures for developing Java
messaging applications (Java clients) that work with Message Queue.

This preface consists of the following sections:

■ Who Should Use This Book

■ Before You Read This Book

■ How This Book Is Organized

■ Documentation Conventions

■ Related Documentation

■ Documentation, Support, and Training

■ Documentation Accessibility

Who Should Use This Book
This guide is meant principally for developers of Java applications that use Message
Queue.

These applications use the Java Message Service (JMS) Application Programming
Interface (API), and possibly the SOAP with Attachments API for Java (SAAJ), to
create, send, receive, and read messages. As such, these applications are JMS clients
and/or SOAP client applications, respectively. The JMS and SAAJ specifications are
open standards.

This book assumes that you are familiar with the JMS APIs and with JMS
programming guidelines. Its purpose is to help you optimize your JMS client
applications by making best use of the features and flexibility of a Message Queue
messaging system.

This book assumes no familiarity, however, with SAAJ. This material is described in
Chapter 6, "Working with SOAP Messages" and assumes only basic knowledge of
XML.

Before You Read This Book
You must read the Open Message Queue Technical Overview to become familiar with the
Message Queue implementation of the Java Message Specification, with the
components of the Message Queue service, and with the basic process of developing,
deploying, and administering a Message Queue application.

viii

How This Book Is Organized
This guide is designed to be read from beginning to end. The following table briefly
describes the contents of each chapter.

Documentation Conventions
This section describes the following conventions used in Message Queue
documentation:

■ Typographic Conventions

■ Symbol Conventions

■ Shell Prompt Conventions

■ Directory Variable Conventions

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Chapter Description

Chapter 1, "Overview" A high-level overview of the Message Queue Java interface. It includes a
tutorial that acquaints you with the Message Queue development
environment using a simple example JMS client application.

Chapter 2, "Message Queue
Clients: Design and Features"

Describes architectural and configuration issues that depend upon Message
Queue's implementation of the Java Message Specification.

Chapter 3, "The JMS Simplified
API"

Explains how to use the simplified API introduced by the Java Message
Service (JMS) specification, Version 2.0, in your client application.

Chapter 4, "The JMS Classic API" Explains how to use the Message Queue Java API in your client application.

Chapter 5, "Using the Metrics
Monitoring API"

Describes message-based monitoring, a customized solution to metrics
gathering that allows metrics data to be accessed programmatically and then
to be processed in whatever way suits the consuming client.

Chapter 6, "Working with SOAP
Messages"

Explains how you send and receive SOAP messages with and without
Message Queue support.

Appendix A, "Warning Messages
and Client Error Codes"

Provides reference information for warning messages and error codes
returned by the Message Queue client runtime when it raises a JMS exception.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or
value

The command to remove a file is
rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear
bold online.

ix

Symbol Conventions
The following table explains symbols that might be used in this book.

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for
the default UNIX system prompt and superuser prompt for the C shell, Bourne shell,
Korn shell, and for the Windows operating system.

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which
represent environment variables needed by Message Queue. (How you set the
environment variables varies from platform to platform.)

The following table describes the directory variables that might be found in this book
and how they are used. Some of these variables refer to the directory mqInstallHome,
which is the directory where Message Queue is installed to when using the installer or
unzipped to when using a zip-based distribution.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of
choices for a required
command option.

-d {y|n} The -d option requires that you
use either the y argument or
the n argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release
it, and then press the
subsequent keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose
New. From the New submenu,
choose Templates.

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Note: In this book, directory variables are shown without
platform-specific environment variable notation or syntax (such as
$IMQ_HOME on UNIX). Non-platform-specific path names use UNIX
directory separator (/) notation.

x

Related Documentation
The information resources listed in this section provide further information about
Message Queue in addition to that contained in this manual. The section covers the
following resources:

■ Message Queue Documentation Set

■ Java Message Service (JMS) Specification

■ JavaDoc

■ Example Client Applications

■ Online Help

Message Queue Documentation Set
The documents that constitute the Message Queue documentation set are listed in the
following table in the order in which you might normally use them. These documents
are available through the Oracle GlassFish Server documentation web site at
http://www.oracle.com/technetwork/indexes/documentation/index.ht
ml.

Variable Description

IMQ_HOME The Message Queue home directory:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
HOME is as-install-parent/mq, where as-install-parent is the parent directory
of the GlassFish Server base installation directory, glassfish3 by
default.

■ For installations of Open Message Queue, IMQ_HOME is
mqInstallHome/mq.

IMQ_VARHOME The directory in which Message Queue temporary or dynamically created
configuration and data files are stored; IMQ_VARHOME can be explicitly set as
an environment variable to point to any directory or will default as
described below:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
VARHOME defaults to as-install-parent/glassfish/domains/domain1/imq.

■ For installations of Open Message Queue, IMQ_HOME defaults to
mqInstallHome/var/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime
environment (JRE) required by Message Queue executable files. By default,
Message Queue looks for and uses the latest JDK, but you can optionally set
the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

Document Audience Description

Technical Overview Developers and
administrators

Describes Message Queue concepts, features, and
components.

Release Notes Developers and
administrators

Includes descriptions of new features, limitations,
and known bugs, as well as technical notes.

Administration Guide Administrators,
also recommended
for developers

Provides background and information needed to
perform administration tasks using Message
Queue administration tools.

xi

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS)
application programming interface, described in the Java Message Service Specification.
This document can be found at the URL
http://www.oracle.com/technetwork/java/jms/index.html.

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in
Message Queue installations at IMQ_HOME/javadoc/index.html. This documentation
can be viewed in any HTML browser. It includes standard JMS API documentation as
well as Message Queue-specific APIs.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are included in Message Queue installations at IMQ_
HOME/examples. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example C Client Programs
Example C client applications are included in Message Queue installations at IMQ_
HOME/examples/C. See the README files located in this directory and its subdirectories
for descriptive information about the example applications.

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are included in
Message Queue installations at IMQ_HOME/examples/jmx. See the README files located in
this directory and its subdirectories for descriptive information about the example
applications.

Online Help
Online help is available for the Message Queue command line utilities; for details, see
"Command Line Reference" in Open Message Queue Administration Guide. The Message
Queue graphical user interface (GUI) administration tool, the Administration Console,
also includes a context-sensitive help facility; for details, see "Administration Console
Online Help" in Open Message Queue Administration Guide.

Developer's Guide for
Java Clients

Developers Provides a quick-start tutorial and programming
information for developers of Java client programs
using the Message Queue implementation of the
JMS or SOAP/JAXM APIs.

Developer's Guide for
C Clients

Developers Provides programming and reference
documentation for developers of C client programs
using the Message Queue C implementation of the
JMS API (C-API).

Developer's Guide for
JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Document Audience Description

xii

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://docs.oracle.com/)

■ Support (http://www.oracle.com/us/support/044752.html)

■ Training (http://education.oracle.com/pls/web_prod-plq-dad/db_
pages.getpage?page_id=315)

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

1

Overview 1-1

1Overview

This chapter provides an overall introduction to Message Queue and a quick-start
tutorial. It describes the procedures needed to create, compile, and run a simple
example application. Before reading this chapter, you should be familiar with the
concepts presented in the Open Message Queue Technical Overview.

The chapter covers the following topics:

■ Setting Up Your Environment

■ Starting and Testing a Message Broker

■ Developing a Client Application

■ Compiling and Running a Client Application

■ Deploying a Client Application

■ Example Application Code

The minimum Java Development Kit (JDK) level required to compile and run Message
Queue clients is 1.2. For the purpose of this tutorial it is sufficient to run the Message
Queue message broker in a default configuration. For instructions on configuring a
message broker, see "Configuring a Broker" in Open Message Queue Administration
Guide.

Setting Up Your Environment
The Message Queue files that need to be used in conjunction with Message Queue Java
clients can be found in the IMQ_HOME/lib directory. Message Queue Java clients need
to be able to use several .jar files found in this directory when these clients are
compiled and run.

You need to set the CLASSPATH environment variable when compiling and running a
JMS client.

The value of CLASSPATH depends on the following factors:

■ The platform on which you compile or run

■ The JDK version you are using

■ Whether you are compiling or running a JMS application

■ Whether your application uses the Simple Object Access Protocol (SOAP)

■ Whether your application uses the SOAP/JMS transformer utilities

The table below lists the .jar files you need to compile and run different kinds of
code.

Starting and Testing a Message Broker

1-2 Open Message Queue 4.5.2 Developer's Guide for Java Clients

A client application must be able to access the file jndi.jar even if the application
does not use the Java Naming and Directory Interface (JNDI) directly to look up
Message Queue administered objects. This is because JNDI is referenced by the
Destination and ConnectionFactory classes.

JNDI .jar files are bundled with JDK 1.4. Thus, if you are using this JDK, you do not
have to add jndi.jar to your CLASSPATH setting. However, if you are using an earlier
version of the JDK, you must include jndi.jar in your CLASSPATH.

If you are using JNDI to look up Message Queue administered objects, you must also
include the following files in your CLASSPATH setting:

■ If you are using the file-system service provider for JNDI (with any JDK version),
you must include the file fscontext.jar.

■ If you are using the Lightweight Directory Access Protocol (LDAP) context

– with JDK 1.2 or 1.3, include the files ldabbp.jar, and
fscontext.jar.ldap.jar,

– with JDK 1.4, all files are already bundled with this JDK.

Starting and Testing a Message Broker
This tutorial assumes that you do not have a Message Queue message broker currently
running. (If you run the broker as a UNIX startup process or Windows service, then it
is already running and you can skip to Developing a Client Application.)

To Start a Broker
1. In a terminal window, change to IMQ_HOME/bin, the directory containing Message

Queue executables.

2. Run the broker startup command (imqbrokerd) as follows:

imqbrokerd -tty

Table 1–1 .jar Files Needed in CLASSPATH

Type of Code To Compile To Run Remarks

JMS client jms.jar imq.jar
jndi.jar

jms.jar imq.jar
jndi.jar

Directory
containing
compiled Java
application or '.'

See discussion of JNDI .jar
files, following this table.

SOAP Client saaj-api.jar
activation.jar

saaj-api.jar

Directory
containing
compiled Java
application or '.'

See Working with SOAP
Messages

SOAP Servlet jaxm-api.jar
saaj-api.jar
activation.jar

GlassFish Server already
includes these .jar files for
SOAP servlet support.

Code using
SOAP/JMS
transformer
utilities

imqxm.jar

.jar files for JMS
and SOAP clients

imqxm.jar Also add the appropriate .jar
files listed in this table for the
kind of code you are writing.

Starting and Testing a Message Broker

Overview 1-3

The -tty option causes all logged messages to be displayed to the terminal
console (in addition to the log file). The broker will start and display a few
messages before displaying the message

imqbroker@host:7676 ready

The broker is now ready and available for clients to use.

To Test a Broker
One simple way to check the broker startup is by using the Message Queue command
utility (imqcmd) to display information about the broker:

1. In a separate terminal window, change to the directory containing Message Queue
executables (see the table shown at the beginning of the section To Start a Broker).

2. Run imqcmd with the following arguments:

imqcmd query bkr -u admin

Supply the default password of admin when prompted to do so. The output
displayed should be similar to that shown in the next example.

Example 1–1 Output From Testing a Broker

% imqcmd query bkr -u admin

Querying the broker specified by:

Host Primary Port

localhost 7676

Version 3.6
Instance Name imqbroker
Primary Port 7676

Current Number of Messages in System 0
Current Total Message Bytes in System 0

Max Number of Messages in System unlimited (-1)
Max Total Message Bytes in System unlimited (-1)
Max Message Size 70m

Auto Create Queues true
Auto Create Topics true
Auto Created Queue Max Number of Active Consumers 1
Auto Created Queue Max Number of Backup Consumers 0

Cluster Broker List (active)
Cluster Broker List (configured)
Cluster Master Broker
Cluster URL

Log Level INFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) unlimited (-1)

Successfully queried the broker.

Developing a Client Application

1-4 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Current Number of Messages in System 0

Developing a Client Application
This section introduces the general procedures for interacting with the Message Queue
API to produce and consume messages. The basic steps shown here are elaborated in
greater detail in The JMS Classic API The procedures for producing and consuming
messages have a number of steps in common, which need not be duplicated if the
same client is performing both functions.

To Produce Messages
1. Get a connection factory.

A Message Queue ConnectionFactory object encapsulates all of the needed
configuration properties for creating connections to the Message Queue message
service. You can obtain such an object either by direct instantiation.

ConnectionFactory myFctry = new com.sun.messaging.ConnectionFactory();

or by looking up a predefined connection factory using the Java Naming and
Directory Interface (JNDI). In the latter case, all of the connection factory's
properties will have been preconfigured to the appropriate values by your
Message Queue administrator. If you instantiate the factory object yourself, you
may need to configure some of its properties explicitly: for instance,

myFctry.setProperty(ConnectionConfiguration.imqAddressList,
 "localhost:7676, broker2:5000, broker3:9999");
myFctry.setProperty(ConnectionConfiguration.imqReconnectEnabled, "true");

See Obtaining a Connection Factory for further discussion.

2. Create a connection.

A Connection object is an active connection to the Message Queue message
service, created by the connection factory you obtained in Developing a Client
Application:

Connection myConnection = myFactory.createConnection();

See Using Connections for further discussion.

3. Create a session for communicating with the message service.

A Session object represents a single-threaded context for producing and
consuming messages. Every session exists within the context of a particular
connection and is created by that connection's createSession method:

Session mySession = myConnection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

The first (boolean) argument specifies whether the session is transacted. The second
argument is the acknowledgment mode, such as AUTO_ACKNOWLEDGE, CLIENT_
ACKNOWLEDGE, or DUPS_OK_ACKNOWLEDGE; these are defined as static constants in the
JMS Session interface. See Acknowledgment Modes and Transacted Sessions for
further discussion.

4. Get a destination to which to send messages.

Developing a Client Application

Overview 1-5

A Destination object encapsulates provider-specific naming syntax and behavior
for a message destination, which may be either aqueue or a point-to-point
publish/subscribe topic (see Messaging Domains). You can obtain such an object
by direct instantiation

Destination myDest = new com.sun.messaging.Queue("myDest");

or by looking up a predefined destination using the JNDI API. See Working With
Destinations for further discussion.

5. Create a message producer for sending messages to this destination.

A MessageProducer object is created by a session and associated with a particular
destination:

MessageProducer myProducer = mySession.createProducer(myDest);

See Sending Messages for further discussion.

6. Create a message.

A Session object provides methods for creating each of the six types of message
defined by JMS: text, object, stream, map, bytes, and null messages. For instance,
you can create a text message with the statement

TextMessage outMsg = mySession.createTextMessage();

See Composing Messages for further discussion.

7. Set the message's content and properties.

Each type of message has its own methods for specifying the contents of the
message body. For instance, you can set the content of a text message with the
statement

outMsg.setText("Hello, World!");

You can also use the property mechanism to define custom message properties of
your own: for instance,

outMsg.setStringProperty("MagicWord", "Shazam");

See Working With Messages for further discussion.

8. Send the message.

The message producer's send method sends a message to the destination with
which the producer is associated:

myProducer.send(outMsg);

See Sending Messages for further discussion.

9. Close the session.

When there are no more messages to send, you should close the session

mySession.close();

allowing Message Queue to free any resources it may have associated with the
session. See Working With Sessions for further discussion.

10. Close the connection.

When all sessions associated with a connection have been closed, you should close
the connection by calling its close method:

Developing a Client Application

1-6 Open Message Queue 4.5.2 Developer's Guide for Java Clients

myConnection.close();

See Using Connections for further discussion.

To Consume Messages
1. Get a connection factory.

A Message Queue ConnectionFactory object encapsulates all of the needed
configuration properties for creating connections to the Message Queue message
service. You can obtain such an object either by direct instantiation

ConnectionFactory myFctry = new com.sun.messaging.ConnectionFactory();

or by looking up a predefined connection factory using the Java Naming and
Directory Interface (JNDI). In the latter case, all of the connection factory's
properties will have been preconfigured to the appropriate values by your
Message Queue administrator. If you instantiate the factory object yourself, you
may need to configure some of its properties explicitly: for instance,

myFctry.setProperty(ConnectionConfiguration.imqAddressList,
 "localhost:7676, broker2:5000, broker3:9999");
myFctry.setProperty(ConnectionConfiguration.imqReconnectEnabled,"true");

See Obtaining a Connection Factory for further discussion.

2. Create a connection.

A Connection object is an active connection to the Message Queue message
service, created by the connection factory you obtained in Developing a Client
Application:

Connection myConnection = myFactory.createConnection();

See Using Connections for further discussion.

3. Create a session for communicating with the message service.

A Session object represents a single-threaded context for producing and
consuming messages. Every session exists within the context of a particular
connection and is created by that connection's createSession method:

Session mySession = myConnection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

The first (boolean) argument specifies whether the session is transacted. The second
argument is the acknowledgment mode, such as AUTO_ACKNOWLEDGE, CLIENT_
ACKNOWLEDGE, or DUPS_OK_ACKNOWLEDGE; these are defined as static constants in the
JMS Session interface. See Acknowledgment Modes and Transacted Sessions for
further discussion.

4. Get a destination from which to receive messages.

A Destination object encapsulates provider-specific naming syntax and behavior
for a message destination, which may be either a point-to-point queue or a
publish/subscribe topic (see Messaging Domains). You can obtain such an object
by direct instantiation

Destination myDest = new com.sun.messaging.Queue("myDest");

or by looking up a predefined destination using the JNDI API. See Working With
Destinations for further discussion.

Developing a Client Application

Overview 1-7

5. Create a message consumer for receiving messages from this destination.

A MessageConsumer object is created by a session and associated with a particular
destination:

MessageConsumer myConsumer = mySession.createConsumer(myDest);

See Receiving Messages for further discussion.

6. Start the connection.

In order for a connection's message consumers to begin receiving messages, you
must start the connection by calling its start method:

myConnection.start();

See Using Connections for further discussion.

7. Receive a message.

The message consumer's receive method requests a message from the destination
with which the consumer is associated:

Message inMsg = myConsumer.receive();

This method is used for synchronous consumption of messages. You can also
configure a message consumer to consume messages asynchronously, by creating a
message listener and associating it with the consumer. See Receiving Messages for
further discussion.

8. Retrieve the message's content and properties.

Each type of message has its own methods for extracting the contents of the
message body. For instance, you can retrieve the content of a text message with the
statements

TextMessage txtMsg = (TextMessage) inMsg;
String msgText = txtMsg.getText();

In addition, you may need to retrieve some of the message's header fields: for
instance,

msgPriority = inMsg.getJMSPriority();

You can also use message methods to retrieve custom message properties of your
own: for instance,

magicWord = inMsg.getStringProperty("MagicWord");

See Processing Messages for further discussion.

9. Close the session.

When there are no more messages to consume, you should close the session

mySession.close();

allowing Message Queue to free any resources it may have associated with the
session. See Working With Sessions for further discussion.

10. Close the connection.

When all sessions associated with a connection have been closed, you should close
the connection by calling its close method:

myConnection.close();

Compiling and Running a Client Application

1-8 Open Message Queue 4.5.2 Developer's Guide for Java Clients

See Using Connections for further discussion.

Compiling and Running a Client Application
 This section leads you through the steps needed to compile and run a simple example
client application, HelloWorldMessage, that sends a message to a destination and then
retrieves the same message from the destination. The code shown in Example 1–2 is
adapted and simplified from an example program provided with the Message Queue
installation: error checking and status reporting have been removed for the sake of
conceptual clarity. You can find the complete original program in the helloworld
directory in the following locations.

■ Solaris: /usr/demo/imq/

■ Linux: opt/sun/mq/examples

■ Windows: IMQ_HOME/demo

Example 1–2 Simple Message Queue Client Application

// Import the JMS and JNDI API classes

 import javax.jms.*;
 import javax.naming.*;
 import java.util.Hashtable;

public class HelloWorldMessage
 {

 /**
 * Main method
 *
 * Parameter args not used
 *
 */

 public static void main (String[] args)
 {
 try
 {
 // Get a connection factory.
 //
 // Create the environment for constructing the initial JNDI
 // naming context.

 Hashtable env = new Hashtable();

 // Store the environment attributes that tell JNDI which
 // initial context
 // factory to use and where to find the provider.
 // (On Unix, use provider URL "file:///imq_admin_objects"
 // instead of"file:///C:/imq_admin_objects".)

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 env.put(Context.PROVIDER_URL,"file:///C:/imq_admin_objects");

Compiling and Running a Client Application

Overview 1-9

 // Create the initial context.

 Context ctx = new InitialContext(env);

 // Look up connection factory object in the JNDI object store.

 String CF_LOOKUP_NAME = "MyConnectionFactory";
 ConnectionFactory myFactory =
 (ConnectionFactory) ctx.lookup(CF_LOOKUP_NAME);

 // Create a connection.

 Connection myConnection = myFactory.createConnection();

 // Create a session.

 Session mySession = myConnection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

 // Look up the destination object in the JNDI object store.

 String DEST_LOOKUP_NAME = "MyDest";
 Destination myDest = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

 // Create a message producer.

 MessageProducer myProducer = mySession.createProducer(myDest);

 // Create a message consumer.

 MessageConsumer myConsumer = mySession.createConsumer(myDest);

 // Create a message.

 TextMessage outMsg = mySession.createTextMessage("Hello,
World!");

 // Send the message to the destination.

 System.out.println("Sending message: " + outMsg.getText());
 myProducer.send(outMsg);

 // Start the connection.

 myConnection.start();

 // Receive a message from the destination.

 Message inMsg = myConsumer.receive();

Compiling and Running a Client Application

1-10 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 // Retrieve the contents of the message.

 if (inMsg instanceof TextMessage)
 { TextMessage txtMsg = (TextMessage) inMsg;
 System.out.println("Received message: " +
 txtMsg.getText());
 }

 // Close the session and the connection.

 mySession.close();
 myConnection.close();

 }

 catch (Exception jmse)
 { System.out.println("Exception occurred: " + jmse.toString());
 jmse.printStackTrace();
 }

 }

 }

To compile and run Java clients in a Message Queue environment, it is recommended
that you use the Java 2 SDK, Standard Edition, version 1.4 or later. You can download
the recommended SDK from the following location:

http://java.sun.com/j2se/1.5

Be sure to set your CLASSPATH environment variable correctly, as described in Setting
Up Your Environment, before attempting to compile or run a client application.

The following steps for compiling and running the HelloWorldMessage application are
furnished strictly as an example. The program is shipped precompiled; you do not
actually need to compile it yourself (unless, of course, you modify its source code).

To Compile and Run the HelloWorldMessage Application
1. Make the directory containing the application your current directory.

Note: If you are using JDK 1.5, you will get compiler errors if you
use the unqualified JMS Queue class along with the following
import statement.

import java.util.*

This is because the packagesjava.util and javax.jms both contain
a class named Queue. To avoid the compilation errors, you must
eliminate the ambiguity by either fully qualifying references to the
JMS Queue class as javax.jms.Queue or correcting your import
statements to refer to specific individual java.util classes.

Deploying a Client Application

Overview 1-11

The Message Queue example applications directory on Solaris is not writable by
users, so copy the HelloWorldMessage application to a writable directory and
make that directory your current directory.

2. Compile the HelloWorldMessage application:

javac HelloWorldMessage.java

This creates the file HelloWorldMessage.class in your current directory.

3. Run the HelloWorldMessage application:

java HelloWorldMessage

The program should display the following output:

 Sending Message: Hello, World!
 Received Message: Hello, World!

Deploying a Client Application
When you are ready to deploy your client application, you should make sure your
Message Queue administrator knows your application's needs. The checklist shown
below summarizes the information required; consult with your administrator for
specific details. In some cases, it may be useful to provide a range of values rather than
a specific value. See "Managing Administered Objects" in Open Message Queue
Administration Guide for details on configuration and on attribute names and default
values for administered objects.

■ Administered Objects

Connection Factories:

– Type

– JNDI lookup name

– Other attributes

Destinations:

– Type (queue or topic)

– JNDI lookup name

– Physical destination name

■ Physical Destinations

– Type

– Name

– Attributes

– Maximum number of messages expected

– Maximum size of messages expected

– Maximum message bytes expected

■ Broker or Broker Cluster

– Name

– Port

Example Application Code

1-12 Open Message Queue 4.5.2 Developer's Guide for Java Clients

– Properties

■ Dead Message Queue

– Place dead messages on dead message queue?

– Log placement of messages on dead message queue?

– Discard body of messages placed on the dead message queue?

Example Application Code
The Message Queue installation includes example programs illustrating both JMS and
JAXM messaging (see Working with SOAP Messages). They are located in the IMQ_
HOME/examples directory.

Each directory (except the JMS directory) contains a README file describing the source
files included in that directory. The table below lists the directories of interest to
Message Queue Java clients.

Table 1–2 Example Programs

Directory Contents

helloworld Sample programs showing how to create and deploy a JMS client in Message
Queue, including the steps required to create administered objects and to
look up such objects with JNDI from within client code

jms Sample programs demonstrating the use of the JMS API with Message
Queue

jaxm Sample programs demonstrating the use of SOAP messages in conjunction
with JMS in Message Queue

applications Four subdirectories containing source code for the following:

■ A GUI application using the JMS API to implement a simple chat
application

■ A GUI application using the Message Queue JMS monitoring API to
obtain a list of queues from a Message Queue broker and browse their
contents with a JMS queue browser

■ The Message Queue Ping demo program

■ The Message Queue Applet demo program

monitoring Sample programs demonstrating the use of the JMS API to monitor a
message broker

jdbc Examples for plugging in a PointBase and an Oracle database

imqobjmgr Examples of imqobjmgr command files

2

Message Queue Clients: Design and Features 2-1

2Message Queue Clients: Design and
Features

This chapter addresses architectural and configuration issues that depend upon
Message Queue's implementation of the Java Message Specification. It covers the
following topics:

■ Client Design Considerations

■ Managing Client Threads

■ Managing Memory and Resources

■ Programming Issues for Message Consumers

■ Factors Affecting Performance

■ Connection Event Notification

■ Consumer Event Notification

■ Client Connection Failover (Auto-Reconnect)

■ Custom Client Acknowledgment

■ Schema Validation of XML Payload Messages

■ Communicating with C Clients

■ Client Runtime Logging

Client Design Considerations
The choices you make in designing a JMS client affect portability, allocating work
between connections and sessions, reliability and performance, resource use, and ease
of administration. This section discusses basic issues that you need to address in client
design. It covers the following topics:

■ Developing Portable Clients

■ Choosing which JMS API to Use

■ Connections and Sessions

■ Producers and Consumers

■ Balancing Reliability and Performance

Client Design Considerations

2-2 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Developing Portable Clients
The Java Messaging Specification was developed to abstract access to
message-oriented middleware systems (MOMs). A client that writes JMS code should
be portable to any provider that implements this specification. If code portability is
important to you, be sure that you do the following in developing clients:

■ Make sure your code does not depend on extensions or features that are specific to
Message Queue.

■ Look up, using JNDI, (rather than instantiate) administered objects for connection
factories and destinations.

Administered objects encapsulate provider-specific implementation and
configuration information. Besides allowing for portability, administered objects
also make it much easier to share connection factories between applications and to
tune a JMS application for performance and resource use. So, even if portability is
not important to you, you might still want to leave the work of creating and
configuring these objects to an administrator. For more information, see Looking
Up a Connection Factory With JNDI and Looking Up a Destination With JNDI.

Choosing which JMS API to Use
As described in "Messaging Domains" in Open Message Queue Technical Overview, JMS
supports two distinct message delivery models: point-to-point (queues) and
publish/subscribe (topics). The JMS simplified and classic APIs support both domains.
There are also legacy APIs specific to each domain. These four APIs are shown in
Table 2–1.

The JMS 2.0 specification provides the Simplified API for unified domains. It provides
all the functionality of the Classic API provided by the JMS 1.1 specification but
requires fewer interfaces and is simpler to use. You can choose the API that best suits
your needs. The legacy domain-specific APIs continue to be supported but are not
recommended for new application development.

Connections and Sessions
A connection is a relatively heavy-weight object because of the authentication and
communication setup that must be done when a connection is created. For this reason,
it's a good idea to use as few connections as possible. The real allocation of work
occurs in sessions, which are light-weight, single-threaded contexts for producing and

Table 2–1 Interface Classes for JMS APIs

Simplified API Classic API

Legacy API for
Point-to-Point
Domain

Legacy API for
Publish/Subscribe
Domain

Destination Destination Queue Topic

ConnectionFactory ConnectionFactory QueueConnectionFact
ory

TopicConnectionFact
ory

JMSContext Connection QueueConnection TopicConnection

Session QueueSession TopicSession

JMSProducer MessageProducer QueueSender TopicPublisher

JMSConsumer MessageConsumer QueueReceiver TopicSubscriber

Client Design Considerations

Message Queue Clients: Design and Features 2-3

consuming messages. When you are thinking about structuring your client, it is best to
think of the work that is done at the session level.

A session

■ Is a factory for its message producers and consumers

■ Supplies provider-optimized message factories

■ Supports a single series of transactions that combine work spanning its producers
and consumers into atomic units

■ Defines a serial order for the messages it consumes and the messages it produces

■ Retains messages until they have been acknowledged

■ Serializes execution of message listeners registered with its message consumers

The requirement that sessions be operated on by a single thread at a time places some
restrictions on the combination of producers and consumers that can use the same
session. In particular, if a session has an asynchronous consumer, it may not have any
other synchronous consumers. For a discussion of the connection and session's use of
threads, see Managing Client Threads. With the exception of these restrictions, let the
needs of your application determine the number of sessions, producers, and
consumers.

JMSContext
The JMS 2.0 Specification provides the JMSContext object is an active connection to a
JMS provider and a single-threaded context for sending and receiving messages. It is
used in the Simplified API to combine the functionality of the Connection and Session
object to reduce the number of objects to send and receive messages. See The JMS
Simplified API.

Producers and Consumers
Aside from the reliability your client requires, the design decisions that relate to
producers and consumers include the following:

■ Do you want to use a point-to-point or a publish/subscribe domain?

There are some interesting permutations here. There are times when you would
want to use publish/subscribe even when you have only one subscriber. On the
other hand, performance considerations might make the point-to-point model
more efficient than the publish/subscribe model, when the work of sorting
messages between subscribers is too costly. Sometimes You cannot make these
decisions cannot in the abstract, but must actually develop and test different
prototypes.

■ Are you using an asynchronous message consumer that does not receive messages
often or a producer that is seldom used?

Let the administrator know how to set the ping interval, so that your client gets an
exception if the connection should fail. For more information see Using the Client
Runtime Ping Feature.

■ Are you using a synchronous consumer in a distributed application?

You might need to allow a small time interval between connecting and calling the
receiveNoWait() method in order not to miss a pending message. For more
information, see Synchronous Consumption in Distributed Applications.

■ Do you need message compression?

Client Design Considerations

2-4 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Benefits vary with the size and format of messages, the number of consumers,
network bandwidth, and CPU performance; and benefits are not guaranteed. For a
more detailed discussion, see Message Compression.

Assigning Client Identifiers
A connection can have a client identifier. This identifier is used to associate a JMS
client's connection to a message service, with state information maintained by the
message service for that client. The JMS provider must ensure that a client identifier is
unique, and applies to only one connection at a time. Currently, client identifiers are
used to maintain state for durable subscribers. In defining a client identifier, you can
use a special variable substitution syntax that allows multiple connections to be
created from a single ConnectionFactory object using different user name parameters
to generate unique client identifiers. These connections can be used by multiple
durable subscribers without naming conflicts or lack of security.

Message Queue allows client identifiers to be set in one of two ways:

■ Programmatically: You use the setClientID method of the Connection object. If
you use this method, you must set the client id before you use the connection.
Once the connection is used, the client identifier cannot be set or reset.

■ Administratively: The administrator specifies the client ID when creating the
connection factory administrative object. See "Client Identifier" in Open Message
Queue Administration Guide.

Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to be
delivered to a consumer in the order they were sent. However, if they are assigned
different priorities, a messaging system will attempt to deliver higher priority
messages first.

Beyond this, the ordering of messages consumed by a client can have only a rough
relationship to the order in which they were produced. This is because the delivery of
messages to a number of destinations and the delivery from those destinations can
depend on a number of issues that affect timing, such as the order in which the
messages are sent, the sessions from which they are sent, whether the messages are
persistent, the lifetime of the messages, the priority of the messages, the message
delivery policy of queue destinations (see "Physical Destination Property Reference" in
Open Message Queue Administration Guide), and message service availability.

Using Selectors Efficiently
The use of selectors can have a significant impact on the performance of your
application. It's difficult to put an exact cost on the expense of using selectors since it
varies with the complexity of the selector expression, but the more you can do to
eliminate or simplify selectors the better.

One way to eliminate (or simplify) selectors is to use multiple destinations to sort
messages. This has the additional benefit of spreading the message load over more
than one producer, which can improve the scalability of your application. For those
cases when it is not possible to do that, here are some techniques that you can use to
improve the performance of your application when using selectors:

■ Have consumers share selectors. As of version 3.5 of Message Queue, message
consumers with identical selectors "share" that selector in imqbrokerd which can
significantly improve performance. So if there is a way to structure your
application to have some selector sharing, consider doing so.

Managing Client Threads

Message Queue Clients: Design and Features 2-5

■ Use IN instead of multiple string comparisons. For example, the following
expression:

color IN ('red', 'green', 'white')

is much more efficient than this expression

color = 'red' OR color = 'green' OR color = 'white'

especially if the above expression usually evaluates to false.

■ Use BETWEEN instead of multiple integer comparisons. For example:

size BETWEEN 6 AND 10

is generally more efficient than

size>= 6 AND size <= 10

especially if the above expression usually evaluates to true.

■ Order the selector expression so that Message Queue can determine its evaluation
as soon as possible. (Evaluation proceeds from left to right.) This can easily double
or triple performance when using selectors, depending on the complexity of the
expression.

– If you have two expressions joined by an OR, put the expression that is most
likely to evaluate to TRUE first.

– If you have two expressions joined by an AND, put the expression that is most
likely to evaluate to FALSE first.

For example, if size is usually greater than 6, but color is rarely red you'd want
the order of an OR expression to be:

size> 6 OR color = 'red'

If you are using AND:

color = 'red' AND size> 6

Balancing Reliability and Performance
Reliable messaging is implemented in a variety of ways: through the use of persistent
messages, acknowledgments or transactions, durable subscriptions, and connection
failover.

In general, the more reliable the delivery of messages, the more overhead and
bandwidth are required to achieve it. The trade-off between reliability and
performance is a significant design consideration. You can maximize performance and
throughput by choosing to produce and consume nonpersistent messages. On the
other hand, you can maximize reliability by producing and consuming persistent
messages in a transaction using a transacted session. For a detailed discussion of
design options and their impact on performance, see Factors Affecting Performance.

Managing Client Threads
Using client threads effectively requires that you balance performance, throughput,
and resource needs. To do this, you need to understand JMS restrictions on thread
usage, what threads Message Queue allocates for itself, and the architecture of your

Managing Client Threads

2-6 Open Message Queue 4.5.2 Developer's Guide for Java Clients

applications. This section addresses these issues and offers some guidelines for
managing client threads.

JMS Threading Restrictions
The Java Messaging Specification mandates that a session not be operated on by more
than one thread at a time. This leads to the following restrictions:

■ A session may not have an asynchronous consumer and a synchronous consumer.

■ A session that has an asynchronous consumer can only produce messages from
within the onMessage() method (the message listener). The only call that you can
make outside the message listener is to close the session.

■ A session may include any number of synchronous consumers, any number of
producers, and any combination of the two. That is, the single-thread requirement
cannot be violated by these combinations. However, performance may suffer.

The system does not enforce the requirement that a session be single threaded. If your
client application violates this requirement, you will get a JMSIllegalState exception
or unexpected results.

Thread Allocation for Connections
When the Message Queue client runtime creates a connection, it creates two threads:
one for consuming messages from the socket, and one to manage the flow of messages
for the connection. In addition, the client runtime creates a thread for each client
session. Thus, at a minimum, for a connection using one session, three threads are
created. For a connection using three sessions, five threads are created, and so on.

Managing threads in a JMS application often involves trade-offs between performance
and throughput. Weigh the following considerations when dealing with threading
issues.

■ When you create several asynchronous message consumers in the same session,
messages are delivered serially by the session thread to these consumers. Sharing a
session among several message consumers might starve some consumers of
messages while inundating other consumers. If the message rate across these
consumers is high enough to cause an imbalance, you might want to separate the
consumers into different sessions. To determine whether message flow is
unbalanced, you can monitor destinations to see the rate of messages coming in.
See Using the Metrics Monitoring API.

■ You can reduce the number of threads allocated to the client application by using
fewer connections and fewer sessions. However, doing this might slow your
application's throughput.

■ You might be able to use certain JVM runtime options to improve thread memory
usage and performance. For example, if you are running on the Solaris platform,
you may be able to run with the same number (or more) threads by using the
following vm options with the client: Refer to the JDK documentation for details.

– Use the Xss128K option to decrease the memory size of the heap.

– Use the xconcurrentIO option to improve thread performance in the 1.3 VM.

Managing Memory and Resources

Message Queue Clients: Design and Features 2-7

Managing Memory and Resources
This section describes memory and performance issues that you can manage by
increasing JVM heap space and by managing the size of your messages. It covers the
following topics:

■ Managing Memory

■ Managing Message Size

■ Managing the Dead Message Queue

■ Managing Physical Destination Limits

You can also improve performance by having the administrator set connection factory
attributes to meter the message flow over the client-broker connection and to limit the
message flow for a consumer. For a detailed explanation, please see "Reliability And
Flow Control" in Open Message Queue Administration Guide.

Managing Memory
A client application running in a JVM needs enough memory to accommodate
messages that flow in from the network as well as messages the client creates. If your
client gets OutOfMemoryError errors, chances are that not enough memory was
provided to handle the size or the number of messages being consumed or produced.

Your client might need more than the default JVM heap space. On most systems, the
default is 64 MB but you will need to check the default values for your system.

Consider the following guidelines:

■ Evaluate the normal and peak system memory footprints when sizing heap space.

■ You can start by doubling the heap size using a command like the following:

java -Xmx128m MyClass

■ The best size for the heap space depends on both the operating system and the
JDK release. Check the JDK documentation for restrictions.

■ The size of the VM's memory allocation pool must be less than or equal to the
amount of virtual memory that is available on the system.

Managing Message Size
In general, for better manageability, you can break large messages into smaller parts,
and use sequencing to ensure that the partial messages sent are concatenated properly.
You can also use a Message Queue JMS feature to compress the body of a message.
This section describes the programming interface that allows you to compress
messages and to compare the size of compressed and uncompressed messages.

Message compression and decompression is handled entirely by the client runtime,
without involving the broker. Therefore, applications can use this feature with a
pervious version of the broker, but they must use version 3.6 or later of the Message
Queue client runtime library.

Message Compression
You can use the Message.setBooleanProperty() method to specify that the body of a
message be compressed. If the JMS_SUN_COMPRESS property is set to true, the client
runtime, will compress the body of the message being sent. This happens after the
producer's send method is called and before the send method returns to the caller. The

Managing Memory and Resources

2-8 Open Message Queue 4.5.2 Developer's Guide for Java Clients

compressed message is automatically decompressed by the client runtime before the
message is delivered to the message consumer.

For example, the following call specifies that a message be compressed:

MyMessage.setBooleanProperty("JMS_SUN_COMPRESS",true);

Compression only affects the message body; the message header and properties are
not compressed.

Two read-only JMS message properties are set by the client runtime after a message is
sent.

Applications can test the properties (JMS_SUN_UNCOMPRESSED_SIZE and JMS_SUN_
COMPRESSED_SIZE) after a send returns to determine whether compression is
advantageous. That is, applications wanting to use this feature, do not have to
explicitly receive a compressed and uncompressed version of the message to
determine whether compression is desired.

If the consumer of a compressed message wants to resend the message in an
uncompressed form, it should call the Message.clearProperties() to clear the JMS_
SUN_COMPRESS property. Otherwise, the message will be compressed before it is sent to
its next destination.

Advantages and Limitations of Compression
Although message compression has been added to improve performance, such benefit
is not guaranteed. Benefits vary with the size and format of messages, the number of
consumers, network bandwidth, and CPU performance. For example, the cost of
compression and decompression might be higher than the time saved in sending and
receiving a compressed message. This is especially true when sending small messages
in a high-speed network. On the other hand, applications that publish large messages
to many consumers or who publish in a slow network environment, might improve
system performance by compressing messages.

Depending on the message body type, compression may also provide minimal or no
benefit. An application client can use the JMS_SUN_UNCOMPRESSED_SIZE and JMS_SUN_
COMPRESSED_SIZE properties to determine the benefit of compression for different
message types.

Message consumers deployed with client runtime libraries that precede version 3.6
cannot handle compressed messages. Clients wishing to send compressed messages
must make sure that consumers are compatible. C clients cannot currently consume
compressed messages.

Compression Examples
Example 2–1 shows how you set and send a compressed message:

Example 2–1 Sending a Compressed Message

//topicSession and myTopic are assumed to have been created
topicPublisher publisher = topicSession.createPublisher(myTopic);
BytesMessage bytesMessage=topicSession.createBytesMessage();

//byteArray is assumed to have been created
bytesMessage.writeBytes(byteArray);

//instruct the client runtime to compress this message
bytesMessage.setBooleanProperty("JMS_SUN_COMPRESS", true);

Managing Memory and Resources

Message Queue Clients: Design and Features 2-9

//publish message to the myTopic destination
publisher.publish(bytesMessage);

Example 2–2 shows how you examine compressed and uncompressed message body
size. The bytesMessage was created as in Example 2–1:

Example 2–2 Comparing Compressed and Uncompressed Message Size

//get uncompressed body size
int uncompressed=bytesMessage.getIntProperty("JMS_SUN_UNCOMPRESSED_SIZE");

//get compressed body size
int compressed=bytesMessage.getIntProperty("JMS_SUN_COMPRESSED_SIZE");

Managing the Dead Message Queue
When a message is deemed undeliverable, it is automatically placed on a special
queue called the dead message queue. A message placed on this queue retains all of its
original headers (including its original destination) and information is added to the
message's properties to explain why it became a dead message. An administrator or a
developer can access this queue, remove a message, and determine why it was placed
on the queue.

■ For an introduction to dead messages and the dead message queue, see "Using the
Dead Message Queue" in Open Message Queue Administration Guide.

■ For a description of the destination properties and of the broker properties that
control the system's use of the dead message queue, see "Physical Destination
Property Reference" in Open Message Queue Administration Guide.

This section describes the message properties that you can set or examine
programmatically to determine the following:

■ Whether a dead message can be sent to the dead message queue.

■ Whether the broker should log information when a message is destroyed or
moved to the dead message queue.

■ Whether the body of the message should also be stored when the message is
placed on the dead message queue.

■ Why the message was placed on the dead message queue and any ancillary
information.

Message Queue 3.6 clients can set properties related to the dead message queue on
messages and send those messages to clients compiled against earlier versions.
However clients receiving such messages cannot examine these properties without
recompiling against 3.6 libraries.

The dead message queue is automatically created by the broker and called
mq.sys.dmq. You can use the message monitoring API, described in Using the Metrics
Monitoring API, to determine whether that queue is growing, to examine messages on
that queue, and so on.

You can set the properties described in Table 2–2 for any message to control how the
broker should handle that message if it deems it to be undeliverable. Note that these
message properties are needed only to override destination, or broker-based behavior.

Managing Memory and Resources

2-10 Open Message Queue 4.5.2 Developer's Guide for Java Clients

The properties described in Table 2–3 are set by the broker for a message placed in the
dead message queue. You can examine the properties for the message to retrieve
information about why the message was placed on the queue and to gather other
information about the message and about the context within which this action was
taken.

Table 2–2 Message Properties Relating to Dead Message Queue

Property Description

JMS_SUN_PRESERVE_UNDELIVERED A boolean whose value determines what the broker should do with the
message if it is dead.

The default value of unset, specifies that the message should be handled as
specified by the useDMQ property of the destination to which the message
was sent.

A value of true overrides the setting of the useDMQ property and sends the
dead message to the dead message queue.

A value of false overrides the setting of the useDMQ property and prevents
the dead message from being placed in the dead message queue.

JMS_SUN_LOG_DEAD_MESSAGES A boolean value that determines how activity relating to dead messages
should be logged.

The default value of unset, will behave as specified by the broker
configuration property imq.destination.logDeadMsgs.

A value of true overrides the setting of the imq.destination.logDeadMsgs
broker property and specifies that the broker should log the action of
removing a message or moving it to the dead message queue.

A value of false overrides the setting of the
imq.destination.logDeadMsgs broker property and specifies that the
broker should not log these actions.

JMS_SUN_TRUNCATE_MSG_BODY A boolean value that specifies whether the body of a dead message is
truncated.

The default value of unset, will behave as specified by the broker property
imq.destination.DMQ.truncateBody.

A value of true overrides the setting of the
imq.destination.DMQ.truncateBody property and specifies that the body
of the message should be discarded when the message is placed in the
dead message queue.

A value of false overrides the setting of the
imq.destination.DMQ.truncateBody property and specifies that the body
of the message should be stored along with the message header and
properties when the message is placed in the dead message queue.

Managing Memory and Resources

Message Queue Clients: Design and Features 2-11

Managing Physical Destination Limits
When creating a topic or queue destination, the administrator can specify how the
broker should behave when certain memory limits are reached. Specifically, when the
number of messages reaching a physical destination exceeds the number specified
with the maxNumMsgs property or when the total amount of memory allowed for
messages exceeds the number specified with the maxTotalMsgBytes property, the
broker takes one of the following actions, depending on the setting of the
limitBehavior property:

■ Slows message producers (FLOW_CONTROL)

■ Throws out the oldest message in memory (REMOVE_OLDEST)

■ Throws out the lowest priority message in memory (REMOVE_LOW_PRIORITY)

■ Rejects the newest messages (REJECT_NEWEST)

If the default value REJECT_NEWEST is specified for the limitBehavior property, the
broker throws out the newest messages received when memory limits are exceeded. If

Table 2–3 Dead Message Properties

Property Description

JMS_SUN_DMQ_DELIVERY_COUNT An Integer that specifies the most number of times the message
was delivered to a given consumer. This value is set only for ERROR
or UNDELIVERABLE messages.

JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP A Long that specifies the time (in milliseconds) when the message
was placed on the dead message queue.

JMS_SUN_DMQ_UNDELIVERED_REASON A string that specifies one of the following values to indicate the
reason why the message was placed on the dead message queue:

OLDEST

LOW_PRIORITY

EXPIRED

UNDELIVERABLE

ERROR

If the message was marked dead for multiple reasons, for example it
was undeliverable and expired, only one reason will be specified by
this property.

The ERROR reason indicates that an internal error made it impossible
to process the message. This is an extremely unusual condition, and
the sender should just resend the message.

JMS_SUN_DMQ_PRODUCING_BROKER A String used for message traffic in broker clusters: it specifies the
broker name and port number of the broker that produced the
message. A null value indicates the local broker.

JMS_SUN_DMQ_DEAD_BROKER A String used for message traffic in broker clusters: it specifies the
broker name and port number of the broker that placed the message
on the dead message queue. A null value indicates the local broker.

JMS_SUN_DMQ_UNDELIVERED_EXCEPTION A String that specifies the name of the exception (if the message
was dead because of an exception) on either the client or the broker.

JMS_SUN_DMQ_UNDELIVERED_COMMENT A String used to provide an optional comment when the message is
marked dead.

JMS_SUN_DMQ_BODY_TRUNCATED A Boolean: a value of true indicates that the message body was not
stored. A value of false indicates that the message body was stored.

Programming Issues for Message Consumers

2-12 Open Message Queue 4.5.2 Developer's Guide for Java Clients

the message discarded is a persistent message, the producing client gets an exception
which should be handled by resending the message later.

If any of the other values is selected for the limitBehavior property or if the message
is not persistent, the application client is not notified if a message is discarded.
Application clients should let the administrator know how they prefer this property to
be set for best performance and reliability.

Programming Issues for Message Consumers
This section describes two problems that consumers might need to manage: the
undetected loss of a connection, or the loss of a message for distributed synchronous
consumers.

Using the Client Runtime Ping Feature
Message Queue defines a connection factory attribute for a ping interval. This attribute
specifies the interval at which the client runtime should check the client's connection
to the broker. The ping feature is especially useful to Message Queue clients that
exclusively receive messages and might therefore not be aware that the absence of
messages is due to a connection failure. This feature could also be useful to producers
who don't send messages frequently and who would want notification that a
connection they're planning to use is not available.

The connection factory attribute used to specify this interval is called
imqPingInterval. Its default value is 30 seconds. A value of -1 or 0, specifies that the
client runtime should not check the client connection.

Developers should set (or have the administrator set) ping intervals that are slightly
more frequent than they need to send or receive messages, to allow time to recover the
connection in case the ping discovers a connection failure. Note also that the ping may
not occur at the exact time specified by the value you supply for interval; the
underlying operating system's use of i/o buffers may affect the amount of time needed
to detect a connection failure and trigger an exception.

A failed ping operation results in a JMSException on the subsequent method call that
uses the connection. If an exception listener is registered on the connection, it will be
called when a ping operation fails.

Preventing Message Loss for Synchronous Consumers
It is always possible that a message can be lost for synchronous consumers in a session
using AUTO_ACKNOWLEDGE mode if the provider fails. To prevent this possibility, you
should either use a transacted session or a session in CLIENT_ACKNOWLEDGE mode.

Synchronous Consumption in Distributed Applications
Because distributed applications involve greater processing time, such an application
might not behave as expected if it were run locally. For example, calling the
receiveNoWait method for a synchronous consumer might return null even when
there is a message available to be retrieved.

If a client connects to the broker and immediately calls the receiveNoWait method, it is
possible that the message queued for the consuming client is in the process of being
transmitted from the broker to the client. The client runtime has no knowledge of what
is on the broker, so when it sees that there is no message available on the client's
internal queue, it returns with a null, indicating no message.

Factors Affecting Performance

Message Queue Clients: Design and Features 2-13

You can avoid this problem by having your client do either of the following:

■ Use one of the synchronous receive methods that specifies a timeout interval.

■ Use a queue browser to check the queue before calling the receiveNoWait method.

Factors Affecting Performance
Application design decisions can have a significant effect on overall messaging
performance. The most important factors affecting performance are those that impact
the reliability of message delivery; among these are the following:

■ Delivery Mode (Persistent/Nonpersistent)

■ Use of Transactions

■ Acknowledgment Mode

■ Durable vs. Nondurable Subscriptions

Other application design factors impacting performance include the following:

■ Use of Selectors (Message Filtering)

■ Message Size

■ Message Body Type

The sections that follow describe the impact of each of these factors on messaging
performance. As a general rule, there is a trade-off between performance and
reliability: factors that increase reliability tend to decrease performance.

Table 2–4 shows how application design factors affect messaging performance. The
table shows two scenarios—a high-reliability, low-performance scenario and a
high-performance, low-reliability scenario—and the choice of application design
factors that characterizes each. Between these extremes, there are many choices and
trade-offs that affect both reliability and performance.

Delivery Mode (Persistent/Nonpersistent)
Persistent messages guarantee message delivery in case of broker failure. The broker
stores these message in a persistent store until all intended consumers acknowledge
that they have consumed the message.

Table 2–4 Comparison of High Reliability and High Performance Scenarios

Application Design Factor
High Reliability, Low
Performance

High Performance, Low
Reliability

Delivery mode Persistent messages Nonpersistent messages

Use of transactions Transacted sessions No transactions

Acknowledgment mode AUTO_ACKNOWLEDGE

CLIENT_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

NO_ACKNOWLEDGE

Durable/nondurable
subscriptions

Durable subscriptions Nondurable subscriptions

Use of selectors Message filtering No message filtering

Message size Small messages Large messages

Message body type Complex body types Simple body types

Factors Affecting Performance

2-14 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Broker processing of persistent messages is slower than for nonpersistent messages for
the following reasons:

■ A broker must reliably store a persistent message so that it will not be lost should
the broker fail.

■ The broker must confirm receipt of each persistent message it receives. Delivery to
the broker is guaranteed once the method producing the message returns without
an exception.

■ Depending on the client acknowledgment mode, the broker might need to confirm
a consuming client's acknowledgment of a persistent message.

For both queues and topics with durable subscribers, performance was approximately
40% faster for non-persistent messages. We obtained these results using 10K-size
messages and AUTO_ACKNOWLEDGE mode.

Use of Transactions
A transaction guarantees that all messages produced in a transacted session and all
messages consumed in a transacted session will be either processed or not processed
(rolled back) as a unit. Message Queue supports both local and distributed
transactions.

A message produced or acknowledged in a transacted session is slower than in a
non-transacted session for the following reasons:

■ Additional information must be stored with each produced message.

■ In some situations, messages in a transaction are stored when normally they
would not be. For example, a persistent message delivered to a topic destination
with no subscriptions would normally be deleted, however, at the time the
transaction is begun, information about subscriptions is not available.

■ Information on the consumption and acknowledgment of messages within a
transaction must be stored and processed when the transaction is committed.

Acknowledgment Mode
Other than using transactions, you can ensure reliable delivery by having the client
acknowledge receiving a message. If a session is closed without the client
acknowledging the message or if the message broker fails before the acknowledgment
is processed, the broker redelivers that message, setting a JMSRedelivered flag.

For a non-transacted session, the client can choose one of three acknowledgment
modes, each of which has its own performance characteristics:

■ AUTO_ACKNOWLEDGE. The system automatically acknowledges a message once the
consumer has processed it. This mode guarantees at most one redelivered message
after a provider failure.

■ CLIENT_ACKNOWLEDGE. The application controls the point at which messages are
acknowledged. All messages processed in that session since the previous
acknowledgment are acknowledged. If the broker fails while processing a set of
acknowledgments, one or more messages in that group might be redelivered.

(Using CLIENT_ACKNOWLEDGE mode is similar to using transactions, except there is
no guarantee that all acknowledgments will be processed together if a provider
fails during processing.)

■ DUPS_OK_ACKNOWLEDGE. This mode instructs the system to acknowledge messages
in a lazy manner. Multiple messages can be redelivered after a provider failure.

Factors Affecting Performance

Message Queue Clients: Design and Features 2-15

■ NO_ACKNOWLEDGE In this mode, the broker considers a message acknowledged as
soon as it has been written to the client. The broker does not wait for an
acknowledgment from the receiving client. This mode is best used by typic
subscribers who are not worried about reliability.

Performance is impacted by acknowledgment mode for the following reasons:

■ Extra control messages between broker and client are required in AUTO_
ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes. The additional control messages
add processing overhead and can interfere with JMS payload messages, causing
processing delays.

■ In AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes, the client must wait until
the broker confirms that it has processed the client's acknowledgment before the
client can consume more messages. (This broker confirmation guarantees that the
broker will not inadvertently redeliver these messages.)

■ The Message Queue persistent store must be updated with the acknowledgment
information for all persistent messages received by consumers, thereby decreasing
performance.

Durable vs. Nondurable Subscriptions
Subscribers to a topic destination have either durable and nondurable subscriptions.
Durable subscriptions provide increased reliability at the cost of slower throughput for
the following reasons:

■ The Message Queue message broker must persistently store the list of messages
assigned to each durable subscription so that should the broker fail, the list is
available after recovery.

■ Persistent messages for durable subscriptions are stored persistently, so that
should a broker fail, the messages can still be delivered after recovery, when the
corresponding consumer becomes active. By contrast, persistent messages for
nondurable subscriptions are not stored persistently (should a broker fail, the
corresponding consumer connection is lost and the message would never be
delivered).

We compared performance for durable and non-durable subscribers in two cases:
persistent and nonpersistent 10k-sized messages. Both cases use AUTO_ACKNOWLEDGE
acknowledgment mode. We found a performance impact only in the case of persistent
messages, which slowed messages conveyed to durable subscribers by about 30%.

Use of Selectors (Message Filtering)
Application developers can have the messaging provider sort messages according to
criteria specified in the message selector associated with a consumer and deliver to
that consumer only those messages whose property value matches the message
selector. For example, if an application creates a subscriber to the topic WidgetOrders
and specifies the expression NumberOfOrders>1000 for the message selector, messages
with a NumberOfOrders property value of 1001 or more are delivered to that subscriber.

Creating consumers with selectors lowers performance (as compared to using multiple
destinations) because additional processing is required to handle each message. When
a selector is used, it must be parsed so that it can be matched against future messages.
Additionally, the message properties of each message must be retrieved and compared
against the selector as each message is routed. However, using selectors provides more
flexibility in a messaging application and may lower resource requirements at the
expense of speed.

Connection Event Notification

2-16 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Message Size
Message size affects performance because more data must be passed from producing
client to broker and from broker to consuming client, and because for persistent
messages a larger message must be stored.

However, by batching smaller messages into a single message, the routing and
processing of individual messages can be minimized, providing an overall
performance gain. In this case, information about the state of individual messages is
lost.

In our tests, which compared throughput in kilobytes per second for 1K, 10K, and
100K-sized messages to a queue destination using AUTO_ACKNOWLEDGE mode, we found
that non-persistent messaging was about 50% faster for 1K messages, about 20% faster
for 10K messages, and about 5% faster for 100K messages. The size of the message
affected performance significantly for both persistent and non-persistent messages.
100k messages are about 10 times faster than 10K, and 10K messages are about 5 times
faster than 1K.

Message Body Type
JMS supports five message body types, shown below roughly in the order of
complexity:

■ Bytes: Contains a set of bytes in a format determined by the application

■ Text: Is a simple java.lang.String

■ Stream: Contains a stream of Java primitive values

■ Map: Contains a set of name-and-value pairs

■ Object: Contains a Java serialized object

While, in general, the message type is dictated by the needs of an application, the more
complicated types (map and object) carry a performance cost — the expense of
serializing and deserializing the data. The performance cost depends on how simple or
how complicated the data is.

Connection Event Notification
Connection event notifications allow a Message Queue client to listen for closure and
reconnection events and to take appropriate action based on the notification type and
the connection state. For example, when a failover occurs and the client is reconnected
to another broker, an application might want to clean up its transaction state and
proceed with a new transaction.

If the Message Queue provider detects a serious problem with a connection, it calls the
connection object's registered exception listener. It does this by calling the listener's
onException method, and passing it a JMSException argument describing the
problem. In the same way, the Message Queue provider offers an event notification
API that allows the client runtime to inform the application about connection state
changes. The notification API is defined by the following elements:

■ The com.sun.messaging.jms.notification package, which defines the event
listener and the notification event objects .

■ The com.sun.messaging.jms.Connection interface, which defines extensions to
the javax.jms.Connection interface.

The following sections describe the events that can trigger notification and explain
how you can create an event listener.

Connection Event Notification

Message Queue Clients: Design and Features 2-17

Connection Events
The following table lists and describes the events that can be returned by the event
listener.

Note that the JMS exception listener is not called when a connection event occurs. The
exception listener is only called if the client runtime has exhausted its reconnection
attempts. The client runtime always calls the event listener before the exception
listener.

Creating an Event Listener
The following code example illustrates how you set a connection event listener.
Whenever a connection event occurs, the event listener's onEvent method will be
invoked by the client runtime.

//create an MQ connection factory.

com.sun.messaging.ConnectionFactory factory =
 new com.sun.messaging.ConnectionFactory();

//create an MQ connection.

com.sun.messaging.jms.Connection connection =
 (com.sun.messaging.jms.Connection)factory.createConnection();

//construct an MQ event listener. The listener implements
//com.sun.messaging.jms.notification.EventListener interface.

com.sun.messaging.jms.notification.EventListener eListener =
 new ApplicationEventListener();

//set event listener to the MQ connection.

Table 2–5 Notification Events

Event Type Meaning

ConnectionClosingEvent The Message Queue client runtime generates this event when it receives
a notification from the broker that a connection is about to be closed due
to a shutdown requested by the administrator.

ConnectionClosedEvent The Message Queue client runtime generates this event when a
connection is closed due to a broker error or when it is closed due to a
shutdown or restart requested by the administrator.

When an event listener receives a ConnectionClosedEvent, the
application can use the getEventCode() method of the received event to
get an event code that specifies the cause for closure.

ConnectionReconnectedEvent The Message Queue client runtime has reconnected to a broker. This
could be the same broker to which the client was previously connected
or a different broker.

An application can use the getBrokerAddress method of the received
event to get the address of the broker to which it has been reconnected.

ConnectionReconnectFailedEvent The Message Queue client runtime has failed to reconnect to a broker.
Each time a reconnect attempt fails, the runtime generates a new event
and delivers it to the event listener.

The JMS exception listener is not called when a connection event occurs.
It is only called if the client runtime has exhausted its reconnection
attempts. The client runtime always calls the event listener before the
exception listener.

Consumer Event Notification

2-18 Open Message Queue 4.5.2 Developer's Guide for Java Clients

connection.setEventListener (eListener);

Event Listener Examples
In this example, an application chooses to have its event listener log the connection
event to the application's logging system.

public class ApplicationEventListener implements
 com.sun.messaging.jms.notification.EventListener {

 public void onEvent (com.sun.messaging.jms.notification.Event connEvent) {
 log (connEvent);
 }
 private void log (com.sun.messaging.jms.notification.Event connEvent) {
 String eventCode = connEvent.getEventCode();
 String eventMessage = connEvent.getEventMessage();
 //write event information to the output stream.
 }
}

Consumer Event Notification
Consumer event notifications allow a Message Queue client to listen for the existence
of consumers on a destination. Thus, for example, a producer client can start or stop
producing messages to a given destination based on the existence of consumers on the
destination.

The following sections describe the events that can trigger notification and explain
how you can create an event listener.

Consumer Events
The following table lists and describes the events that can be returned by the event
listener.

Creating a Consumer Event Listener
The following code example illustrates how you set and remove a consumer event
listener. Whenever a consumer event occurs, the event listener's onEvent method will
be invoked by the client runtime.

//create an MQ connection factory.

com.sun.messaging.ConnectionFactory factory =
 new com.sun.messaging.ConnectionFactory();

//create an MQ connection.

com.sun.messaging.jms.Connection connection =

Table 2–6 Consumer Notification Events

Event Type Meaning

ConsumerEvent This event is generated when consumer
existence changes on a destination. The event
has two possible event codes: CONSUMER_READY
and CONSUMER_NOT_READY.

Consumer Event Notification

Message Queue Clients: Design and Features 2-19

 (com.sun.messaging.jms.Connection)factory.createConnection();

//create an MQ session

com.sun.messaging.jms.Session session =
 (com.sun.messaging.jms.Session)connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

//create a queue

com.sun.messaging.Queue queue =
 (com.sun.messaging.Queue)session.createQueue(strQueueName);

//construct an MQ event listener. The listener implements
//com.sun.messaging.jms.notification.EventListener interface.

com.sun.messaging.jms.notification.EventListener consEvtListener =
 new MyConsumerEventListener();

//set consumer event listener.

connection.setConsumerEventListener
 ((com.sun.messaging.Destination)queue, consEvtListener);

//perform activities

//remove consumer event listener.

connection.removeConsumerEventListener
 ((com.sun.messaging.Destination)queue);

Consumer Event Listener Examples
In this example, an application chooses to have its event listener set a boolean flag to
give ongoing consumer availability information.

public class MyEventListener implements
 com.sun.messaging.jms.notification.EventListener {

 boolean consumerReady = false;

 MyEventListener(){
 consumerReady = false;
 }

 public void onEvent(com.sun.messaging.jms.notification.Event evt) {

 if (evt.getEventCode().equals(
 com.sun.messaging.jms.notification.ConsumerEvent.CONSUMER_NOT_READY
)) {
 synchronized(this){
 consumerReady=false;
 }
 } else if (evt.getEventCode().equals(
 com.sun.messaging.jms.notification.ConsumerEvent.CONSUMER_READY
)) {
 synchronized(this){
 consumerReady=true;
 }

Client Connection Failover (Auto-Reconnect)

2-20 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 }
 }
}

Client Connection Failover (Auto-Reconnect)
Message Queue supports client connection failover. A failed connection can be
automatically restored not only to the original broker, but to a different broker in a
broker cluster. There are circumstances under which the client-side state cannot be
restored on any broker during an automatic reconnection attempt; for example, when
the client uses transacted sessions or temporary destinations. At such times the
connection exception handler is called and the application code has to catch the
exception and restore state.

This section explains how automatic reconnection is enabled, how the broker behaves
during a reconnect, how automatic reconnection impacts producers and consumers,
and how producers and consumers should handle exceptions that result from
connection failover. For additional information about this feature, see "Connection
Handling" in Open Message Queue Administration Guide.

Message Queue also provides a notification API that allows the client application to
listen for closure and reconnection events and to respond to such events based on the
notification type and the connection state. These notifications may be valuable in
preparing the client for an impending event or for gathering diagnostic data. For more
information, see Connection Event Notification.

Starting with version 4.1 of Message Queue, you can cluster brokers in either a
conventional cluster or a high-availability cluster. The clustering model used may affect
your client design. This section notes such design differences.

Enabling Auto-Reconnect
If you are using conventional clusters, you enable automatic reconnection by setting
the connection factory imqReconnectEnabled attribute to true. If you are using a high
availability cluster, the imqReconnectEnabled attribute is ignored; the client runtime
will automatically reconnect to a backup broker if the connection is lost and not
regained after no more than imqReconnectAttempts attempts. This applies to all
deployment configurations: whether Message Queue is used stand alone or whether
the connection is created through a resource adapter.

No matter which type of cluster you are using, you must also configure the connection
factory administered object to specify the following information.

■ A list of message-service addresses (using the imqAddressList attribute).
Independently of the clustering model used, the client runtime uses this address
list when it establishes the initial connection.

When you connect to a conventional cluster, the client runtime also uses the
address list when it tries to reestablish a connection to the message service: it
attempts to connect to the brokers in the list until it finds (or fails to find) an
available broker. If you specify only a single broker instance on the
imqAddressList attribute, the configuration won't support recovery from
hardware failure.

When you specify more than one broker, you can decide whether to use parallel
brokers or a broker cluster. In a parallel configuration, there is no communication
between brokers, while in a broker cluster, the brokers interact to distribute

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-21

message delivery loads. (Refer to "Cluster Message Delivery" in Open Message
Queue Technical Overview for more information on broker clusters.)

– To enable parallel-broker reconnection, set theimqAddressListBehavior
attribute to PRIORITY . Typically, you would specify no more than a pair of
brokers for this type of reconnection. This way, the messages are published to
one broker, and all clients fail over together from the first broker to the second.

– To enable clustered-broker reconnection, set the imqAddressListBehavior
attribute to RANDOM. This way, the client runtime randomizes connection
attempts across the list, and client connections are distributed evenly across
the broker cluster.

Each broker in a cluster uses its own separate persistent store (which means
that undelivered persistent messages are unavailable until a failed broker is
back online). If one broker crashes, its client connections are reestablished on
other brokers.

If you use the high availability clustering model, the address list is
dynamically updated to include the brokers that are connected to the highly
available database serving the cluster. In this case, the client runtime and the
brokers use an internal protocol to determine which broker takes over the
persistent data of the failed broker. Therefore the imqAddressListBehavior
property does not apply to this model.

■ The number of iterations to be made over the list of brokers (using the
imqAddressListIterations attribute) when attempting to create a connection or
to reconnect.

For high-availability clusters, the broker will attempt to reconnect forever (no
matter what value you specify for this attribute). If the client does not want this
behavior, it must explicitly close the connection.

■ The number of attempts to reconnect to a broker if the first connection fails
(using the imqReconnectAttempts attribute).

■ The interval, in milliseconds, between reconnect attempts, using the
imqReconnectInterval attribute. This attribute applies to both clustering models.

Single-Broker Auto-Reconnect
Configure your connection-factory object as follows:

Example 2–3 Example of Command to Configure a Single Broker

imqobjmgr add -t cf -l "cn=myConnectionFactory" \
 -o "imqAddressList=mq://jpgserv/jms" \
 -o "imqReconnect=true" \
 -o "imqReconnectAttempts=10"
 -j "java.naming.factory.initial =
 com.sun.jndi.fscontext.RefFSContextFactory
 -j "java.naming.provider.url= file:///home/foo/imq_admin_objects"

This command creates a connection-factory object with a single address in the broker
address list. If connection fails, the client runtime will try to reconnect with the broker
10 times. If an attempt to reconnect fails, the client runtime will sleep for three seconds
(the default value for the imqReconnectInterval attribute) before trying again. After
10 unsuccessful attempts, the application will receive a JMSException .

You can ensure that the broker starts automatically at system start-up time. See
"Starting Brokers Automatically" in Open Message Queue Administration Guide for

Client Connection Failover (Auto-Reconnect)

2-22 Open Message Queue 4.5.2 Developer's Guide for Java Clients

information on how to configure automatic broker start-up. For example, on the
Solaris platform, you can use /etc/rc.d scripts.

Parallel Broker Auto-Reconnect
Configure your connection-factory objects as follows:

Example 2–4 Example of Command to Configure Parallel Brokers

imqobjmgr add -t cf -l "cn=myCF" \
 -o "imqAddressList=myhost1, mqtcp://myhost2:12345/jms" \
 -o "imqReconnect=true" \
 -o "imqReconnectRetries=5"
 -j "java.naming.factory.initial =
 com.sun.jndi.fscontext.RefFSContextFactory
 -j "java.naming.provider.url= file:///home/foo/imq_admin_objects"

This command creates a connection factory object with two addresses in the broker
list. The first address describes a broker instance running on the host myhost1 with a
standard port number (7676). The second address describes a jms connection service
running at a statically configured port number (12345).

Clustered-Broker Auto-Reconnect
Configure your connection-factory objects as follows:

Example 2–5 Example of Command to Configure a Broker Cluster

imqobjmgr add -t cf -l "cn=myConnectionFactory" \
 -o "imqAddressList=mq://myhost1/ssljms, \
 mq://myhost2/ssljms, \
 mq://myhost3/ssljms, \
 mq://myhost4/ssljms" \
 -o "imqReconnect=true" \
 -o "imqReconnectRetries=5" \
 -o "imqAddressListBehavior=RANDOM"
 -j "java.naming.factory.initial =
 com.sun.jndi.fscontext.RefFSContextFactory
 -j "java.naming.provider.url= file:///home/foo/imq_admin_objects"

This command creates a connection factory object with four addresses in the
imqAddressList. All the addresses point to jms services running on SSL transport on
different hosts. Since the imqAddressListBehavior attribute is set to RANDOM, the client
connections that are established using this connection factory object will be distributed
randomly among the four brokers in the address list. If you are using a high
availability cluster, the RANDOM attribute is ignored during a failover reconnect after
losing an existing connection to a broker.

For a conventional cluster, you must configure one of the brokers in the cluster as the
master broker.In the connection-factory address list, you can also specify a subset of all
the brokers in the cluster.

Auto-Reconnect Behaviors
A broker treats an automatic reconnection as it would a new connection. When the
original connection is lost, all resources associated with that connection are released.
For example, in a broker cluster, as soon as one broker fails, the other brokers assume
that the client connections associated with the failed broker are gone. After
auto-reconnect takes place, the client connections are recreated from scratch.

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-23

Sometimes the client-side state cannot be fully restored by auto-reconnect. Perhaps a
resource that the client needs cannot be recreated. In this case, the client runtime calls
the client's connection exception handler and the client must take appropriate action to
restore state. For additional information, see Handling Exceptions When Failover
Occurs.

If the client is automatically-reconnected to a different broker instance, effects vary
depending on the clustering model used.

■ In a conventional cluster, persistent messages produced but not yet consumed may
only be delivered to the consumer after the original broker recovers. Other state
information held by the failed or disconnected broker can be lost. The messages
held by the original broker, once it is restored, might be delivered out of order.

■ In a high availability cluster, messages produced but not yet consumed continue to
be delivered to the consumer without the original broker needing to recover.

A transacted session is the most reliable method of ensuring that a message isn't lost if
you are careful in coding the transaction. If auto-reconnect happens in the middle of a
transaction, any attempt to produce or consume messages will cause the client runtime
to throw a JMSException. In this case, applications must call Session.rollback() to
roll back the transaction.

The Message Queue client runtime may throw a TransactionRolledBackException
when Session.commit() is called during or after a failover occurs. In this case, the
transaction is rolled back and a new transaction is automatically started. Applications
are not required to call Session.rollback() to rollback the transaction after receiving
a TransactionRolledBackException.

The Message Queue client runtime may throw a JMSException when
Session.commit() is called during or after a failover occurs. In this case, the
transaction state is unknown (may or may not be committed). Applications should call
Session.rollback() to roll back the uncommitted transaction.

If you are using a high availability cluster, the only time your transaction might wind
up in an unknown state is if it is not possible to reconnect to any brokers in the cluster.
This should happen rarely if ever. For additional information, see Handling Exceptions
When Failover Occurs.

Automatic reconnection affects producers and consumers differently:

■ During reconnection, producers cannot send messages. The production of
messages (or any operation that involves communication with the message
broker) is blocked until the connection is reestablished.

■ For consumers, automatic reconnection is supported for all client acknowledgment
modes. After a connection is reestablished, the broker will redeliver all
unacknowledged messages it had previously delivered, marking them with a
Redeliver flag. The client can examine this flag to determine whether any
message has already been consumed (but not yet acknowledged). In the case of
nondurable subscribers, some messages might be lost because the broker does not
hold their messages once their connections have been closed. Any messages
produced for nondurable subscribers while the connection is down cannot be
delivered when the connections is reestablished. For additional information, see
Handling Exceptions When Failover Occurs.

Auto-Reconnect Limitations
Notice the following points when using the auto-reconnect feature:

Client Connection Failover (Auto-Reconnect)

2-24 Open Message Queue 4.5.2 Developer's Guide for Java Clients

■ Messages might be redelivered to a consumer after auto-reconnect takes place. In
auto-acknowledge mode, you will get no more than one redelivered message. In
other session types, all unacknowledged persistent messages are redelivered.

■ While the client runtime is trying to reconnect, any messages sent by the broker to
nondurable topic consumers are lost.

■ Any messages that are in queue destinations and that are unacknowledged when a
connection fails are redelivered after auto-reconnect. However, in the case of
queues delivering to multiple consumers, these messages cannot be guaranteed to
be redelivered to the original consumers. That is, as soon as a connection fails, an
unacknowledged queue message might be rerouted to other connected consumers.

■ In the case of a conventional broker cluster, the failure of the master broker
prevents the following operations from succeeding on any other broker in the
cluster:

– Creating or destroying a new durable subscription.

– Creating or destroying a new physical destination using the imqcmd create
dst command.

– Starting a new broker process. (However, the brokers that are already running
continue to function normally even if the master broker goes down.)

You can configure the master broker to restart automatically using Message
Queue broker support for rc scripts or the Windows service manager.

■ Auto-reconnect doesn't work if the client uses a ConnectionConsumer to consume
messages. In that case, the client runtime throws an exception.

Handling Exceptions When Failover Occurs
Several kinds of exceptions can occur as a result of the client being reconnected after a
failover. How the client application should handle these exceptions depends on
whether a session is transacted, on the kind of exception thrown, and on the client's
role--as producer or consumer. The following sections discuss the implications of these
factors.

Independently of how the exception is raised, the client application must never call
System.exit()to exit the application because this would prevent the Message Queue
client runtime from reconnecting to an alternate or restarted broker.

When a failover occurs, exception messages may be shown on the application's
console and recorded in the broker's log. These messages are for information only.
They may be useful in troubleshooting, but minimizing or eliminating the impact of a
failover is best handled preemptively by the application client in the ways described in
the following sections.

Handling Exceptions in a Transacted Session
A transacted session might fail to commit and (throw an exception) either because a
failover occurs while statements within the transaction are being executed or because

Note: Message Queue provides a notification API that allows the
client application to listen for closure and reconnection events and
to respond to such events based on the notification type and the
connection state. These notifications may be valuable in preparing
the client for an impending event or for gathering diagnostic data.
For more information, see Connection Event Notification

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-25

the failover occurs during the call to Session.commit(). In the first case, the failover is
said to occur during an open transaction; in the second case, the failover occurs during
the commit itself.

In the case of a failover during an open transaction, when the client application calls
Session.commit(), the client runtime will throw a TransactionRolledBackException
and roll back the transaction causing the following to happen.

■ Messages that have been produced (but not committed) in the transacted session
are discarded and not delivered to the consumer.

■ All messages that have been consumed (but not committed) in the transacted
session are redelivered to the consumer with the Redeliver flag set.

■ A new transaction is automatically started.

If the client application itself had called Session.rollback after a failover (before the
Session.commit is executed) the same things would happen as if the application had
received a TransactionRollbackException. After receiving a
TransactionRollbackException or calling Session.rollback(), the client application
must retry the failed transaction. That is, it must re-send and re-consume the messages
that were involved in the failed-over transaction.

In the second case, when the failover occurs during a call to Session.commit, there
may be three outcomes:

■ The transaction is committed successfully and the call to Session.commit does not
return an exception. In this case, the application client does not have to do
anything.

■ The runtime throws a TransactionRolledbackException and does not commit the
transaction. The transaction is automatically rolled back by the Message Queue
runtime. In this case, the client application must retry the transaction as described
for the case in which an open transaction is failed-over.

■ A JMXException is thrown. This signals the fact that the transaction state is
unknown: It might have either succeeded or failed. A client application should
handle this case by assuming failure, pausing for three seconds, calling
Session.rollback, and then retrying the operations. However, since the commit
might have succeeded, when retrying the transacted operations, a producer
should set application-specific properties on the messages it re-sends to signal that
these might be duplicate messages. Likewise, consumers that retry receive
operations should not assume that a message that is redelivered is necessarily a
duplicate. In other words, to ensure once and only once delivery, both producers
and consumers need to do a little extra work to handle this edge case. The code
samples presented next illustrate good coding practices for handling this situation.

If you are using a high availability cluster, the only time this condition might arise
is when the client is unable to connect to any backup broker. This should be
extremely rare.

The next two examples illustrate how stand-alone Message Queue producers and
consumers should handle transactions during a failover. To run the sample programs,
do the following:

1. Start two high availability brokers. The brokers can be on the same machine or on
different machines, but they must be in the same cluster.

2. Start the example programs. For example:

java —DimqAddressList="localhost:777"
 test.jmsclient.ha.FailoverQSender

Client Connection Failover (Auto-Reconnect)

2-26 Open Message Queue 4.5.2 Developer's Guide for Java Clients

java —DimqAddressList="localhost:777"
 test.jmsclient.ha.FailoverQReceiver

It does not matter in what order you start the programs. The only property that
you must specify is imqAddressList. The client application will be automatically
failed over to a backup broker if the connection to its home broker fails. (The
imqReconnectEnabled and imqAddressListIterations properties are ignored for
a high availability cluster.)

3. Kill the broker to which the producing or consuming application is connected. The
clients will reconnect, validate, and continue the failed transaction. A message
produced or consumed in a transaction is either committed or rolled back after a
successful failover.

4. You can restart the dead broker and retry the failover operation by killing the new
home broker.

Transacted Session: Failover Producer Example The following code sample shows the work
that a producer in a transacted session needs to do to recover state after a failover.
Note how the application tests both for rollback exceptions and for JMS exceptions.
Note also the use of a counter to allow the producer and consumer to verify message
order and delivery.

/*
 * @(#)FailoverQSender.java 1.2 07/04/20
 *
 * Copyright 2000 Sun Microsystems, Inc. All Rights Reserved
 * SUN PROPRIETARY/CONFIDENTIAL
 * Use is subject to license terms.
 *
 */
package test.jmsclient.ha;

import java.util.Date;
import javax.jms.*;
import com.sun.messaging.jms.Connection;
import com.sun.messaging.jms.notification.*;

/**
 *
 * This sample program uses a transacted session to send messages.
 * It is designed to run with test.jmsclient.ha.FailoverQReceiver
 * @version 1.0
 */
public class FailoverQSender
 implements ExceptionListener, EventListener, Runnable {
 //constant - commit property name
 public static final String COMMIT_PROPERTY_NAME = "COMMIT_PROPERTY";
 //constant - message counter
 public static final String MESSAGE_COUNTER = "counter";
 //constant - destination name
 public static final String TEST_DEST_NAME = "FailoverTestDest001";
 //queue connection
 QueueConnection conn = null;
 //session
 QueueSession session = null;
 //queue sender
 QueueSender sender = null;
 //queue destination

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-27

 Queue queue = null;

 //commmitted counter.
 private int commitCounter = 0;
 //current message counter
 private int currentCounter = 0;
 //set to true if the application is connected to the broker.
 private boolean isConnected = false;

 /**
 * Default constructor - do nothing.
 * Properties are passed in from init() method.
 */
 public FailoverQSender() {

 //set up JMS environment
 setup();
 }

 /**
 * Connection Exception listener.
 */
 public void onException (JMSException e) {

 //The run() method will exit.
 this.isConnected = false;

 log ("Exception listener is called.
 Connection is closed by MQ client runtime.");
 log (e);
 }

 /**
 * this method is called when a MQ connection event occurred.
 */
 public void onEvent (Event connectionEvent) {
 log(connectionEvent);
 }

 /**
 * Rollback the application data.
 *
 */
 private void rollBackApplication() {

 this.currentCounter = this.commitCounter;
 log ("Application rolled back., current (commit) counter: "
 + currentCounter);
 }

 /**
 * Roll back the current jms session.
 */
 private void rollBackJMS() {

 try {

 log("Rolling back JMS, commit counter: " + commitCounter);
 session.rollback();
 } catch (JMSException jmse) {

Client Connection Failover (Auto-Reconnect)

2-28 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 log("Rollback failed");
 log(jmse);
 //application may decide to log and continue sending messages
 // without closing the application.
 close();
 }
 }
 /**
 * rollback application data and jms session.
 *
 */
 private void rollBackAll() {
 //rollback jms
 rollBackJMS();
 //rollback app data
 rollBackApplication();
 }

 /**
 * close JMS connection and stop the application
 *
 */
 private void close() {

 try {
 if (conn != null) {
 //close the connection
 conn.close();
 }
 } catch (Exception e) {
 //log exception
 log (e);
 } finally {
 //set flag to true. application thread will exit
 isConnected = false;
 }
 }

 /**
 * Send messages in a loop until the connection is closed.
 * Session is committed for each message sent.
 */
 public void run () {

 //start producing messages
 while (isConnected) {

 try {
 //reset message counter if it reaches max int value
 checkMessageCounter();
 //create a message
 Message m = session.createMessage();
 //get the current message counter value
 int messageCounter = this.getMessageCounter();
 //set message counter to message property
 m.setIntProperty(MESSAGE_COUNTER, messageCounter);
 //set commit property
 m.setBooleanProperty(COMMIT_PROPERTY_NAME, true);
 //send the message
 sender.send(m);

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-29

 log("Sending message: " + messageCounter +
 ", current connected broker: " +
 this.getCurrentConnectedBrokerAddress());

 //commit the message
 this.commit();

 // pause 3 seconds
 sleep(3000);

 } catch (TransactionRolledBackException trbe) {
 //rollback app data
 rollBackApplication();
 } catch (JMSException jmse) {
 if (isConnected == true) {
 //rollback app data and JMS session
 rollBackAll();
 }
 }
 }
 }

 /**
 * Reset all counters if integer max value is reached.
 */
 private void checkMessageCounter() {

 if (currentCounter == Integer.MAX_VALUE) {
 currentCounter = 0;
 commitCounter = 0;
 }
 }

 /**
 * Set up testing parameters - connection, destination, etc
 */
 protected void setup() {
 try {
 //get connection factory
 com.sun.messaging.QueueConnectionFactory factory =
 new com.sun.messaging.QueueConnectionFactory();
 //create a queue connection
 conn = factory.createQueueConnection();

 //set exception listener
 conn.setExceptionListener(this);

 //set event listener
 ((com.sun.messaging.jms.Connection) conn).setEventListener(this);

 //get destination name
 String destName = TEST_DEST_NAME;

 //create a transacted session
 session = conn.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

 //get destination
 queue = session.createQueue(destName);
 //create queue sender

Client Connection Failover (Auto-Reconnect)

2-30 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 sender = session.createSender(queue);

 //set isConnected flag to true.
 this.isConnected = true;

 } catch (JMSException jmse) {
 this.isConnected = false;
 }
 }

 /**
 * get the next message counter.
 */
 private synchronized int getMessageCounter () {
 return ++ currentCounter;
 }

 /**
 * commit the current transaction/session.
 */
 private void commit() throws JMSException {
 session.commit();
 this.commitCounter = currentCounter;

 log ("Transaction committed, commit counter: " +commitCounter);
 }

 /**
 * Get the current connencted broker address.
 */
 private String getCurrentConnectedBrokerAddress() {
 return ((com.sun.messaging.jms.Connection)conn).getBrokerAddress();
 }

 /**
 * log a string message.
 * @param msg
 */
 private synchronized void log (String msg) {
 System.out.println(new Date() + ": " + msg);
 }

 /**
 * Log an exception received.
 */
 private synchronized void log (Exception e) {
 System.out.println(new Date() + ": Exception:");
 e.printStackTrace();
 }
 /**
 * Log the specified MQ event.
 */
 private synchronized void log (Event event) {

 try {
 System.out.println(new Date() + ": Received MQ event notification.");
 System.out.println("*** Event code: " + event.getEventCode());
 System.out.println("*** Event message: " + event.getEventMessage());
 } catch (Exception e) {
 e.printStackTrace();

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-31

 }
 }
 /**
 * pause the specified milli seconds.
 */
 private void sleep (long millis) {
 try {
 Thread.sleep(millis);
 } catch (java.lang.InterruptedException inte) {
 log (inte);
 }
 }
 /**
 * The main program.
 */
 public static void main (String args[]) {
 FailoverQSender fp = new FailoverQSender();
 fp.run();
 }
}

Transacted Session: Failover Consumer Example The following code sample shows the
work that a consumer in a transacted session needs to do in order to recover state after
a failover. Note how the application tests both for rollback exceptions and JMS
exceptions. Note also the use of a counter to allow the producer and consumer to
verify message order and delivery.

/*
 * @(#)FailoverQReceiver.java 1.4 07/04/20
 *
 * Copyright 2000 Sun Microsystems, Inc. All Rights Reserved
 * SUN PROPRIETARY/CONFIDENTIAL
 * Use is subject to license terms.
 */
package test.jmsclient.ha;

import java.util.Date;
import java.util.Vector;
import javax.jms.*;
import com.sun.messaging.jms.notification.*;

/**
 * This sample program uses a transacted session to receive messages.
 * It is designed to run with test.jmsclient.ha.FailoverQSender.
 *
 * @version 1.0
 */
public class FailoverQReceiver
 implements ExceptionListener, EventListener, Runnable {

 //queue connection
 private QueueConnection conn = null;
 //queue session
 private QueueSession session = null;
 //qreceiver
 private QueueReceiver qreceiver = null;
 //queue destination
 private Queue queue = null;

Client Connection Failover (Auto-Reconnect)

2-32 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 //commmitted counter.
 private int commitCounter = 0;
 //flag to indicate if the connection is connected to the broker.
 private boolean isConnected = false;
 //flag to indicate if current connection is to HA broker cluster.
 private boolean isHAConnection = false;
 //application data holder.
 private Vector data = new Vector();

 /**
 * Default constructor - JMS setup.
 */
 public FailoverQReceiver() {
 //set up JMS environment
 setup();
 }

 /**
 * Connection Exception listener.
 */
 public void onException (JMSException e) {

 //The run() method will exit.
 this.isConnected = false;

 log ("Exception listener is called. Connection is closed
 by MQ client runtime.");
 log (e);
 }

 /**
 * log the connection event.
 */
 public void onEvent (Event connectionEvent) {
 log (connectionEvent);
 }

 /**
 * Roll back application data.
 */
 private void rollBackApplication() {
 //reset application data
 this.reset();

 log ("Rolled back application data, current commit counter:
 " + commitCounter);
 }

 /**
 * Clear the application data for the current un-committed transaction.
 */
 private void reset() {
 data.clear();
 }

 /**
 * Roll back JMS transaction and application.
 */
 private void rollBackAll() {
 try {

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-33

 //rollback JMS
 rollBackJMS();
 //rollback application data
 rollBackApplication();
 } catch (Exception e) {

 log ("rollback failed. closing JMS connection ...");

 //application may decide NOT to close connection if rollback failed.
 close();
 }
 }

 /**
 * Roll back jms session.
 */
 private void rollBackJMS() throws JMSException {
 session.rollback();
 log("JMS session rolled back, commit counter:
 " + commitCounter);

 }

 /**
 * Close JMS connection and exit the application.
 */
 private void close() {
 try {
 if (conn != null) {
 conn.close();
 }
 } catch (Exception e) {
 log (e);
 } finally {
 isConnected = false;
 }
 }

 /**
 * Receive, validate, and commit messages.
 */
 public void run () {

 //produce messages
 while (isConnected) {

 try {
 //receive message
 Message m = qreceiver.receive();
 //process message -- add message to the data holder
 processMessage(m);
 //check if the commit flag is set in the message property
 if (shouldCommit(m)) {
 //commit the transaction
 commit(m);
 }

 } catch (TransactionRolledBackException trbe) {
 log ("transaction rolled back by MQ ...");
 //rollback application data

Client Connection Failover (Auto-Reconnect)

2-34 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 rollBackApplication();
 } catch (JMSException jmse) {
 //The exception can happen when receiving messages
 //and the connected broker is killed.
 if (isConnected == true) {
 //rollback MQ and application data
 rollBackAll();
 }

 } catch (Exception e) {
 log (e);

 //application may decide NOT to close the connection
 //when an unexpected Exception occurred.
 close();
 }
 }
 }

 /**
 * Set up testing parameters - connection, destination, etc
 */
 protected void setup() {
 try {
 //get connection factory
 com.sun.messaging.QueueConnectionFactory factory =
 new com.sun.messaging.QueueConnectionFactory();

 //create jms connection
 conn = factory.createQueueConnection();

 //set exception listener
 conn.setExceptionListener(this);

 //set event listener
 ((com.sun.messaging.jms.Connection) conn).setEventListener(this);

 //test if this is a HA connection
 isHAConnection = ((com.sun.messaging.jms.Connection)
 conn).isConnectedToHABroker();
 log ("Is connected to HA broker cluster: " + isHAConnection);

 //get destination name
 String destName = FailoverQSender.TEST_DEST_NAME;

 //create a transacted session
 session = conn.createQueueSession(true, -1);

 //get destination
 queue = session.createQueue(destName);

 //create queue receiver
 qreceiver = session.createReceiver(queue);
 //set isConnected flag to true
 isConnected = true;
 //start the JMS connection
 conn.start();
 log("Ready to receive on destination: " + destName);
 } catch (JMSException jmse) {
 isConnected = false;

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-35

 log (jmse);
 close();
 }
 }

 /**
 * Check if we should commit the transaction.
 */
 private synchronized boolean shouldCommit(Message m) {

 boolean flag = false;

 try {
 //get the commit flag set by the FailoverQSender
 flag = m.getBooleanProperty(FailoverQSender.COMMIT_PROPERTY_NAME);

 if (flag) {
 //check if message property contains expected message counter
 validate (m);
 }

 } catch (JMSException jmse) {
 log (jmse);
 }

 return flag;
 }

 /**
 * A very simple validation only. More logic may be added to validate
 * message ordering and message content.
 * @param m Message The last message received for the current transaction.
 */
 private void validate (Message m) {

 try {
 //get message counter property
 int counter = m.getIntProperty(FailoverQSender.MESSAGE_COUNTER);
 //The counter is set sequentially and must be received in right order.
 //Each message is committed after validated.
 if (counter != (commitCounter + 1)) {
 this.printData();
 throw new RuntimeException("validation failed.");
 }

 log ("messages validated. ready to commit ...");
 } catch (JMSException jmse) {
 log (jmse);

 printData();

 throw new RuntimeException("Exception occurred during validation:
 " + jmse);
 }
 }

 /**
 * Get the message counter and put it in the data holder.
 * @param m the current message received
 */

Client Connection Failover (Auto-Reconnect)

2-36 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 private synchronized void processMessage(Message m) throws JMSException {

 // get message counter. this value is set by the FailoverQSender.
 int ct = m.getIntProperty(FailoverQSender.MESSAGE_COUNTER);
 // log the message
 log("received message: " + ct
 +", current connected broker:
 " + this.getCurrentConnectedBrokerAddress());

 // saved the data in data holder.
 data.addElement(new Integer(ct));
 }

 /**
 * commit the current transaction.
 * @param m the last received message to be committed.
 * @throws JMSException if commit failed.
 */
 private void commit(Message m) throws JMSException {
 //commit the transaction
 session.commit();

 //get the current message counter
 int counter = m.getIntProperty(FailoverQSender.MESSAGE_COUNTER);
 //set the commit counter

 commitCounter = counter;
 //clear app data
 this.reset();

 log ("Messages committed, commitCounter: " + commitCounter);
 }

 /**
 * log exception.
 */
 private synchronized void log (Exception e) {
 System.out.println(new Date() + ": Exception Stack Trace: ");
 e.printStackTrace();
 }

 /**
 * log connection event.
 */
 private synchronized void log (Event event) {

 try {
 System.out.println(new Date()
 + ": Received MQ event notification.");
 System.out.println("*** Event Code: " + event.getEventCode());
 System.out.println("*** Event message: " + event.getEventMessage());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Log the specified message.
 */
 private void log (String msg) {

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-37

 System.out.println(new Date() + ": " + msg);
 }

 /**
 * print values stored in the data holder.
 *
 */
 private void printData() {

 for (int i=0; i< data.size(); i++) {
 log (" *** data index " + i + " = " + data.elementAt(i));
 }
 }

 private String getCurrentConnectedBrokerAddress() {
 return ((com.sun.messaging.jms.Connection)conn).getBrokerAddress();
 }
 /**
 * The main method. This starts the failover queue receiver.
 */
 public static void main (String args[]) {
 FailoverQReceiver fqr = new FailoverQReceiver();
 fqr.run();
 }

}

Handling Exceptions in a Non-Transacted Session
If a connection is failed-over for a producer in a non-transacted session, a client
application may receive a JMSException. The application thread that receives the
exception should pause for a few seconds and then resend the messages. The client
application may want to set a flag on the resent messages to indicate that they could be
duplicates.

If a connection is failed over for a message consumer, the consequences vary with the
sessions acknowledge mode:

■ In client-acknowledge mode, calling Message.acknowledge or
MessageConsumer.receive during a failover will raise a JMSException. The
consumer should call Session.recover to recover or re-deliver the
unacknowledged messages and then call Message.acknowledge or
MessageConsumer.receive.

■ In auto-acknowledge mode, after getting a JMSException, the synchronous
consumer should pause a few seconds and then call MessageConsumer.receive to
continue receiving messages. Any message that failed to be acknowledged (due to
the failover) will be redelivered with the redelivered flags set to true.

■ In dups-OK-acknowledge mode, the synchronous consumer should pause a few
seconds after getting an exception and then call MessageConsumer.receive to
continue receiving messages. In this case, it's possible that messages delivered and
acknowledged (before the failover) could be redelivered.

Failover Producer Example The following code sample illustrates good coding practices
for handling exceptions during a failover. It is designed to send non-transacted,
persistent messages forever and to handle JMSExceptions when a failover occurs. The
program is able to handle either a true or false setting for the imqReconnectEnabled
property. To run the program enter one of the following commands.

Client Connection Failover (Auto-Reconnect)

2-38 Open Message Queue 4.5.2 Developer's Guide for Java Clients

java dura.example.FailoverProducer

java -DimqReconnectEnabled=true dura.example.FailoverProducer

/*
 * @(#)FailoverProducer.java 1.1 06/06/09
 * Copyright 2006 Sun Microsystems, Inc. All Rights Reserved
 * SUN PROPRIETARY/CONFIDENTIAL
 * Use is subject to license terms. */

package dura.example;

import javax.jms.*;
import com.sun.messaging.ConnectionConfiguration;
import java.util.*;

public class FailoverProducer implements ExceptionListener {

 //connection factory
 private com.sun.messaging.TopicConnectionFactory factory;
 //connection
 private TopicConnection pconn = null;
 //session
 private TopicSession psession = null;
 //publisher
 private TopicPublisher publisher = null;
 //topic
 private Topic topic = null;
 //This flag indicates whether this test client is closed.
 private boolean isClosed = false;
 //auto reconnection flag
 private boolean autoReconnect = false;
 //destination name for this example.
 private static final String DURA_TEST_TOPIC = "DuraTestTopic";
 //the message counter property name
 public static final String MESSAGE_COUNTER = "MESSAGE_COUNTER";
 //the message in-doubt-bit property name
 public static final String MESSAGE_IN_DOUBT = "MESSAGE_IN_DOUBT";

 /**
 * Constructor. Get imqReconnectEnabled property value from
 * System property.
 */
 public FailoverProducer () {

 try {
 autoReconnect =
 Boolean.getBoolean(ConnectionConfiguration.imqReconnectEnabled);
 } catch (Exception e) {
 this.printException(e);
 }

 }

 /**
 * Connection is broken if this handler is called.
 * If autoReconnect flag is true, this is called only
 * if no more retries from MQ.
 */
 public void onException (JMSException jmse) {

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-39

 this.printException (jmse);
 }

 /**
 * create MQ connection factory.
 * @throws JMSException
 */
 private void initFactory() throws JMSException {
 //get connection factory
 factory = new com.sun.messaging.TopicConnectionFactory();
 }

 /**
 * JMS setup. Create a Connection,Session, and Producer.
 *
 * If any of the JMS object creation fails (due to system failure),
 * it retries until it succeeds.
 *
 */
 private void initProducer() {

 boolean isConnected = false;

 while (isClosed == false && isConnected == false) {

 try {
 println("producer client creating connection ...");

 //create connection
 pconn = factory.createTopicConnection();

 //set connection exception listener
 pconn.setExceptionListener(this);

 //create topic session
 psession = pconn.createTopicSession(false,
 Session.CLIENT_ACKNOWLEDGE);

 //get destination
 topic = psession.createTopic(DURA_TEST_TOPIC);

 //publisher
 publisher = psession.createPublisher(topic);

 //set flag to true
 isConnected = true;

 println("producer ready.");
 }
 catch (Exception e) {

 println("*** connect failed ... sleep for 5 secs.");

 try {
 //close resources.
 if (pconn != null) {
 pconn.close();
 }
 //pause 5 secs.
 Thread.sleep(5000);

Client Connection Failover (Auto-Reconnect)

2-40 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 } catch (Exception e1) {
 ;
 }
 }
 }
 }

 /**
 * Start test. This sends JMS messages in a loop (forever).
 */
 public void run () {

 try {
 //create MQ connection factory.
 initFactory();

 //create JMS connection,session, and producer
 initProducer();

 //send messages forever.
 sendMessages();
 } catch (Exception e) {
 this.printException(e);
 }
 }

 /**
 * Send persistent messages to a topic forever. This shows how
 * to handle failover for a message producer.
 */
 private void sendMessages() {

 //this is set to true if send failed.
 boolean messageInDoubt = false;

 //message to be sent
 TextMessage m = null;

 //msg counter
 long msgcount = 0;

 while (isClosed == false) {

 try {

 /**
 * create a text message
 */
 m = psession.createTextMessage();

 /**
 * the MESSAGE_IN_DOUBT bit is set to true if
 * you get an exception for the last message.
 */
 if (messageInDoubt == true) {
 m.setBooleanProperty (MESSAGE_IN_DOUBT, true);
 messageInDoubt = false;

 println("MESSAGE_IN_DOUBT bit is set to true

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-41

 for msg: " + msgcount);
 } else {
 m.setBooleanProperty (MESSAGE_IN_DOUBT, false);
 }

 //set message counter
 m.setLongProperty(MESSAGE_COUNTER, msgcount);

 //set message body
 m.setText("msg: " + msgcount);

 //send the msg
 publisher.send(m, DeliveryMode.PERSISTENT, 4, 0);

 println("sent msg: " + msgcount);

 /**
 * reset counetr if reached max long value.
 */
 if (msgcount == Long.MAX_VALUE) {
 msgcount = 0;

 println ("Reset message counter to 0.");
 }

 //increase counter
 msgcount ++;

 Thread.sleep(1000);

 } catch (Exception e) {

 if (isClosed == false) {

 //set in doubt bit to true.
 messageInDoubt = true;

 this.printException(e);

 //init producer only if auto reconnect is false.
 if (autoReconnect == false) {
 this.initProducer();
 }
 }
 }
 }
 }

 /**
 * Close this example program.
 */
 public synchronized void close() {

 try {
 isClosed = true;
 pconn.close();

 notifyAll();
 } catch (Exception e) {
 this.printException(e);

Client Connection Failover (Auto-Reconnect)

2-42 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 }
 }

 /**
 * print the specified exception.
 * @param e the exception to be printed.
 */
 private void printException (Exception e) {
 System.out.println(new Date().toString());
 e.printStackTrace();
 }

 /**
 * print the specified message.
 * @param msg the message to be printed.
 */
 private void println (String msg) {
 System.out.println(new Date() + ": " + msg);
 }

 /**
 * Main program to start this example.
 */
 public static void main (String args[]) {
 FailoverProducer fp = new FailoverProducer();
 fp.run();
 }

}

Failover Consumer Example The following code sample, FailoverConsumer, illustrates
good coding practices for handling exceptions during a failover. The transacted
session is able to receive messages forever. The program sets the auto reconnect
property to true, requiring the Message Queue runtime to automatically perform a
reconnect when the connected broker fails or is killed. It is designed to work with the
dura.example.FailoverProducer, shown in the previous section.

To run this program enter the following command.

java dura.example.FailoverConsumer

/*
 * @(#)FailoverConsumer.java 1.1 06/06/09
 * Copyright 2006 Sun Microsystems, Inc. All Rights Reserved
 * SUN PROPRIETARY/CONFIDENTIAL
 * Use is subject to license terms.
 *
 */
package dura.example;

import java.util.Date;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Connection;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import javax.jms.Topic;

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-43

import javax.jms.TransactionRolledBackException;
import com.sun.messaging.ConnectionConfiguration;

public class FailoverConsumer implements ExceptionListener, Runnable {

 //JMS connection
 private Connection conn = null;
 //JMS session
 private Session session = null;
 //JMS Message consumer
 private MessageConsumer messageConsumer = null;
 //JMS destination.
 private Destination destination = null;
 //flag indicates whether this program should continue running.
 private boolean isConnected = false;
 //destination name.
 private static final String DURA_TEST_TOPIC = "DuraTestTopic";
 //the commit counter, for information only.
 private long commitCounter = 0;

 /**
 * message counter property set by the producer.
 */
 public static final String MESSAGE_COUNTER = "MESSAGE_COUNTER";

 /**
 * Message in doubt bit set by the producer
 */
 public static final String MESSAGE_IN_DOUBT = "MESSAGE_IN_DOUBT";

 /**
 * receive time out
 */
 public static final long RECEIVE_TIMEOUT = 0;

 /**
 * Default constructor -
 * Set up JMS Environment.
 */
 public FailoverConsumer() {
 setup();
 }

 /* Connection Exception listener. This is called when connection
 * breaks and no reconnect attempts are performed by MQ client runtime.
 */
 public void onException (JMSException e) {

 print ("Reconnect failed. Shutting down the connection ...");

 /**
 * Set this flag to false so that the run() method will exit.
 */
 this.isConnected = false;
 e.printStackTrace();
 }

 /**
 * Best effort to roll back a jms session. When a broker crashes, an
 * open-transaction should be rolled back. But the re-started broker

Client Connection Failover (Auto-Reconnect)

2-44 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 * may not have the uncommitted tranaction information due to system
 * failure. In a situation like this, an application can just quit
 * calling rollback after retrying a few times The uncommitted
 * transaction (resources) will eventually be removed by the broker.
 */
 private void rollBackJMS() {

 //rollback fail count
 int failCount = 0;

 boolean keepTrying = true;

 while (keepTrying) {

 try {

 print ("<<< rolling back JMS, consumer commit counter:
 " + this.commitCounter);

 session.rollback();

 print("<<< JMS rolled back, consumer commit counter:
 " + this.commitCounter);
 keepTrying = false;
 } catch (JMSException jmse) {

 failCount ++;
 jmse.printStackTrace();

 sleep (3000); //3 secs

 if (failCount == 1) {

 print ("<<< rollback failed : total count" + failCount);
 keepTrying = false;
 }
 }
 }
 }

 /**
 * Close the JMS connection and exit the program.
 *
 */
 private void close() {
 try {

 if (conn != null) {
 conn.close();
 }

 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 this.isConnected = false;
 }
 }

 /*Receive messages in a loop until closed.*/

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-45

 public void run () {

 while (isConnected) {

 try {

 /*receive message with specified timeout.*/

 Message m = messageConsumer.receive(RECEIVE_TIMEOUT);

 /* process the message. */
 processMessage(m);

 /* commit JMS transaction. */
 this.commit();

 /*increase the commit counter.*/
 this.commitCounter ++;

 } catch (TransactionRolledBackException trbe) {

 /**
 * the transaction is rolled back
 * a new transaction is automatically started.
 */
 trbe.printStackTrace();
 } catch (JMSException jmse) {

 /* The transaction is in unknown state.
 * We need to roll back the transaction.*/

 jmse.printStackTrace();

 /* roll back if not closed.
 */
 if (this.isConnected == true) {
 this.rollBackJMS();
 }

 } catch (Exception e) {

 e.printStackTrace();

 /* Exit if this is an unexpected Exception.
 */
 this.close();

 } finally {
 ;//do nothing
 }
 }

 print(" <<< consumer exit ...");
 }

 /*Set up connection, destination, etc*/
 /
 protected void setup() {

Client Connection Failover (Auto-Reconnect)

2-46 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 try {

 //create connection factory
 com.sun.messaging.ConnectionFactory factory =
 new com.sun.messaging.ConnectionFactory();

 //set auto reconnect to true.
 factory.setProperty(ConnectionConfiguration.imqReconnectEnabled,
"true");
 //A value of -1 will retry forever if connection is broken.
 factory.setProperty(ConnectionConfiguration.imqReconnectAttempts,
"-1");
 //retry interval - every 10 seconds
 factory.setProperty(ConnectionConfiguration.imqReconnectInterval,
"10000");
 //create connection
 conn = factory.createConnection();
 //set client ID
 conn.setClientID(DURA_TEST_TOPIC);

 //set exception listener
 conn.setExceptionListener(this);

 //create a transacted session
 session = conn.createSession(true, -1);

 //get destination
 destination = session.createTopic(DURA_TEST_TOPIC);

 //message consumer
 messageConsumer = session.createDurableSubscriber((Topic)destination,
 DURA_TEST_TOPIC);
 //set flag to true
 this.isConnected = true;
 //we are ready, start the connection
 conn.start();

 print("<<< Ready to receive on destination: " + DURA_TEST_TOPIC);

 } catch (JMSException jmse) {
 this.isConnected = false;
 jmse.printStackTrace();

 this.close();
 }
 }

 /**
 * Process the received message message.
 * This prints received message counter.
 * @param m the message to be processed.
 */
 private synchronized void processMessage(Message m) {

 try {
 //in this example, we do not expect a timeout, etc.
 if (m == null) {
 throw new RuntimeException ("<<< Received null message.
 Maybe reached max time out. ");
 }

Client Connection Failover (Auto-Reconnect)

Message Queue Clients: Design and Features 2-47

 //get message counter property
 long msgCtr = m.getLongProperty (MESSAGE_COUNTER);

 //get message in-doubt bit
 boolean indoubt = m.getBooleanProperty(MESSAGE_IN_DOUBT);

 if (indoubt) {
 print("<<< received message: " + msgCtr + ", indoubt bit is
true");
 } else {
 print("<<< received message: " + msgCtr);
 }

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
 }

 /**
 * Commit a JMS transaction.
 * @throws JMSException
 */
 private void commit() throws JMSException {
 session.commit();
 }

 /**
 * Sleep for the specified time.
 * @param millis sleep time in milli-seconds.
 */
 private void sleep (long millis) {
 try {
 Thread.sleep(millis);
 } catch (java.lang.InterruptedException inte) {
 print (inte);
 }
 }

 /**
 * Print the specified message.
 * @param msg the message to be printed.
 */
 private static void print (String msg) {
 System.out.println(new Date() + ": " + msg);
 }

 /**
 * Print Exception stack trace.
 * @param e the exception to be printed.
 */
 private static void print (Exception e) {
 System.out.print(e.getMessage());
 e.printStackTrace();
 }

 /**
 * Start this example program.
 */
 public static void main (String args[]) {

Custom Client Acknowledgment

2-48 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 FailoverConsumer fc = new FailoverConsumer();
 fc.run();
 }

}

Custom Client Acknowledgment
Message Queue supports the standard JMS acknowledgment modes
(auto-acknowledge, client-acknowledge, and dups-OK-acknowledge). When you
create a session for a consumer, you can specify one of these modes. Your choice will
affect whether acknowledgment is done explicitly (by the client application) or
implicitly (by the session) and will also affect performance and reliability. This section
describes additional options you can use to customize acknowledgment behavior:

■ You can customize the JMS client-acknowledge mode to acknowledge one
message at a time.

■ If performance is key and reliability is not a concern, you can use the proprietary
no-acknowledge mode to have the broker consider a message acknowledged as
soon as it has been sent to the consuming client.

The following sections explain how you program these options.

Using Client Acknowledge Mode
For more flexibility, Message Queue lets you customize the JMS client-acknowledge
mode. In client-acknowledge mode, the client explicitly acknowledges message
consumption by invoking the acknowledge() method of a message object. The
standard behavior of this method is to cause the session to acknowledge all messages
that have been consumed by any consumer in the session since the last time the
method was invoked. (That is, the session acknowledges the current message and all
previously unacknowledged messages, regardless of who consumed them.)

In addition to the standard behavior specified by JMS, Message Queue lets you use
client-acknowledge mode to acknowledge one message at a time.

Observe the following rules when implementing custom client acknowledgment:

■ To acknowledge an individual message, call the acknowledgeThisMessage()
method. To acknowledge all messages consumed so far, call the
acknowledgeUpThroughThisMessage() method. Both are shown in the following
code example.

public interface com.sun.messaging.jms.Message {
 void acknowledgeThisMessage() throws JMSException;
 void acknowledgeUpThroughThisMessage() throws JMSException;
}

■ When you compile the resulting code, include both imq.jar and jms.jar in the
class path.

■ Don't call acknowledge(), acknowledgeThisMessage() , or
acknowledgeUpThroughThisMessage() in any session except one that uses
client-acknowledge mode. Otherwise, the method call is ignored.

■ Don't use custom acknowledgment in transacted sessions. A transacted session
defines a specific way to have messages acknowledged.

Custom Client Acknowledgment

Message Queue Clients: Design and Features 2-49

If a broker fails, any message that was not acknowledged successfully (that is, any
message whose acknowledgment ended in a JMSException) is held by the broker for
delivery to subsequent clients.

Example 2–6 demonstrates both types of custom client acknowledgment.

Example 2–6 Example of Custom Client Acknowledgment Code

...
import javax.jms.*;
...[Look up a connection factory and create a connection.]

 Session session = connection.createSession(false,
 Session.CLIENT_ACKNOWLEDGE);

...[Create a consumer and receive messages.]

 Message message1 = consumer.receive();
 Message message2 = consumer.receive();
 Message message3 = consumer.receive();

...[Process messages.]

...[Acknowledge one individual message.
 Notice that the following acknowledges only message 2.]

 ((com.sun.messaging.jms.Message)message2).acknowledgeThisMessage();

...[Continue. Receive and process more messages.]

 Message message4 = consumer.receive();
 Message message5 = consumer.receive();
 Message message6 = consumer.receive();

...[Acknowledge all messages up through message 4. Notice that this
 acknowledges messages 1, 3, and 4, because message 2 was acknowledged
 earlier.]

 ((com.sun.messaging.jms.Message)message4).acknowledgeUpThroughThisMessage();
...[Continue. Finally, acknowledge all messages consumed in the session.
 Notice that this acknowledges all remaining consumed messages, that is,
 messages 5 and 6, because this is the standard behavior of the JMS API.]

 message5.acknowledge();

Using No Acknowledge Mode
No-acknowledge mode is a nonstandard extension to the JMS API. Normally, the
broker waits for a client acknowledgment before considering that a message has been
acknowledged and discarding it. That acknowledgment must be made
programmatically if the client has specified client-acknowledge mode or it can be
made automatically, by the session, if the client has specified auto-acknowledge or
dups-OK-acknowledge. If a consuming client specifies no-acknowledge mode, the
broker discards the message as soon as it has sent it to the consuming client. This
feature is intended for use by nondurable subscribers consuming nonpersistent
messages, but it can be used by any consumer.

Using this feature improves performance by reducing protocol traffic and broker work
involved in acknowledging a message. This feature can also improve performance for

Schema Validation of XML Payload Messages

2-50 Open Message Queue 4.5.2 Developer's Guide for Java Clients

brokers dealing with misbehaving clients who do not acknowledge messages and
therefore tie down broker memory resources unnecessarily. Using this mode has no
effect on producers.

You use this feature by specifying NO_ACKNOWLEDGE for the acknowledgeMode parameter
to the createSession, createQueueSession, or createTopicSession method.
No-acknowledge mode must be used only with the connection methods defined in the
com.sun.messaging.jms package. Note however that the connection itself must be
created using the javax.jms package.

The following are sample variable declarations for connection, queueConnection and
topicConnection:

javax.jms.connection Connection;
javax.jms.queueConnection queueConnection
javax.jms.topicConnection topicConnection

The following are sample statements to create different kinds of no-acknowledge
sessions:

//to create a no ack session
Session noAckSession =
 ((com.sun.messaging.jms.Connection)connection)
 .createSession(com.sun.messaging.jms.Session.NO_ACKNOWLEDGE);

// to create a no ack topic session
TopicSession noAckTopicSession =
 ((com.sun.messaging.jms.TopicConnection) topicConnection)
 .createTopicSession(com.sun.messaging.jms.Session.NO_ACKNOWLEDGE);

//to create a no ack queue session
QueueSession noAckQueueSession =
 ((com.sun.messaging.jms.QueueConnection) queueConnection)
 .createQueueSession(com.sun.messaging.jms.Session.NO_ACKNOWLEDGE);

Specifying no-acknowledge mode for a session results in the following behavior:

■ The client runtime will throw a JMSException if Session.recover() is called.

■ The client runtime will ignore a call to the Message.acknowledge() method from a
consumer.

■ Messages can be lost. As opposed to dups-OK-acknowledge, which can result in
duplicate messages being sent, no-acknowledge mode bypasses checks and
balances built into the system and may result in message loss.

Schema Validation of XML Payload Messages
This Message Queue feature enables validation of the content of a text (not object)
XML message against an XML schema at the point the message is sent to the broker.

When XML validation is enabled, the Message Queue client runtime will attempt to
validate an XML message against specified XSDs before sending the message to the
broker. The location of the XML schema (XSD) is specified as a property of a Message
Queue destination. If the specified schema cannot be located or the message cannot be
validated, the message is not sent, and an exception is thrown.

If no XSD location is specified, the DTD declaration within the XML document is used
to perform DTD validation. (XSD validation, which includes data type and value
range validation, is more rigorous than DTD validation.)

Client Runtime Logging

Message Queue Clients: Design and Features 2-51

Client applications using this feature should upgrade Java SE version to JRE 1.5 or
above.

XML schema validation is enabled using the following physical destination properties:
validateXMLSchemaEnabled, XMLSchemaURIList, and reloadXMLSchemaOnFailure.
These properties are described in "Physical Destination Property Reference" in Open
Message Queue Administration Guide. The property values can be set at destination
creation or update time by using the imqcmd create dst or imqcmd update dst
command, respectively. The XML validation properties should be set when a
destination is inactive: that is, when it has no consumers and producers, and when
there are no messages in the destination.

If any of the XML validation properties are set while a destination is active (for
example, if a producer is connected to the destination), the change will not take effect
until the producer reconnects to the broker. Similarly, if an XSD is changed, as a result
of changing application requirements, all client applications producing XML messages
based on the changed XSD must reconnect to the broker.

If the reloadXMLSchemaOnFailure property is set to true and XML validation fails,
then the Message Queue client runtime will attempt to reload the XSD before
attempting again to validate a message. The client runtime will throw an exception if
the validation fails using the reloaded XSD.

Communicating with C Clients
Message Queue supports C clients as message producers and consumers.

A Java client consuming messages sent by a C client faces only one restriction: a C
client cannot be part of a distributed transaction, and therefore a Java client receiving a
message from a C client cannot participate in a distributed transaction either.

A Java client producing messages for a consuming C client must be aware of the
following differences in the Java and C interfaces because these differences will affect
the C client's ability to consume messages: C clients

■ Can only consume messages of type text and bytes

■ Cannot consume messages whose body has been compressed

■ Cannot participate in distributed transactions

■ Cannot receive SOAP messages

Client Runtime Logging
This section describes support for client runtime logging of connection and
session-related events.

JDK 1.4 (and above) includes the java.util.logging library. This library implements
a standard logger interface that can be used for application-specific logging.

The Message Queue client runtime uses the Java Logging API to implement its logging
functions. You can use all the J2SE 1.4 logging facilities to configure logging activities.
For example, an application can use the following Java logging facilities to configure
how the Message Queue client runtime outputs its logging information:

■ Logging Handlers

■ Logging Filters

■ Logging Formatters

Client Runtime Logging

2-52 Open Message Queue 4.5.2 Developer's Guide for Java Clients

■ Logging Level

For more information about the Java Logging API, please see the Java Logging
Overview at
http://download.oracle.com/javase/1.4.2/docs/guide/util/logging/
overview.html

Logging Name Spaces, Levels, and Activities
The Message Queue provider defines a set of logging name spaces associated with
logging levels and logging activities that allow Message Queue clients to log
connection and session events when a logging configuration is appropriately set.

The root logging name space for the Message Queue client runtime is defined as
javax.jms. All loggers in the Message Queue client runtime use this name as the
parent name space.

The logging levels used for the Message Queue client runtime are the same as those
defined in the java.util.logging.Level class. This class defines seven standard log
levels and two additional settings that you can use to turn logging on and off.

OFF
Turns off logging.

SEVERE
Highest priority, highest value. Application-defined.

WARNING
Application-defined.

INFO
Application-defined.

CONFIG
Application-defined

FINE
Application-defined.

FINER
Application-defined.

FINEST
Lowest priority, lowest value. Application-defined.

ALL
Enables logging of all messages.

In general, exceptions and errors that occur in the Message Queue client runtime are
logged by the logger with the javax.jms name space.

■ Exceptions thrown from the JVM and caught by the client runtime, such as
IOException, are logged by the logger with the logging name space javax.jms at
level WARNING.

■ JMS exceptions thrown from the client runtime, such as IllegalStateException,
are logged by the logger with the logging name space javax.jms at level FINER.

Client Runtime Logging

Message Queue Clients: Design and Features 2-53

■ Errors thrown from the JVM and caught by the client runtime, such as
OutOfMemoryError, are logged by the logger with the logging name space
javax.jms at level SEVERE.

The following tables list the events that can be logged and the log level that must be
set to log events for JMS connections and for sessions.

The following table describes log levels and events for connections.

For sessions, the following information is recorded in the log record.

■ Each log record for a message delivered to a consumer includes ConnectionID,
SessionID, and ConsumerID.

■ Each log record for a message sent by a producer includes ConnectionID,
SessionID, ProducerID, and destination name.

The table below describes log levels and events for sessions.

By default, the output log level is inherited from the JRE in which the application is
running. Check the JRE_DIRECTORY/lib/logging.properties file to determine what
that level is.

You can configure logging programmatically or by using configuration files, and you
can control the scope within which logging takes place. The following sections
describe these possibilities.

Table 2–7 Log Levels and Events for javax.jms.connection Name Space

Log Level Events

FINE Connection created

FINE Connection started

FINE Connection closed

FINE Connection broken

FINE Connection reconnected

FINER Miscellaneous connection activities such as setClientID

FINEST Messages, acknowledgments, Message Queue action and control messages
(like committing a transaction)

Table 2–8 Log Levels and Events for javax.jms.session Name Space

Log Level Event

FINE Session created

FINE Session closed

FINE Producer created

FINE Consumer created

FINE Destination created

FINER Miscellaneous session activities such as committing a session.

FINEST Messages produced and consumed. (Message properties and bodies are not
logged in the log records.)

Client Runtime Logging

2-54 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Using the JRE Logging Configuration File
The following example shows how you set logging name spaces and levels in the JRE_
DIRECTORY/lib/logging.properties file, which is used to set the log level for the Java
runtime environment. All applications using this JRE will have the same logging
configuration. The sample configuration below sets the logging level to INFO for the
javax.jms.connection name space and specifies that output be written to
java.util.logging.ConsoleHandler.

#logging.properties file.
"handlers" specifies a comma separated list of log Handler
classes. These handlers will be installed during VM startup.
Note that these classes must be on the system classpath.
By default we only configure a ConsoleHandler, which will only
show messages at the INFO and above levels.

 handlers= java.util.logging.ConsoleHandler

Default global logging level.
This specifies which kinds of events are logged across
all loggers. For any given facility this global level
can be overriden by a facility-specific level.
Note that the ConsoleHandler also has a separate level
setting to limit messages printed to the console.

 .level= INFO

Limit the messages that are printed on the console to INFO and above.

 java.util.logging.ConsoleHandler.level = INFO
 java.util.logging.ConsoleHandler.formatter =
 java.util.logging.SimpleFormatter

The logger with javax.jms.connection name space will write
Level.INFO messages to its output handler(s). In this configuration
the ouput handler is set to java.util.logging.ConsoleHandler.

 javax.jms.connection.level = INFO

Using a Logging Configuration File for a Specific Application
You can also define a logging configuration file from the java command line that you
use to run an application. The application will use the configuration defined in the
specified logging file. In the following example, configFile uses the same format as
defined in the JRE_DIRECTORY/lib/logging.properties file.

java -Djava.util.logging.config.file=configFile MQApplication

Setting the Logging Configuration Programmatically
The following code uses the java.util.logging API to log connection events by
changing the javax.jms.connection name space log level to FINE. You can include
such code in your application to set logging configuration programmatically.

import java.util.logging.*;
//construct a file handler and output to the mq.log file
//in the system's temp directory.

Client Runtime Logging

Message Queue Clients: Design and Features 2-55

 Handler fh = new FileHandler("%t/mq.log");
 fh.setLevel (Level.FINE);

//Get Logger for "javax.jms.connection" domain.

 Logger logger = Logger.getLogger("javax.jms.connection");
 logger.addHandler (fh);

//javax.jms.connection logger would log activities
//with level FINE and above.

 logger.setLevel (Level.FINE);

Client Runtime Logging

2-56 Open Message Queue 4.5.2 Developer's Guide for Java Clients

3

The JMS Simplified API 3-1

3The JMS Simplified API

This chapter describes the JMS Simplified API defined by the Java Message Service
(JMS) 2.0 specification and implemented in the Message Queue Java API.

The topics covered include the following:

■ Using the Simplified API

■ Developing a JMS Client using the Simplified API

■ Working With Connections

■ Working With Destinations

■ Working With Messages

Using the Simplified API
The Simplified API provides the same basic functionality as the Classic API but
requires fewer interfaces and is simpler to use.

The main interfaces are:

■ ConnectionFactory—An administered object used by a client to create a
Connection. This interface is also used by the Classic API.

■ JMSContext—An active connection to a JMS provider and a single-threaded
context used to send or receive messages.

■ JMSProducer—An object created by a JMSContext to send messages to a queue or
topic.

■ JMSConsumer—An object created by a JMSContext to receive messages sent to
a.queue or topic

In the Simplified API, the JMSContext combines the behaviors of the Classic API
Connection and Session objects. A Connection continues to represent a physical link
to a JMS server. A Session continues to represent a single-threaded context for
sending or receiving messages. Figure 3–1 shows an overview of the Simplified API.

Note: The JMS Classic API offers the same functionality and is
described in The JMS Classic API. For detailed reference information,
see the JavaDoc documentation for each individual class.

Using the Simplified API

3-2 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Figure 3–1 Overview of Simplified API

The JMS 2.0 specification is backward compatible with previous JMS specifications.
You can choose the API that best suits your needs. However, the legacy
domain-specific APIs are only provided for compatibility with legacy applications and
are not supported for new application development. Table 2–1 compares the API
classes for all supported messaging domains.

For more information, see "The Java Message Service specification, version 2.0",
available from http://jcp.org/en/jsr/detail?id=343.

Using the Autocloseable Interface
Objects from interfaces that extend the java.lang.Autocloseable and use a
try-with-resources statement do not need to explicitly call close() when these
objects are no longer required.

The following interfaces extend the java.lang.Autocloseable interface:

■ JMSContext

■ JMSConsumer

■ QueueBrowser

For example:

. . .
try (JMSContext context = connectionFactory.createContext();){
 // use context in this try block
 // it will be closed when try block completes
} catch (JMSException e){
 // exception handling
}

Working With Connections

The JMS Simplified API 3-3

. . .

Simplified Extraction of Message Bodies
You can use the getBody method to provide a convenient way to obtain the body from
a newly-received Message object. Use getBody to:

■ Return the body of a TextMessage, MapMessage, or BytesMessage as a String, Map,
or byte[] without the need to cast the Message first to the appropriate subtype.

■ Return the body of an ObjectMessage without the need to cast the Message to
ObjectMessage, extract the body as a Serializable, and cast it to the specified
type.

The isBodyAssignableTo method can be used to determine whether a subsequent call
to getBody would be able to return the body of a particular Message object as a
particular type.

Developing a JMS Client using the Simplified API
This section provides the basic steps required to create a JMS client using the
Simplified API.

■ Use JNDI to find a ConnectionFactory object.

■ Use JNDI to find one or more Destination objects.

■ Use the ConnectionFactory to create a JMSContext object.

■ Use the JMSContext to create the JMSProducer and JMSConsumer objects needed.

■ Delivery of message is started automatically.

Example 3–1 Sending a Message using the Simplified API

public void sendMessageNew(String body) throws NamingException{

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory = (ConnectionFactory)
 initialContext.lookup("jms/connectionFactory");

 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 try (JMSContext context = connectionFactory.createContext();){
 context.createProducer().send(inboundQueue,body);
 }
}
. . .

See "Java Message Service Examples" in The Java EE 7 Tutorial for additional
information.

Working With Connections
In the simplified API a connection and a session are represented by a single
JMSContext object. When a JMSContext is created the underlying session is created
automatically.

Working With Destinations

3-4 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Since a JMSContext incorporates a session, it is subject to the same threading
restrictions as a session. This means that it may only be used by one thread at a time
(single-threaded).

■ The JMSContext method createContext does not use its underlying session and is
not subject to the single-threading restriction.

■ The close method on JMSContext or JMSConsumer is not single-threaded since
closing a session or consumer from another thread is permitted.

■ By default, when createConsumer or createDurableConsumer is used to create a
JMSConsumer, the connection is automatically started. If setMessageListener is
called to configure the asynchronous delivery of messages, the JMSContext's
session immediately becomes dedicated to the thread of control that delivers
messages to the listener. The application must not subsequently call methods on
the JMSContext from another thread of control. However, this restriction does not
apply to applications which call setMessageListener to set a second or
subsequent message listener. The JMS provider is responsible for ensuring that a
second message listener may be safely configured even if the underlying
connection has been started.

See "The JMS API Programming Model" in The Java EE 7 Tutorial for additional
information.

Working With Destinations
All Message Queue messages travel from a message producer to a message consumer
by way of a destination on a message broker. Message delivery is thus a two-stage
process: the message is first delivered from the producer to the destination and later
from the destination to the consumer. Physical destinations on the broker are created
administratively by a Message Queue administrator, using the administration tools
described in "Configuring and Managing Physical Destinations" in Open Message
Queue Administration Guide. The broker provides routing and delivery services for
messages sent to such a destination.

Message Queue supports two types of destination, depending on the messaging
domain being used:

■ Queues (point-to-point domain)

■ Topics (publish/subscribe domain)

These two types of destination are represented by the Message Queue classes Queue
and Topic, respectively. These, in turn, are both subclasses of the generic class
Destination. A client program that uses the Destination superclass can thus handle
both queue and topic destinations indiscriminately.

See "The JMS API Programming Model" in The Java EE 7 Tutorial for additional
information.

Working With Messages
This section describes how to use the Message Queue Java API to compose, send,
receive, and process messages. See "The JMS API Programming Model" in The Java EE
7 Tutorial for additional information.

Message Structure
The following section provides information on message structure:

Working With Messages

The JMS Simplified API 3-5

■ A header containing identifying and routing information.

■ Optional properties that can be used to convey additional identifying information
beyond that contained in the header

■ A body containing the actual content of the message.

For more information, see Message Structure.

Message Headers
Every message must have a header containing identifying and routing information. The
header consists of a set of standard fields, which are defined in the Java Message Service
Specification and summarized in Table 3–1. Some of these are set automatically by
Message Queue in the course of producing and delivering a message, some depend on
settings specified when a message producer sends a message, and others are set by the
client on a message-by-message basis.

The JMS Message interface defines the following methods for setting the
corresponding value of each header field. Table 3–2 lists all of the available header
specification methods for the JMS Message interface.

The JMS Producer interface defines the following methods for setting the
corresponding value of each header field. Table 3–3 lists all of the available header
specification methods.

Table 3–1 Message Header Fields

Name Description

JMSMessageID Message identifier

JMSDestination Destination to which message is sent

JMSReplyTo Destination to which to reply

JMSCorrelationID Link to related message

JMSDeliveryMode Delivery mode (persistent or nonpersistent)

JMSDeliveryTime The earliest time a provider may make a message visible
on a target destination and available for delivery to
consumers.

JMSPriority Priority level

JMSTimestamp Time of transmission

JMSExpiration Expiration time

JMSType Message type

JMSRedelivered Has message been delivered before?

Table 3–2 JMS 2.0 Message Header Methods for the Message Interface

Name Description

setJMSDestination Set destination

setJMSReplyTo Set reply destination

setJMSCorrelationID Set correlation identifier from string

setJMSCorrelationIDAsBytes Set correlation identifier from byte array

setJMSType Set message type

Working With Messages

3-6 Open Message Queue 4.5.2 Developer's Guide for Java Clients

See the "Java Message Service specification, version 2.0", available from
http://jcp.org/en/jsr/detail?id=343 for a more detailed discussion of all message
header fields.

Changes for Standard JMS 2.0 Message Properties
The JMS specification defines certain standard properties, listed in Table 3–4. By
convention, the names of all such standard properties begin with the letters JMSX;
names of this form are reserved and must not be used by a client application for its
own custom message properties. These properties are not enabled by default, an
application must set the name/value pairs it requires on the appropriate connection
factory.

The JMS 2.0 specification requires that JMS producers set the JMSXDeliveryCount. This
property was not supported prior to MQ 5.0.

Table 3–3 JMS 2.0 Message Header Methods for the Producer Interface

Name Description

setJMSMessageID Set message identifier

setJMSDeliveryMode Set delivery mode

setJMSPriority Set priority level

setJMSTimestamp Set time stamp

setJMSExpiration Set expiration time

setJMSRedelivered Set redelivered flag

setJMSDeliveryTime Set the delivery time for a message

Table 3–4 Standard JMS 2.0 Message Properties

Name Type Required? Set by Description

JMSXUserID String Optional Provider on
Send

Identity of user sending
message

JMSXAppID String Optional Provider on
Send

Identity of application
sending message

JMSXDeliveryCount int Required Provider on
Receive

Number of delivery
attempts

JMSXGroupID String Optional Client Identity of message
group to which this
message belongs

JMSXGroupSeq int Optional Client Sequence number within
message group

JMSXProducerTXID String Optional Provider on
Send

Identifier of transaction
within which message
was produced

JMSXConsumerTXID String Optional Provider on
Receive

Identifier of transaction
within which message
was consumed

JMSXRcvTimestamp long Optional Provider on
Receive

Time message delivered
to consumer

JMSXState int Optional Provider Message state (waiting,
ready, expired, or
retained)

Working With Messages

The JMS Simplified API 3-7

Sending Messages
In order to send messages to a message broker, you must create a JMSProducer object
using the createProducer() method on JMSContext. For example:

try (JMSContext context = connectionFactory.createContext();){
context.createProducer().send(inboundQueue,body)
}

The JMS 2.0 specification allows a client to specify a delivery delay value, in
milliseconds, for each message it sends. This value is used to determine a messages’s
delivery time which is calculated by adding the delivery delay value specified on the
send to the time the message was sent. See Message Headers.

Table 3–5 shows the methods defined in the JMSProducer interface.

Simplified API methods for Asynchronous Sends
In the Simplified API, a JMS provider sends a message asynchronously by calling
setAsync(CompletionListener completionListener) on the JMSProducer prior to
calling one of the following send methods:

■ send(Destination destination, Message message)

■ send(Destination destination, String body)

■ send(Destination destination, Map<String,Object> body)

■ send(Destination destination, byte[] body)

■ send(Destination destination, Serializable body)

■ send(Destination destination, String body)

Table 3–5 JMSProducer Methods

Name Description

getDestination Get default destination

setDeliveryMode Set default delivery mode

getDeliveryMode Get default delivery mode

getDeliveryDelay Get delivery delay value in milliseconds

setDeliveryDelay Set delivery delay value in milliseconds

setPriority Set default priority level

getPriority Get default priority level

setTimeToLive Set default message lifetime

getTimeToLive Get default message lifetime

setDisableMessageID Set message identifier disable flag

getDisableMessageID Get message identifier disable flag

setDisableMessageTimestamp Set time stamp disable flag

getDisableMessageTimestamp Get time stamp disable flag

send Send message

close Close message producer

Working With Messages

3-8 Open Message Queue 4.5.2 Developer's Guide for Java Clients

For more information on how to convert common synchronous send design patterns
to use asynchronous sends, see Asynchronous send.

Receiving Messages
This section provides information on new behaviors and two new subscription types
for clients to use when consuming messages.

Using Shared Non-durable Subscriptions
A shared non-durable subscription is used by a client that needs to be able to share the
work of receiving messages from a non-durable topic subscription across multiple
consumers. Each message from the subscription is delivered to only one of the
consumers that may exist on that subscription.

Shared non-durable subscriptions are created and a consumer crated on the
subscription using one of the following:

■ Classic API: One of the createSharedConsumer methods on Session which return
a MessageConsumer object.

■ Simplified API: One of the createSharedConsumer methods on JMSContext which
returns a JMSContext object.

A shared non-durable subscription exists only as long as there is an active consumer
on the subscription. It is identified by name and an optional client identifier
(clientId). If the client identifier was set when the subscription was created, any
client that creates a consumer on that shared non-durable subscription must use the
same client identifier. This type of subscription is not persisted and is deleted, along
with any undelivered messages, when the last consumer on the subscription is
deleted. The noLocal parameter is not supported for shared non-durable
subscriptions.

Using Shared Durable Subscriptions
A shared durable subscription is used by an application that needs to share the work
of receiving all the messaged published on a topic, including messages published
when no consumers are associated with the subscription. Each message from the
subscription is delivered to only one of the consumers that may exist on that
subscription. For this subscription type, the JMS provider ensures all the messages
from the topic’s publishers:

■ Are Delivered and acknowledged or

■ Have expired

Shared durable subscriptions are created and a consumer crated on the subscription
using one of the following:

■ Classic API: One of the createSharedDurableConsumer methods on Session
which return a MessageConsumer object.

■ Simplified API: One of the createSharedDurableConsumer methods on
JMSContext which returns a JMSContext object.

Note: These send methods are the same as methods that are used for
a synchronous send. However, calling setAsync beforehand changes
their behavior.

Working With Messages

The JMS Simplified API 3-9

A shared durable e subscription persists and accumulates messages until it is explicitly
deleted using the unsubscribe method on either Session or JMSContext. You cannot
delete a durable subscription with an active consumer or while a message is received
from the subscription is part of a transaction. It is identified by name and an optional
client identifier (clientId). If the client identifier was set when the subscription was
created, any client that creates a consumer on that shared non-durable subscription
must use the same client identifier. The noLocal parameter is not supported for shared
durable subscriptions.

Starting Message Delivery
An application using the Classic API to consume messages needs to call the
connection's start method to start delivery of incoming messages. It may temporarily
suspend delivery by calling stop, after which a call to start will restart delivery.

The Simplified API provides corresponding start and stop methods on JMSContext.
The start method is be called automatically when createConsumer or
createDurableConsumer are called on the JMSContext object. There is no need for the
application to call start when the consumer is first established. An application may
temporarily suspend delivery by calling stop, after which a call to start will restart
delivery.

In some situations, an application using the Simplified API may need a connection to
remain in stopped mode while setup is being completed and not commence message
delivery until the start method is explicitly called. You can configure this behavior by
calling setAutoStart(false) on the JMSContext prior to calling createConsumer or
createDurableConsumer.

Processing Messages
Processing a message after you have received it may entail examining its header fields,
properties, and body.

Retrieving Message Header Fields
The standard JMS message header fields are described in Table 3–4. Table 3–6 shows
the methods provided by the JMS Message interface for retrieving the values of these
fields: for instance, you can obtain a message's reply destination with the statement:

Destination replyDest = inMsg.getJMSReplyTo();

Table 3–6 Message Header Retrieval Methods

Name Description

getJMSMessageID Get message identifier

getJMSDestination Get destination

getJMSReplyTo Get reply destination

getJMSCorrelationID Get correlation identifier as string

getJMSCorrelationIDAsBytes Get correlation identifier as byte array

getJMSDeliveryMode Get delivery mode

getJMSDeliveryTime Get the delivery time

getJMSPriority Get priority level

getJMSTimestamp Get time stamp

Working With Messages

3-10 Open Message Queue 4.5.2 Developer's Guide for Java Clients

getJMSExpiration Get expiration time

getJMSType Get message type

getJMSRedelivered Get redelivered flag

Table 3–6 (Cont.) Message Header Retrieval Methods

Name Description

4

The JMS Classic API 4-1

4The JMS Classic API

This chapter describes the JMS classic API. The JMS simplified API offers the same
functionality using a simpler implementation and is described in The JMS Simplified
API.

The topics covered include the following:

■ Messaging Domains

■ Working With Connections

■ Working With Destinations

■ Working With Sessions

■ Working With Messages

■ Using the Autocloseable Interface

This chapter does not provide exhaustive information about each class and method.
For detailed reference information, see the JavaDoc documentation for each individual
class. For information on the practical design of Message Queue Java programs, see
Message Queue Clients: Design and Features.

Messaging Domains
The Java Message Service (JMS) specification, which Message Queue implements,
supports two commonly used models of interaction between message clients and
message brokers, sometimes known as messaging domains:

■ In the point-to-point (or PTP) messaging model, each message is delivered from a
message producer to a single message consumer. The producer delivers the
message to a queue, from which it is later delivered to one of the consumers
registered for the queue. Any number of producers and consumers can interact
with the same queue, but each message is guaranteed to be delivered to (and be
successfully consumed by) exactly one consumer and no more. If no consumers
are registered for a queue, it holds the messages it receives and eventually delivers
them when a consumer registers.

■ In the publish/subscribe (or pub/sub) model, a single message can be delivered from
a producer to any number of consumers. The producer publishes the message to a
topic, from which it is then delivered to all active consumers that have subscribed to
the topic. Any number of producers can publish messages to a given topic, and
each message can be delivered to any number of subscribed consumers. The
model also supports the notion of durable subscriptions, in which a consumer
registered with a topic need not be active at the time a message is published; when
the consumer subsequently becomes active, it will receive the message. If no active

Working With Connections

4-2 Open Message Queue 4.5.2 Developer's Guide for Java Clients

consumers are registered for a topic, the topic does not hold the messages it
receives unless it has inactive consumers with durable subscriptions.

JMS applications are free to use either of these messaging models, or even to mix them
both within the same application. Historically, the JMS API provided a separate set of
domain-specific object classes for each model. While these domain-specific interfaces
continue to be supported for legacy purposes, client programmers are now
encouraged to use the newer unified domain interface, which supports both models
indiscriminately. For this reason, the discussions and code examples in this manual
focus exclusively on the unified interfaces wherever possible. Table 2–1 shows the API
classes for all domains.

Working With Connections
All messaging occurs within the context of a connection. Connections are created using
a connection factory encapsulating all of the needed configuration properties for
connecting to a particular JMS provider. A connection's configuration properties are
completely determined by the connection factory, and cannot be changed once the
connection has been created. Thus the only way to control the properties of a
connection is by setting those of the connection factory you use to create it.

Obtaining a Connection Factory
Typically, a connection factory is created for you by a Message Queue administrator
and preconfigured, using the administration tools described in "Administrative Tasks
and Tools" in Open Message Queue Administration Guide with whatever property
settings are appropriate for connecting to particular JMS provider. The factory is then
placed in a publicly available administered object store, where you can access it by name
using the Java Naming and Directory Interface (JNDI) API. This arrangement has
several benefits:

■ It allows the administrator to control the properties of client connections to the
provider, ensuring that they are properly configured.

■ It enables the administrator to tune performance and improve throughput by
adjusting configuration settings even after an application has been deployed.

■ By relying on the predefined connection factory to handle the configuration
details, it helps keep client code provider-independent and thus more easily
portable from one JMS provider to another.

Sometimes, however, it may be more convenient to dispense with JNDI lookup and
simply create your own connection factory by direct instantiation. Although
hard-coding configuration values for a particular JMS provider directly into your
application code sacrifices flexibility and provider-independence, this approach might
make sense in some circumstances: for example, in the early stages of application
development and debugging, or in applications where reconfigurability and
portability to other providers are not important concerns.

The following sections describe these two approaches to obtaining a connection
factory: by JNDI lookup or direct instantiation.

Looking Up a Connection Factory With JNDI
Example 4–1 shows how to look up a connection factory object in the JNDI object
store. The code example is explained in the procedure that follows.

Working With Connections

The JMS Classic API 4-3

Example 4–1 Looking Up a Connection Factory

// Create the environment for constructing the initial JNDI
// naming context.

 Hashtable env = new Hashtable();

// Store the environment attributes that tell JNDI which initial context
// factory to use and where to find the provider.//

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 env.put(Context.PROVIDER_URL, "file:///C:/imq_admin_objects");

// Create the initial context.

 Context ctx = new InitialContext(env);

// Look up the connection factory object in the JNDI object store.

 String CF_LOOKUP_NAME = "MyConnectionFactory";
 ConnectionFactory myFactory = (ConnectionFactory) ctx.lookup
 (CF_LOOKUP_NAME);

To Look Up a Connection Factory With JNDI Follow this procedure:

1. Create the environment for constructing the initial JNDI naming context.

How you create the initial context depends on whether you are using a file-system
object store or a Lightweight Directory Access Protocol (LDAP) server for your
Message Queue administered objects. The code shown here assumes a file-system
store; for information about the corresponding LDAP object store attributes, see
"Using an LDAP User Repository" in Open Message Queue Administration Guide.

The constructor for the initial context accepts an environment parameter, a hash
table whose entries specify the attributes for creating the context:

Hashtable env = new Hashtable();

You can also set an environment by specifying system properties on the command
line, rather than programmatically. For instructions, see the README file in the JMS
example applications directory.

2. Store the environment attributes that tell JNDI which initial context factory to use
and where to find the JMS provider.

The names of these attributes are defined as static constants in class Context:

env.put(Context.INITIAL_CONTEXT_FACTORY,

Note: If a Message Queue client is a Java EE component, JNDI
resources are provided by the Java EE container. In such cases,
JNDI lookup code may differ from that shown here; see your Java
EE provider documentation for details.

Working With Connections

4-4 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 "com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:///C:/imq_admin_objects");

3. Create the initial context.

Context ctx = new InitialContext(env);

If you use system properties to set the environment, omit the environment
parameter when creating the context:

Context ctx = new InitialContext();

4. Look up the connection factory object in the administered object store and typecast
it to the appropriate class:

String CF_LOOKUP_NAME = "MyConnectionFactory";
ConnectionFactory
 myFactory = (ConnectionFactory) ctx.lookup(CF_LOOKUP_NAME);

The lookup name you use, CF_LOOKUP_NAME, must match the name used when the
object was stored.

You can now proceed to use the connection factory to create connections to the
message broker, as described under Using Connections.

Overriding Configuration Settings
It is recommended that you use a connection factory just as you receive it from a JNDI
lookup, with the property settings originally configured by your Message Queue
administrator. However, there may be times when you need to override the
preconfigured properties with different values of your own. You can do this from
within your application code by calling the connection factory's setProperty method.
This method (inherited from the superclass AdministeredObject) takes two string
arguments giving the name and value of the property to be set. The property names
for the first argument are defined as static constants in the Message Queue class
ConnectionConfiguration: for instance, the statement

myFactory.setProperty(ConnectionConfiguration.imqDefaultPassword,
 "mellon");

sets the default password for establishing broker connections. See "Connection Factory
Attributes" in Open Message Queue Administration Guide for complete information on
the available connection factory configuration attributes.

It is also possible to override connection factory properties from the command line, by
using the -D option to set their values when starting your client application. For
example, the command line

java -DimqDefaultPassword=mellon MyMQClient

starts an application named MyMQClient with the same default password as in the
preceding example. Setting a property value this way overrides any other value
specified for it, whether preconfigured in the JNDI object store or set
programmatically with the setProperty method.

Note: The directory represented by C:/imq_admin_objects must
already exist; if necessary, you must create the directory before
referencing it in your code.

Working With Connections

The JMS Classic API 4-5

Instantiating a Connection Factory
Example 4–2 shows how to create a connection factory object by direct instantiation
and configure its properties.

Example 4–2 Instantiating a Connection Factory

// Instantiate the connection factory object.

 com.sun.messaging.ConnectionFactory
 myFactory = new com.sun.messaging.ConnectionFactory();

// Set the connection factory's configuration properties.

 myFactory.setProperty(ConnectionConfiguration.imqAddressList,
 "localhost:7676,broker2:5000,broker3:9999");

The following procedure explains each program statement in the previous code
sample.

To Instantiate and Configure a Connection Factory Follow this procedure:

1. Instantiate the connection factory object.

The name ConnectionFactory is defined both as a JMS interface (in package
javax.jms) and as a Message Queue class (in com.sun.messaging) that
implements that interface. Since only a class can be instantiated, you must use the
constructor defined in com.sun.messaging to create your connection factory
object. Note, however, that you cannot import the name from both packages
without causing a compilation error. Hence, if you have imported the entire
package javax.jms.*, you must qualify the constructor with the full package
name when instantiating the object:

com.sun.messaging.ConnectionFactory
 myFactory = new com.sun.messaging.ConnectionFactory();

Notice that the type declaration for the variable myFactory, to which the
instantiated connection factory is assigned, is also qualified with the full package
name. This is because the setProperty method, used in Instantiating a Connection
Factory, belongs to the ConnectionFactory class defined in the package
com.sun.messaging, rather than to the ConnectionFactory interface defined in
javax.jms . Thus in order for the compiler to recognize this method, myFactory
must be typed explicitly as com.sun.messaging.ConnectionFactory rather than
simply ConnectionFactory (which would resolve to
javax.jms.ConnectionFactory after importing javax.jms.*).

Note: A Message Queue administrator can prevent a connection
factory's properties from being overridden by specifying that the
object be read-only when placing it in the object store. The
properties of such a factory cannot be changed in any way, whether
with the -D option from the command line or using the
setProperty method from within your client application's code.
Any attempt to override the factory's property values will simply
be ignored.

Working With Connections

4-6 Open Message Queue 4.5.2 Developer's Guide for Java Clients

2. Set the connection factory's configuration properties.

The most important configuration property is imqAddressList, which specifies the
host names and port numbers of the message brokers to which the factory creates
connections. By default, the factory returned by the ConnectionFactory
constructor in Instantiating a Connection Factory is configured to create
connections to a broker on host localhost at port number 7676. If necessary, you
can use the setProperty method, described in the preceding section, to change
that setting:

myFactory.setProperty(ConnectionConfiguration.imqAddressList,
 "localhost:7676,broker2:5000,broker3:9999");

When specifying the host name portion of a broker, you can use a literal IPv4 or
IPv6 address instead of a host name. If you use a literal IPv6 address, its format
must conform to RFC2732 (http://www.ietf.org/rfc/rfc2732.txt),
Format for Literal IPv6 Addresses in URL's.

Of course, you can also set any other configuration properties your application
may require. See "Connection Factory Attributes" in Open Message Queue
Administration Guide for a list of the available connection factory attributes.

You can now proceed to use the connection factory to create connections to the
message service, as described in the next section.

Using Connections
Once you have obtained a connection factory, you can use it to create a connection to
the message service. The factory's createConnection method takes a user name and
password as arguments:

Connection
 myConnection = myFactory.createConnection("mithrandir", "mellon");

Before granting the connection, Message Queue authenticates the user name and
password by looking them up in its user repository. As a convenience for developers
who do not wish to go to the trouble of populating a user repository during
application development and testing, there is also a parameterless form of the
createConnection method:

Connection myConnection = myFactory.createConnection();

This creates a connection configured for the default user identity, with both user name
and password set to guest.

This unified-domain createConnection method is part of the generic JMS
ConnectionFactory interface, defined in package javax.jms; the Message Queue
version in com.sun.messaging adds corresponding methods createQueueConnection
and createTopicConnection for use specifically with the point-to-point and
publish/subscribe domains.

The following table shows the methods defined in the Connection interface.

Table 4–1 Connection Methods

Name Description

createSession Create session

setClientID Set client identifier

getClientID Get client identifier

Working With Connections

The JMS Classic API 4-7

The main purpose of a connection is to create sessions for exchanging messages with
the message service:

myConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);

The first argument to createSession is a boolean indicating whether the session is
transacted; the second specifies its acknowledgment mode. Possible values for this
second argument are AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and DUPS_OK_
ACKNOWLEDGE, all defined as static constants in the standard JMS Session interface,
javax.jms.Session ; the extended Message Queue version of the interface,
com.sun.messaging.jms.Session , adds another such constant, NO_ACKNOWLEDGE. See
Acknowledgment Modes and Transacted Sessions for further discussion.

If your client application will be using the publish/subscribe domain to create durable
topic subscriptions, it must have a client identifier to identify itself to the message
service. In general, the most convenient arrangement is to configure the client runtime
to provide a unique client identifier automatically for each client. However, the
Connection interface also provides a method, setClientID, for setting a client
identifier explicitly, and a corresponding getClientID method for retrieving its value.
See Assigning Client Identifiers in this guide and "Client Identifier" in Open Message
Queue Administration Guide for more information.

You should also use the setExceptionListener method to register an exception listener
for the connection. This is an object implementing the JMS ExceptionListener
interface, which consists of the single method onException:

void onException (JMSException exception)

In the event of a problem with the connection, the message broker will call this
method, passing an exception object identifying the nature of the problem.

A connection's getMetaData method returns a ConnectionMetaData object, which in
turn provides methods for obtaining various items of information about the
connection, such as its JMS version and the name and version of the JMS provider.

The createConnectionConsumer and createDurableConnectionConsumer methods (as
well as the session methods setMessageListener and getMessageListener, listed in
Table 4–2) are used for concurrent message consumption; see the Java Message Service
Specification for more information.

In order to receive incoming messages, you must 7start the connection by calling its
start method:

setEeventListener Set event listener for connection events

setExceptionListener Set exception listener

getExceptionListener Get exception listener

getMetaData Get metadata for connection

createConnectionConsumer Create connection consumer

createDurableConnectionConsumer Create durable connection consumer

start Start incoming message delivery

stop Stop incoming message delivery

close Close connection

Table 4–1 (Cont.) Connection Methods

Name Description

Working With Connections

4-8 Open Message Queue 4.5.2 Developer's Guide for Java Clients

myConnection.start();

It is important not to do this until after you have created any message consumers you
will be using to receive messages on the connection. Starting the connection before
creating the consumers risks missing some incoming messages before the consumers
are ready to receive them. It is not necessary to start the connection in order to send
outgoing messages.

If for any reason you need to suspend the flow of incoming messages, you can do so
by calling the connection's stop method:

myConnection.stop();

To resume delivery of incoming messages, call the start method again.

Finally, when you are through with a connection, you should close it to release any
resources associated with it:

myConnection.close();

This automatically closes all sessions, message producers, and message consumers
associated with the connection and deletes any temporary destinations. All pending
message receives are terminated and any transactions in progress are rolled back.
Closing a connection does not force an acknowledgment of client-acknowledged
sessions.

Creating Secure Connections (SSL)
A connection service that is based on the Transport Layer Security (TLS/SSL) standard
is used to authenticate and encrypt messages sent between the client and the broker.
This section describes what the client needs to do to use TLS/SSL connections. A user
can also establish a secure connection by way of an HTTPS tunnel servlet. For
information on setting up secure connections over HTTP, see "HTTP/HTTPS Support"
in Open Message Queue Administration Guide.

Some of the work needed to set up a TLS/SSL connection is done by an administrator.
This section summarizes these steps. For complete information about the
administrative work required, please see "Message Encryption" in Open Message Queue
Administration Guide.

To set up a secure connection service, you must do the following.

1. Generate a self-signed or signed certificate for the broker (administrator).

2. Enable the ssljms connection service in the broker (administrator).

3. Start the broker (administrator).

4. Configure and run the client as explained below.

To configure a client to use a TLS/SSL connection you must do the following.

1. If your client is not using J2SDK 1.4 (which has JSSE and JNDI support built in),
make sure the client has the following files in its class path:jsse.jar, jnet.jar,
jcert, jar, jndi.jar.

2. Make sure the client has the following Message Queue files in its class path:
imq.jar, jms.jar.

3. If the client is not willing to trust the broker's self-signed certificate, set the
imqSSLIsHostTrusted attribute to false for the connection factory from which you
get the TLS/SSL connection.

Working With Destinations

The JMS Classic API 4-9

4. Connect to the broker's ssljms service. There are two ways to do this. The first is
to specify the service name ssljms in the address for the broker when you provide
a value for the imqAddressList attribute of the connection factory from which you
obtain the connection. When you run the client, it will be connected to the broker
by a TLS/SSLconnection. The second is to specify the following directive when
you run the command that starts the client.

java -DimqConnectionType=TLS clientAppName

Working With Destinations
All Message Queue messages travel from a message producer to a message consumer
by way of a destination on a message broker. Message delivery is thus a two-stage
process: the message is first delivered from the producer to the destination and later
from the destination to the consumer. Physical destinations on the broker are created
administratively by a Message Queue administrator, using the administration tools
described in "Configuring and Managing Physical Destinations" in Open Message
Queue Administration Guide. The broker provides routing and delivery services for
messages sent to such a destination.

As described earlier under Messaging Domains, Message Queue supports two types of
destination, depending on the messaging domain being used:

■ Queues (point-to-point domain)

■ Topics (publish/subscribe domain)

These two types of destination are represented by the Message Queue classes Queue
and Topic, respectively. These, in turn, are both subclasses of the generic class
Destination. A client program that uses the Destination superclass can thus handle
both queue and topic destinations indiscriminately.

Looking Up a Destination With JNDI
Because JMS providers differ in their destination addressing conventions, Message
Queue does not define a standard address syntax for obtaining access to a destination.
Rather, the destination is typically placed in a publicly available administered object
store by a Message Queue administrator and accessed by the client using a JNDI
lookup in a manner similar to that described earlier for connection factories (see
Looking Up a Connection Factory With JNDI).

Example 4–3 shows how to look up a destination object in the JNDI object store.

Example 4–3 Looking Up a Destination

// Create the environment for constructing the initial JNDI naming context.

 Hashtable env = new Hashtable();

// Store the environment attributes that tell JNDI which initial
// context factory to use and where to find the provider.

Note: If a Message Queue client is a Java EE component, JNDI
resources are provided by the Java EE container. In such cases,
JNDI lookup code may differ from that shown here; see your Java
EE provider documentation for details.

Working With Destinations

4-10 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 env.put(Context.PROVIDER_URL, "file:///C:/imq_admin_objects");

// Create the initial context.

 Context ctx = new InitialContext(env);

// Look up the destination object in the JNDI object store.

 String DEST_LOOKUP_NAME = "MyDest";
 Destination MyDest = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

The following section explains the program statements in Example 4–3.

To Look Up a Destination With JNDI
1. Create the environment for constructing the initial JNDI naming context.

How you create the initial context depends on whether you are using a file-system
object store or a Lightweight Directory Access Protocol (LDAP) server for your
Message Queue administered objects. The code shown here assumes a file-system
store; for information about the corresponding LDAP object store attributes, see
"LDAP Server Object Stores" in Open Message Queue Administration Guide.

The constructor for the initial context accepts an environment parameter, a hash
table whose entries specify the attributes for creating the context:

Hashtable env = new Hashtable();

You can also set an environment by specifying system properties on the command
line, rather than programmatically. For instructions, see the README file in the JMS
example applications directory.

2. Store the environment attributes that tell JNDI which initial context factory to use
and where to find the JMS provider.

The names of these attributes are defined as static constants in class Context:

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:///C:/imq_admin_objects");

3. Create the initial context.

Context ctx = new InitialContext(env);

If you use system properties to set the environment, omit the environment
parameter when creating the context:

Note: The directory represented by C:/imq_admin_objects must
already exist; if necessary, you must create the directory before
referencing it in your code.

Working With Destinations

The JMS Classic API 4-11

Context ctx = new InitialContext();

4. Look up the destination object in the administered object store and typecast it to
the appropriate class:

String DEST_LOOKUP_NAME = "MyDest";
Destination MyDest = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

The lookup name you use, DEST_LOOKUP_NAME, must match the name used when
the object was stored. Note that the actual destination object returned from the
object store will always be either a (point-to-point) queue or a (publish/subscribe)
topic, but that either can be assigned to a variable of the generic unified-domain
class Destination.

You can now proceed to send and receive messages using the destination, as
described under Sending Messages and Receiving Messages.

Instantiating a Destination
As with connection factories, you may sometimes find it more convenient to dispense
with JNDI lookup and simply create your own queue or topic destination objects by
direct instantiation. Although a variable of type Destination can accept objects of
either class, you cannot directly instantiate a Destination object; the object must
always belong to one of the specific classes Queue or Topic. The constructors for both
of these classes accept a string argument specifying the name of the physical
destination to which the object corresponds:

Destination myDest = new com.sun.messaging.Queue("myDest");

Note, however, that this only creates a Java object representing the destination; it does
not actually create a physical destination on the message broker. The physical
destination itself must still be created by a Message Queue administrator, with the
same name you pass to the constructor when instantiating the object.

Unlike connection factories, destinations have a much more limited set of
configuration properties. In fact, only two such properties are defined in the Message
Queue class DestinationConfiguration: the name of the physical destination itself
(imqDestinationName) and an optional descriptive string
(imqDestinationDescription). Since the latter property is rarely used and the physical
destination name can be supplied directly as an argument to the Queue or Topic
constructor as shown above, there normally is no need (as there often is with a

Note: For topic destinations, a symbolic lookup name that
includes wildcard characters can be used as the lookup string.
Wildcard characters can only be used to match topic names and are
not supported in JNDI names. See "Supported Topic Destination
Names" in Open Message Queue Administration Guide.

Note: Destination names beginning with the letters mq are
reserved and should not be used by client programs.

Also, for topic destinations, a symbolic lookup name that includes
wildcard characters can be used as the lookup string. See
"Supported Topic Destination Names" in Open Message Queue
Administration Guide.

Working With Sessions

4-12 Open Message Queue 4.5.2 Developer's Guide for Java Clients

connection factory) to specify additional properties with the object's setProperty
method. Hence the variable to which you assign the destination object (myDest in the
example above) need not be typed with the Message Queue class
com.sun.messaging.Destination; the standard JMS interface javax.jms.Destination
(which the Message Queue class implements) is sufficient. If you have imported the
full JMS package javax.jms.*, you can simply declare the variable with the
unqualified name Destination, as above, rather than with something like

com.sun.messaging.Destination
 myDest = new com.sun.messaging.Queue("myDest");

as shown earlier for connection factories.

Temporary Destinations
A temporary destination is one that exists only for the duration of the connection that
created it. You may sometimes find it convenient to create such a destination to use,
for example, as a reply destination for messages you send. Temporary destinations are
created with the session method createTemporaryQueue or createTemporaryTopic
(see Working With Sessions below): for example,

TemporaryQueue tempQueue = mySession.createTemporaryQueue();

Although the temporary destination is created by a particular session, its scope is
actually the entire connection to which that session belongs. Any of the connection's
sessions (not just the one that created the temporary destination) can create a message
consumer for the destination and receive messages from it. The temporary destination
is automatically deleted when its connection is closed, or you can delete it explicitly by
calling its delete method:

tempQueue.delete();

Working With Sessions
A session is a single-threaded context for producing and consuming messages. You can
create multiple message producers and consumers for a single session, but you are
restricted to using them serially, in a single logical thread of control.

Table 4–2 shows the methods defined in the Session interface; they are discussed in
the relevant sections below.

Table 4–2 Session Methods

Name Description

createProducer Create message producer

createConsumer Create message consumer

createDurableSubscriber Create durable subscriber for topic

unsubscribe Delete durable subscription to topic

createMessage Create null message

createTextMessage Create text message

createStreamMessage Create stream message

createMapMessage Create map message

createObjectMessage Create object message

Working With Sessions

The JMS Classic API 4-13

Every session exists within the context of a particular connection. The number of
sessions you can create for a single connection is limited only by system resources. As
described earlier (see Using Connections), you use the connection's createSession
method to create a session:

Session
 mySession = myConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);

The first (boolean) argument specifies whether the session is transacted; see Transacted
Sessions for further discussion. The second argument is an integer constant
representing the session's acknowledgment mode, as described in the next section.

Acknowledgment Modes
A session's acknowledgment mode determines the way your application handles the
exchange of acknowledgment information when receiving messages from a broker.
The JMS specification defines three possible acknowledgment modes:

■ In auto-acknowledge mode, the Message Queue client runtime immediately sends a
client acknowledgment for each message it delivers to the message consumer; it then
blocks waiting for a return broker acknowledgment confirming that the broker has
received the client acknowledgment. This acknowledgment "handshake" between
client and broker is handled automatically by the client runtime, with no need for
explicit action on your part.

■ In client-acknowledge mode, your client application must explicitly acknowledge the
receipt of all messages. This allows you to defer acknowledgment until after you
have finished processing the message, ensuring that the broker will not delete it
from persistent storage before processing is complete. You can either acknowledge
each message individually or batch multiple messages and acknowledge them all
at once; the client acknowledgment you send to the broker applies to all messages
received since the previous acknowledgment. In either case, as in
auto-acknowledge mode, the session thread blocks after sending the client

createBytesMessage Create bytes message

createQueue Create queue destination

createTopic Create topic destination

createTemporaryQueue Create temporary queue

createTemporaryTopic Create temporary topic

createBrowser Create message browser

setMessageListener Set distinguished message listener

getMessageListener Get distinguished message listener

getAcknowledgeMode Get session's acknowledgment mode

getTransacted Is session transacted?

commit Commit transaction

rollback Roll back transaction

recover Recover unacknowledged messages

close Close session

Table 4–2 (Cont.) Session Methods

Name Description

Working With Sessions

4-14 Open Message Queue 4.5.2 Developer's Guide for Java Clients

acknowledgment, waiting for a broker acknowledgment in return to confirm that
your client acknowledgment has been received.

■ In dups-OK-acknowledge mode, the session automatically sends a client
acknowledgment each time it has received a fixed number of messages, or when a
fixed time interval has elapsed since the last acknowledgment was sent. (This
fixed batch size and timeout interval are currently 10 messages and 7 seconds,
respectively, and are not configurable by the client.) Unlike the first two modes
described above, the broker does not acknowledge receipt of the client
acknowledgment, and the session thread does not block awaiting such return
acknowledgment from the broker. This means that you have no way to confirm
that your acknowledgment has been received; if it is lost in transmission, the
broker may redeliver the same message more than once. However, because client
acknowledgments are batched and the session thread does not block, applications
that can tolerate multiple delivery of the same message can achieve higher
throughput in this mode than in auto-acknowledge or client-acknowledge mode.

Message Queue extends the JMS specification by adding a fourth
acknowledgment mode:

■ In no-acknowledge mode, your client application does not acknowledge receipt of
messages, nor does the broker expect any such acknowledgment. There is thus no
guarantee whatsoever that any message sent by the broker has been successfully
received. This mode sacrifices all reliability for the sake of maximum throughput
of message traffic.

The standard JMS Session interface, defined in package javax.jms, defines static
constants for the first three acknowledgment modes (AUTO_ACKNOWLEDGE, CLIENT_
ACKNOWLEDGE, and DUPS_OK_ACKNOWLEDGE), to be used as arguments to the connection's
createSession method. The constant representing the fourth mode (NO_ACKNOWLEDGE)
is defined in the extended Message Queue version of the interface, in package
com.sun.messaging.jms. The session method getAcknowledgeMode returns one of
these constants:

int ackMode = mySession.getAcknowledgeMode();
switch (ackMode)
 {
 case Session.AUTO_ACKNOWLEDGE:
 /* Code here to handle auto-acknowledge mode */
 break;
 case Session.CLIENT_ACKNOWLEDGE:
 /* Code here to handle client-acknowledge mode */
 break;
 case Session.DUPS_OK_ACKNOWLEDGE:
 /* Code here to handle dups-OK-acknowledge mode */
 break;
 case com.sun.messaging.jms.Session.NO_ACKNOWLEDGE:
 /* Code here to handle no-acknowledge mode */
 break;
 }

Note: All of the acknowledgment modes discussed above apply to
message consumption. For message production, the broker's
acknowledgment behavior depends on the message's delivery
mode (persistent or nonpersistent; see Message Header). The
broker acknowledges the receipt of persistent messages, but not of
nonpersistent ones; this behavior is not configurable by the client.

Working With Sessions

The JMS Classic API 4-15

In a transacted session (see next section), the acknowledgment mode is ignored and all
acknowledgment processing is handled for you automatically by the Message Queue
client runtime. In this case, the getAcknowledgeMode method returns the special
constant Session.SESSION_TRANSACTED.

Transacted Sessions
Transactions allow you to group together an entire series of incoming and outgoing
messages and treat them as an atomic unit. The message broker tracks the state of the
transaction's individual messages, but does not complete their delivery until you
commit the transaction. In the event of failure, you can roll back the transaction,
canceling all of its messages and restarting the entire series from the beginning.

Transactions always take place within the context of a single session. To use them, you
must create a transacted session by passing true as the first argument to a connection's
createSession method:

Session
 mySession = myConnection.createSession(true, Session.SESSION_TRANSACTED);

The session's getTransacted method tests whether it is a transacted session:

if (mySession.getTransacted())
 { /* Code here to handle transacted session */
 }
else
 { /* Code here to handle non-transacted session */
 }

A transacted session always has exactly one open transaction, encompassing all
messages sent or received since the session was created or the previous transaction
was completed. Committing or rolling back a transaction ends that transaction and
automatically begins another.

When all messages in a transaction have been successfully delivered, you call the
session's commit method to commit the transaction:

mySession.commit();

All of the session's incoming messages are acknowledged and all of its outgoing
messages are sent. The transaction is then considered complete and a new one is
started.

When a send or receive operation fails, an exception is thrown. While it is possible to
handle the exception by simply ignoring it or by retrying the operation, it is
recommended that you roll back the transaction, using the session's rollback method:

mySession.rollback();

All of the session's incoming messages are recovered and redelivered, and its outgoing
messages are destroyed and must be re-sent.

Note: Because the scope of a transaction is limited to a single
session, it is not possible to combine the production and
consumption of a message into a single end-to-end transaction.
That is, the delivery of a message from a message producer to a
destination on the broker cannot be placed in the same transaction
with its subsequent delivery from the destination to a consumer.

Working With Messages

4-16 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Working With Messages
This section describes how to use the Message Queue Java API to compose, send,
receive, and process messages.

Message Structure
A message consists of the following parts:

■ A header containing identifying and routing information

■ Optional properties that can be used to convey additional identifying information
beyond that contained in the header

■ A body containing the actual content of the message

The following sections discuss each of these in greater detail.

Message Header
Every message must have a header containing identifying and routing information. The
header consists of a set of standard fields, which are defined in the Java Message Service
Specification and summarized in Table 4–3. Some of these are set automatically by
Message Queue in the course of producing and delivering a message, some depend on
settings specified when a message producer sends a message, and others are set by the
client on a message-by-message basis.

The JMS Message interface defines methods for setting the value of each header field:
for instance,

outMsg.setJMSReplyTo(replyDest);

Table 4–4 lists all of the available header specification methods.

Table 4–3 Message Header Fields

Name Description

JMSMessageID Message identifier

JMSDestination Destination to which message is sent

JMSReplyTo Destination to which to reply

JMSCorrelationID Link to related message

JMSDeliveryMode Delivery mode (persistent or nonpersistent)

JMSDeliveryTime The earliest time a provider may make a message visible
on a target destination and available for delivery to
consumers.

JMSPriority Priority level

JMSTimestamp Time of transmission

JMSExpiration Expiration time

JMSType Message type

JMSRedelivered Has message been delivered before?

Table 4–4 Message Header Specification Methods

Name Description

setJMSMessageID Set message identifier

Working With Messages

The JMS Classic API 4-17

The message identifier (JMSMessageID) is a string value uniquely identifying the
message, assigned and set by the message broker when the message is sent. Because
generating an identifier for each message adds to both the size of the message and the
overhead involved in sending it, and because some client applications may not use
them, the JMS interface provides a way to suppress the generation of message
identifiers, using the message producer method setDisableMessageID (see Sending
Messages).

The JMSDestination header field holds a Destination object representing the
destination to which the message is directed, set by the message broker when the
message is sent. There is also a JMSReplyTo field that you can set to specify a
destination to which reply messages should be directed. Clients sending such a reply
message can set its JMSCorrelationID header field to refer to the message to which
they are replying. Typically this field is set to the message identifier string of the
message being replied to, but client applications are free to substitute their own
correlation conventions instead, using either the setJMSCorrelationID method (if the
field value is a string) or the more general setJMSCorrelationIDAsBytes (if it is not).

The delivery mode (JMSDeliveryMode) specifies whether the message broker should log
the message to stable storage. There are two possible values, PERSISTENT and NON_
PERSISTENT, both defined as static constants of the JMS interface DeliveryMode: for
example,

outMsg.setJMSDeliveryMode(DeliveryMode.NON_PERSISTENT);

The default delivery mode is PERSISTENT, represented by the static constant
Message.DEFAULT_DELIVERY_MODE.

The choice of delivery mode represents a tradeoff between performance and reliability:

■ In persistent mode, the broker logs the message to stable storage, ensuring that it
will not be lost in transit in the event of transmission failure; the message is
guaranteed to be delivered exactly once.

■ In nonpersistent mode, the message is not logged to stable storage; it will be
delivered at most once, but may be lost in case of failure and not delivered at all.
This mode does, however, improve performance by reducing the broker's
message-handling overhead. It may thus be appropriate for applications in which
performance is at a premium and reliability is not.

setJMSDestination Set destination

setJMSReplyTo Set reply destination

setJMSCorrelationID Set correlation identifier from string

setJMSCorrelationIDAsBytes Set correlation identifier from byte array

setJMSDeliveryMode Set delivery mode

setJMSPriority Set priority level

setJMSTimestamp Set time stamp

setJMSExpiration Set expiration time

setJMSType Set message type

setJMSRedelivered Set redelivered flag

Table 4–4 (Cont.) Message Header Specification Methods

Name Description

Working With Messages

4-18 Open Message Queue 4.5.2 Developer's Guide for Java Clients

The message's priority level (JMSPriority) is expressed as an integer from 0 (lowest)
to 9 (highest). Priorities from 0 to 4 are considered gradations of normal priority, those
from 5 to 9 of expedited priority. The default priority level is 4, represented by the
static constant Message.DEFAULT_PRIORITY.

The Message Queue client runtime sets the JMSTimestamp header field to the time it
delivers the message to the broker, expressed as a long integer in standard Java format
(milliseconds since midnight, January 1, 1970 UTC). The message's lifetime, specified
when the message is sent, is added to this value and the result is stored in the
JMSExpiration header field. (The default lifetime value of 0, represented by the static
constant Message.DEFAULT_TIME_TO_LIVE, denotes an unlimited lifetime. In this case,
the expiration time is also set to 0 to indicate that the message never expires.) As with
the message identifier, client applications that do not use a message's time stamp can
improve performance by suppressing its generation with the message producer
method setDisableMessageTimestamp (see Sending Messages).

The header field JMSType can contain an optional message type identifier string
supplied by the client when the message is sent. This field is intended for use with
other JMS providers; Message Queue clients can simply ignore it.

When a message already delivered must be delivered again because of a failure, the
broker indicates this by setting the JMSRedelivered flag in the message header to true.
This can happen, for instance, when a session is recovered or a transaction is rolled
back. The receiving client can check this flag to avoid duplicate processing of the same
message (such as when the message has already been successfully received but the
client's acknowledgment was missed by the broker).

See the Java Message Service Specification for a more detailed discussion of all message
header fields.

Message Properties
A message property consists of a name string and an associated value, which must be
either a string or one of the standard Java primitive data types (int, byte, short, long,
float, double, or boolean). The Message interface provides methods for setting
properties of each type (see Table 4–5). There is also a setObjectProperty method that
accepts a primitive value in objectified form, as a Java object of class Integer, Byte,
Short, Long, Float , Double, Boolean, or String . The clearProperties method deletes
all properties associated with a message; the message header and body are not
affected.

Table 4–5 Message Property Specification Methods

Name Description

setIntProperty Set integer property

setByteProperty Set byte property

setShortProperty Set short integer property

setLongProperty Set long integer property

setFloatProperty Set floating-point property

setDoubleProperty Set double-precision property

setBooleanProperty Set boolean property

setStringProperty Set string property

setObjectProperty Set property from object

clearProperties Clear properties

Working With Messages

The JMS Classic API 4-19

The JMS specification defines certain standard properties, listed in Table 4–6. By
convention, the names of all such standard properties begin with the letters JMSX;
names of this form are reserved and must not be used by a client application for its
own custom message properties. These properties are not enabled by default, an
application must set the name/value pairs it requires on the appropriate connection
factory.

Message Body
The actual content of a message is contained in the message body. JMS defines six
classes (or types) of message, each with a different body format:

■ A text message (interface TextMessage) contains a Java string.

■ A stream message (interface StreamMessage) contains a stream of Java primitive
values, written and read sequentially.

■ A map message (interface MapMessage) contains a set of name-value pairs, where
each name is a string and each value is a Java primitive value. The order of the
entries is undefined; they can be accessed randomly by name or enumerated
sequentially.

■ An object message (interface ObjectMessage) contains a serialized Java object
(which may in turn be a collection of other objects).

■ A bytes message (interface BytesMessage) contains a stream of uninterpreted bytes.

■ A null message (interface Message) consists of a header and properties only, with no
message body.

Each of these is a subinterface of the generic Message interface, extended with
additional methods specific to the particular message type.

Table 4–6 Standard JMS Message Properties

Name Type Required? Description

JMSXUserID String Optional Identity of user sending
message

JMSXAppID String Optional Identity of application sending
message

JMSXDeliveryCoun
t

int Optional Number of delivery attempts

JMSXGroupID String Optional Identity of message group to
which this message belongs

JMSXGroupSeq int Optional Sequence number within
message group

JMSXProducerTXID String Optional Identifier of transaction within
which message was produced

JMSXConsumerTXID String Optional Identifier of transaction within
which message was consumed

JMSXRcvTimestamp long Optional Time message delivered to
consumer

JMSXState int Optional Message state (waiting, ready,
expired, or retained)

Working With Messages

4-20 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Composing Messages
 The JMS Session interface provides methods for creating each type of message, as
shown in Table 4–7. For instance, you can create a text message with a statement such
as

TextMessage outMsg = mySession.createTextMessage();

In general, these methods create a message with an empty body; the interfaces for
specific message types then provide additional methods for filling the body with
content, as described in the sections that follow.

Once a message has been delivered to a message consumer, its body is considered
read-only; any attempt by the consumer to modify the message body will cause an
exception (MessageNotWriteableException) to be thrown. The consumer can,
however, empty the message body and place it in a writeable state by calling the
message method clearBody:

outMsg.clearBody();

This places the message in the same state as if it had been newly created, ready to fill
its body with new content.

Composing Text Messages
You create a text message with the session method createTextMessage. You can either
initialize the message body directly at creation time

TextMessage outMsg = mySession.createTextMessage("Hello, World!");

or simply create an empty message and then use its setText method (see Table 4–8) to
set its content:

TextMessage outMsg = mySession.createTextMessage();
outMsg.setText("Hello, World!");

Table 4–7 Session Methods for Message Creation

Name Description

createMessage Create null message

createTextMessage Create text message

createStreamMessage Create stream message

createMapMessage Create map message

createObjectMessage Create object message

createBytesMessage Create bytes message

Note: Some of the message-creation methods have an overloaded
form that allows you to initialize the message body directly at
creation: for example,

TextMessage
 outMsg = mySession.createTextMessage("Hello, World!");

These exceptions are pointed out in the relevant sections below.

Working With Messages

The JMS Classic API 4-21

Composing Stream Messages
The session method createStreamMessage returns a new, empty stream message. You
can then use the methods shown in Table 4–9 to write primitive data values into the
message body, similarly to writing to a data stream: for example,

StreamMessage outMsg = mySession.createStreamMessage();
outMsg.writeString("The Meaning of Life");
outMsg.writeInt(42);

As a convenience for handling values whose types are not known until execution time,
the writeObject method accepts a string or an objectified primitive value of class
Integer, Byte, Short, Long, Float, Double , Boolean, or Character and writes the
corresponding string or primitive value to the message stream: for example, the
statements

Integer meaningOfLife = new Integer(42);
outMsg.writeObject(meaningOfLife);

are equivalent to

outMsg.writeInt(42);

This method will throw an exception (MessageFormatException) if the argument given
to it is not of class String or one of the objectified primitive classes.

Once you've written the entire message contents to the stream, the reset method

outMsg.reset();

puts the message body in read-only mode and repositions the stream to the beginning,
ready to read (see Processing Messages). When the message is in this state, any

Table 4–8 Text Message Composition Method

Name Description

setText Set content string

Table 4–9 Stream Message Composition Methods

Name Description

writeInt Write integer to message stream

writeByte Write byte value to message stream

writeBytes Write byte array to message stream

writeShort Write short integer to message stream

writeLong Write long integer to message stream

writeFloat Write floating-point value to message stream

writeDouble Write double-precision value to message stream

writeBoolean Write boolean value to message stream

writeChar Write character to message stream

writeString Write string to message stream

writeObject Write value of object to message stream

reset Reset message stream

Working With Messages

4-22 Open Message Queue 4.5.2 Developer's Guide for Java Clients

attempt to write to the message stream will throw the exception
MessageNotWriteableException. A call to the clearBody method (inherited from the
superinterface Message) deletes the entire message body and makes it writeable again.

Composing Map Messages
Table 4–10 shows the methods available in the MapMessage interface for adding content
to the body of a map message. Each of these methods takes two arguments, a name
string and a primitive or string value of the appropriate type, and adds the
corresponding name-value pair to the message body: for example,

StreamMessage outMsg = mySession.createMapMessage();
outMsg.setInt("The Meaning of Life", 42);

Like stream messages, map messages provide a convenience method (setObject) for
dealing with values whose type is determined dynamically at execution time: for
example, the statements

Integer meaningOfLife = new Integer(42);
outMsg.setObject("The Meaning of Life", meaningOfLife);

are equivalent to

outMsg.setInt("The Meaning of Life", 42);

The object supplied must be either a string object (class String) or an objectified
primitive value of class Integer, Byte , Short, Long, Float, Double, Boolean, or
Character; otherwise an exception (MessageFormatException) will be thrown.

Composing Object Messages
The ObjectMessage interface provides just one method, setObject (Table 4–11), for
setting the body of an object message:

ObjectMessage outMsg = mySession.createObjectMessage();
outMsg.setObject(bodyObject);

Table 4–10 Map Message Composition Methods

Name Description

setInt Store integer in message map by name

setByte Store byte value in message map by name

setBytes Store byte array in message map by name

setShort Store short integer in message map by name

setLong Store long integer in message map by name

setFloat Store floating-point value in message map by name

setDouble Store double-precision value in message map by name

setBoolean Store boolean value in message map by name

setChar Store character in message map by name

setString Store string in message map by name

setObject Store object in message map by name

Working With Messages

The JMS Classic API 4-23

The argument to this method can be any serializable object (that is, an instance of any
class that implements the standard Java interface Serializable). If the object is not
serializable, the exception MessageFormatException will be thrown.

As an alternative, you can initialize the message body directly when you create the
message, by passing an object to the session method createObjectMessage:

ObjectMessage outMsg = mySession.createObjectMessage(bodyObject);

Again, an exception will be thrown if the object is not serializable.

Composing Bytes Messages
The body of a bytes message simply consists of a stream of uninterpreted bytes; its
interpretation is entirely a matter of agreement between sender and receiver. This type
of message is intended primarily for encoding message formats required by other
existing message systems; Message Queue clients should generally use one of the
other, more specific message types instead.

Composing a bytes message is similar to composing a stream message (see Composing
Stream Messages). You create the message with the session method
createBytesMessage, then use the methods shown in Table 4–12 to encode primitive
values into the message's byte stream: for example,

BytesMessage outMsg = mySession.createBytesMessage();
outMsg.writeUTF("The Meaning of Life");
outMsg.writeInt(42);

As with stream and map messages, you can use the generic object-based method
writeObject to handle values whose type is unknown at compilation time: for
example, the statements

Table 4–11 Object Message Composition Method

Name Description

setObject Serialize object to message body

Table 4–12 Bytes Message Composition Methods

Name Description

writeInt Write integer to message stream

writeByte Write byte value to message stream

writeBytes Write byte array to message stream

writeShort Write short integer to message stream

writeLong Write long integer to message stream

writeFloat Write floating-point value to message stream

writeDouble Write double-precision value to message stream

writeBoolean Write boolean value to message stream

writeChar Write character to message stream

writeUTF Write UTF-8 string to message stream

writeObject Write value of object to message stream

reset Reset message stream

Working With Messages

4-24 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Integer meaningOfLife = new Integer(42);
outMsg.writeObject(meaningOfLife);

are equivalent to

outMsg.writeInt(42);

The message's reset method

outMsg.reset();

puts the message body in read-only mode and repositions the byte stream to the
beginning, ready to read (see Processing Messages). Attempting to write further
content to a message in this state will cause an exception
(MessageNotWriteableException). The inherited Message method clearBody can be
used to delete the entire message body and make it writeable again.

Sending Messages
In order to send messages to a message broker, you must create a message producer
using the session method createProducer:

MessageProducer myProducer = mySession.createProducer(myDest);

The scope of the message producer is limited to the session that created it and the
connection to which that session belongs. Table 4–13 shows the methods defined in the
MessageProducer interface.

The createProducer method takes a destination as an argument, which may be either
a (point-to-point) queue or a (publish/subscribe) topic. The producer will then send all
of its messages to the specified destination. If the destination is a queue, the producer
is called a sender for that queue; if it is a topic, the producer is a publisher to that topic.
The message producer's getDestination method returns this destination.

You also have the option of leaving the destination unspecified when you create a
producer

Table 4–13 Message Producer Methods

Name Description

getDestination Get default destination

setDeliveryMode Set default delivery mode

getDeliveryMode Get default delivery mode

setPriority Set default priority level

getPriority Get default priority level

setTimeToLive Set default message lifetime

getTimeToLive Get default message lifetime

setDisableMessageID Set message identifier disable flag

getDisableMessageID Get message identifier disable flag

setDisableMessageTimestamp Set time stamp disable flag

getDisableMessageTimestamp Get time stamp disable flag

send Send message

close Close message producer

Working With Messages

The JMS Classic API 4-25

MessageProducer myProducer = mySession.createProducer(null);

in which case you must specify an explicit destination for each message. This option is
typically used for producers that must send messages to a variety of destinations, such
as those designated in the JMSReplyTo header fields of incoming messages (see
Message Header).

A producer has a default delivery mode (persistent or nonpersistent), priority level,
and message lifetime, which it will apply to all messages it sends unless explicitly
overridden for an individual message. You can set these properties with the message
producer methods setDeliveryMode, setPriority, and setTimeToLive, and retrieve
them with getDeliveryMode, getPriority, and getTimeToLive. If you don't set them
explicitly, they default to persistent delivery, priority level 4, and a lifetime value of 0,
denoting an unlimited message lifetime.

The heart of the message producer interface is the send method, which is available in a
variety of overloaded forms. The simplest of these just takes a message as its only
argument:

myProducer.send(outMsg);

This sends the specified message to the producer's default destination, using the
producer's default delivery mode, priority, and message lifetime. Alternatively, you
can explicitly specify the destination

myProducer.send(myDest, outMsg);

or the delivery mode, priority, and lifetime in milliseconds

myProducer.send(outMsg, DeliveryMode.NON_PERSISTENT, 9, 1000);

or all of these at once:

myProducer.send(myDest, outMsg, DeliveryMode.NON_PERSISTENT, 9, 1000);

Recall that if you did not specify a destination when creating the message producer,
you must provide an explicit destination for each message you send.

As discussed earlier under Message Header, client applications that have no need for
the message identifier and time stamp fields in the message header can gain some
performance improvement by suppressing the generation of these fields, using the
message producer's setDisableMessageID and setdisableMessageTimestamp
methods. Note that a true value for either of these flags disables the generation of the
corresponding header field, while a false value enables it. Both flags are set to false
by default, meaning that the broker will generate the values of these header fields
unless explicitly instructed otherwise.

Note: The generic MessageProducer interface also has specialized
subinterfaces, QueueSender and TopicPublisher, for sending
messages specifically to a point-to-point queue or a
publish/subscribe topic. These types of producer are created by the
createSender and createPublisher methods of the specialized
session subinterfaces QueueSession and TopicSession,
respectively. However, it is generally more convenient (and
recommended) to use the generic form of message producer
described here, which can handle both types of destination
indiscriminately.

Working With Messages

4-26 Open Message Queue 4.5.2 Developer's Guide for Java Clients

When you are finished using a message producer, you should call its close method

myProducer.close();

allowing the broker and client runtime to release any resources they may have
allocated on the producer's behalf.

Asynchronous send
The JMS 2.0 specification allows clients to send a message asynchronously. This
permits the JMS provider to perform part of the work involved in sending the message
in a separate thread.

When a message has been successfully sent, the JMS provider invokes the callback
method onCompletion on an application-specified CompletionListener object. Only
when that callback has been invoked can the application be sure that the message has
been successfully sent with the same degree of confidence as if a synchronous send
had been performed. An application which requires this degree of confidence must
wait for the callback to be invoked before continuing.

The following section provides guidelines on how to convert two common
synchronous send design patterns to use asynchronous sends.

■ A producer sends messages using a synchronous send to a remote JMS server and
then waits for an acknowledgement to be received before returning.

A producer implements an asynchronous send by sending the message to the
remote JMS server and then returning without waiting for an acknowledgement.
When the acknowledgement is received, the JMS provider would notify the
application by invoking the onCompletion method on the application-specified
CompletionListener object. If for some reason the acknowledgement is not
received, the JMS provider would notify the application by invoking
CompletionListener.onException.

■ A producer sends messages using a synchronous send to a remote JMS server and
does not wait for an acknowledgement to be received before returning.

A producer implements an asynchronous send by sending the message to the
remote JMS server and then return without waiting for an acknowledgement. The
JMS provider then notifies the application that the send had completed by
invoking the onCompletion method on the application-specified
CompletionListener object.

Methods for Asynchronous Sends IA JMS provider uses MessageProducer to send a
message asynchronously using one of the following:

■ send(Message message, CompletionListener completionListener)

■ send(Message message, int deliveryMode, int priority, long timeToLive,
CompletionListener completionListener)

■ send(Destination destination, Message message, CompletionListener
completionListener)

■ send(Destination destination, Message message, int deliveryMode, int
priority, long timeToLive, CompletionListener completionListener)

Working With Messages

The JMS Classic API 4-27

Receiving Messages
Messages are received by a message consumer, within the context of a connection and a
session. Once you have created a consumer, you can use it to receive messages in
either of two ways:

■ In synchronous message consumption, you explicitly request the delivery of
messages when you are ready to receive them.

■ In asynchronous message consumption, you register a message listener for the
consumer. The Message Queue client runtime then calls the listener whenever it
has a message to deliver.

These two forms of message consumption are described in the sections Receiving
Messages Synchronously and Receiving Messages Asynchronously.

Creating Message Consumers
The session method createConsumer creates a generic consumer that can be used to
receive messages from either a (point-to-point) queue or a (publish/subscribe) topic:

MessageConsumer myConsumer = mySession.createConsumer(myDest);

If the destination is a queue, the consumer is called a receiver for that queue; if it is a
topic, the consumer is a subscriber to that topic.

A subscriber created for a topic destination with the createConsumer method is always
nondurable, meaning that it will receive only messages that are sent (published)to the
topic while the subscriber is active. If you want the broker to retain messages
published to a topic while no subscriber is active and deliver them when one becomes
active again, you must instead create a durable subscriber, as described in Durable
Subscribers.

Table 4–14 shows the methods defined in the MessageConsumer interface, which are
discussed in detail in the relevant sections below.

Note: The generic MessageConsumer interface also has specialized
subinterfaces, QueueReceiver and TopicSubscriber, for receiving
messages specifically from a point-to-point queue or a
publish/subscribe topic. These types of consumer are created by
the createReceiver and createSubscriber methods of the
specialized session subinterfaces QueueSession and TopicSession,
respectively. However, it is generally more convenient (and
recommended) to use the generic form of message consumer
described here, which can handle both types of destination
indiscriminately.

Table 4–14 Message Consumer Methods

Name Description

getMessageSelector Get message selector

receive Receive message synchronously

receiveNoWait Receive message synchronously without blocking

setMessageListener Set message listener for asynchronous reception

getMessageListener Get message listener for asynchronous reception

Working With Messages

4-28 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Message Selectors If appropriate, you can restrict the messages a consumer will receive
from its destination by supplying a message selector as an argument when you create
the consumer:

String mySelector = "/* Text of selector here */";
MessageConsumer myConsumer = mySession.createConsumer(myDest, mySelector);

The selector is a string whose syntax is based on a subset of the SQL92 conditional
expression syntax, which allows you to filter the messages you receive based on the
values of their properties (see Message Properties). See the Java Message Service
Specification for a complete description of this syntax. The message consumer's
getMessageSelector method returns the consumer's selector string (or null if no
selector was specified when the consumer was created):

String mySelector = myConsumer.getMessageSelector();

In some cases, the same connection may both publish and subscribe to the same topic
destination. The createConsumer method accepts an optional boolean argument that
suppresses the delivery of messages published by the consumer's own connection:

String mySelector = "/* Text of selector here */";
MessageConsumer
 myConsumer = mySession.createConsumer(myDest, mySelector, true);

The resulting consumer will receive only messages published by a different
connection.

Durable Subscribers To receive messages delivered to a publish/subscribe topic while
no message consumer is active, you must ask the message broker to create a durable
subscriber for that topic. All sessions that create such subscribers for a given topic must
have the same client identifier (see Using Connections). When you create a durable
subscriber, you supply a subscriber name that must be unique for that client identifier:

MessageConsumer
 myConsumer = mySession.createDurableSubscriber(myDest, "mySub");

(The object returned by the createDurableSubscriber method is actually typed as
TopicSubscriber, but since that is a subinterface of MessageConsumer, you can safely
assign it to a MessageConsumer variable. Note, however, that the destination myDest
must be a publish/subscribe topic and not a point-to-point queue.)

You can think of a durable subscriber as a "virtual message consumer" for the specified
topic, identified by the unique combination of a client identifier and subscriber name.

close Close message consumer

Note: Messages whose properties do not satisfy the consumer's
selector will be retained undelivered by the destination until they
are retrieved by another message consumer. The use of message
selectors can thus cause messages to be delivered out of sequence
from the order in which they were originally produced. Only a
message consumer without a selector is guaranteed to receive
messages in their original order.

Table 4–14 (Cont.) Message Consumer Methods

Name Description

Working With Messages

The JMS Classic API 4-29

When a message arrives for the topic and no message consumer is currently active for
it, the message will be retained for later delivery. Whenever you create a consumer
with the given client identifier and subscriber name, it will be considered to represent
this same durable subscriber and will receive all of the accumulated messages that
have arrived for the topic in the subscriber's absence. Each message is retained until it
is delivered to (and acknowledged by) such a consumer or until it expires.

Like the createConsumer method described in the preceding section (which creates
nondurable subscribers), createDurableSubscriber can accept an optional message
selector string and a boolean argument telling whether to suppress the delivery of
messages published by the subscriber's own connection:

String mySelector = "/* Text of selector here */";
MessageConsumer myConsumer
 = mySession.createDurableSubscriber(myDest, "mySub",
 mySelector, true);

You can change the terms of a durable subscription by creating a new subscriber with
the same client identifier and subscription name but with a different topic, selector, or
both. The effect is as if the old subscription were destroyed and a new one created with
the same name. When you no longer need a durable subscription, you can destroy it
with the session method unsubscribe:

mySession.unsubscribe("mySub");

Receiving Messages Synchronously
 Once you have created a message consumer for a session, using either the
createConsumer orcreateDurableSubscriber method, you must start the session's
connection to begin the flow of incoming messages:

myConnection.start();

(Note that it is not necessary to start a connection in order to produce messages, only
to consume them.) You can then use the consumer's receive method to receive
messages synchronously from the message broker:

Message inMsg = myConsumer.receive();

This returns the next available message for this consumer. If no message is
immediately available, the receive method blocks until one arrives. You can also
provide a timeout interval in milliseconds:

Message inMsg = myConsumer.receive(1000);

In this case, if no message arrives before the specified timeout interval (1 second in the
example) expires, the method will return with a null result. An alternative method,
receiveNoWait, returns a null result immediately if no message is currently available:

Message inMsg = myConsumer.receiveNoWait();

Note: Only one session at a time can have an active consumer for
a given durable subscription. If another such consumer already
exists, the createDurableSubscriber method will throw an
exception.

Working With Messages

4-30 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Receiving Messages Asynchronously
If you want your message consumer to receive incoming messages asynchronously,
you must create a message listener to process the messages. This is a Java object that
implements the JMS MessageListener interface. The procedure is as follows:

To Set Up a Message Queue Java Client to Receive Messages Asynchronously Follow this
procedure:

1. Define a message listener class implementing the MessageListener interface.

The interface consists of the single method onMessage, which accepts a message as
a parameter and processes it in whatever way is appropriate for your application:

public class MyMessageListener implements MessageListener
 {
 public void onMessage (Message inMsg)
 {
 /* Code here to process message */
 }
 }

2. Create a message consumer.

You can use either the createConsumer or createDurableSubscriber method of
the session in which the consumer will operate: for instance,

MessageConsumer myConsumer = mySession.createConsumer(myDest);

3. Create an instance of your message listener class.

MyMessageListener myListener = new MyMessageListener();

4. Associate the message listener with your message consumer.

The message consumer method setMessageListener accepts a message listener
object and associates it with the given consumer:

myConsumer.setMessageListener(myListener);

5. Start the connection to which this consumer's session belongs.

The connection's start method begins the flow of messages from the message
broker to your message consumer:

myConnection.start();

Once the connection is started, the Message Queue client runtime will call your
message listener's onMessage method each time it has a message to deliver to this
consumer.

To ensure that no messages are lost before your consumer is ready to receive them,
it is important not to start the connection until after you have created the message
listener and associated it with the consumer. If the connection is already started,
you should stop it before creating an asynchronous consumer, then start it again
when the consumer is ready to begin processing.

Setting a consumer's message listener to null removes any message listener
previously associated with it:

myConsumer.setMessageListener(null);

The consumer's getMessageListener method returns its current message listener
(or null if there is none):

Working With Messages

The JMS Classic API 4-31

MyMessageListener myListener = myConsumer.getMessageListener();

Acknowledging Messages
If you have specified client-acknowledge as your session's acknowledgment mode (see
Acknowledgment Modes), it is your client application's responsibility to explicitly
acknowledge each message it receives. If you have received the message
synchronously, using a message consumer's receive (or receiveNoWait) method, you
should process the message first and then acknowledge it; if you have received it
asynchronously, your message listener's onMessage method should acknowledge the
message after processing it. This ensures that the message broker will not delete the
message from persistent storage until processing is complete.

Table 4–15 shows the methods available for acknowledging a message. The most
general is acknowledge, defined in the standard JMS interface javax.jms.Message:

inMsg.acknowledge();

This acknowledges all unacknowledged messages consumed by the session up to the
time of call. You can use this method to acknowledge each message individually as
you receive it, or you can group several messages together and acknowledge them all
at once by calling acknowledge on the last one in the group.

The Message Queue version of the Message interface, defined in the package
com.sun.messaging.jms, adds two more methods that provide more flexible control
over which messages you acknowledge. The acknowledgeThisMessage method just
acknowledges the single message for which it is called, rather than all messages
consumed by the session; acknowledgeUpThroughThisMessage acknowledges the
message for which it is called and all previous messages; messages received after that
message remain unacknowledged.

Browsing Messages
If the destination from which you are consuming messages is a point-to-point queue,
you can use a queue browser to examine the messages in the queue without consuming
them. The session method createBrowser creates a browser for a specified queue:

QueueBrowser myBrowser = mySession.createBrowser(myDest);

Note: In a transacted session (see Transacted Sessions), there is no
need to acknowledge a message explicitly: the session's
acknowledgment mode is ignored and all acknowledgment
processing is handled for you automatically by the Message Queue
client runtime. In this case, the session's getAcknowledgeMode
method will return the special constant Session.SESSION_
TRANSACTED.

Table 4–15 Message Acknowledgment Methods

Function Description

acknowledge Acknowledge all unacknowledged messages for
session

acknowledgeThisMessage Acknowledge this message only

acknowledgeUpThroughThisMessage Acknowledge all unacknowledged messages
through this one

Working With Messages

4-32 Open Message Queue 4.5.2 Developer's Guide for Java Clients

The method will throw an exception (InvalidDestinationException) if you try to
pass it a topic destination instead of a queue. You can also supply a selector string as
an optional second argument:

String mySelector = "/* Text of selector here */";
QueueBrowser myBrowser = mySession.createBrowser(myDest, mySelector);

Table 4–16 shows the methods defined in the QueueBrowser interface. The getQueue
and getMessageSelector methods return the browser's queue and selector string,
respectively.

The most important queue browser method is getEnumeration, which returns a Java
enumeration object that you can use to iterate through the messages in the queue, as
shown in Example 4–4.

Example 4–4 Browsing a Queue

Enumeration queueMessages = myBrowser.getEnumeration();
Message eachMessage;

while (queueMessages.hasMoreElements())
 { eachMessage = queueMessages.nextElement();
 /* Do something with the message */
 }

The browser's close method closes it when you're through with it:

myBrowser.close();

Closing a Consumer
As a matter of good programming practice, you should close a message consumer
when you have no further need for it. Closing a session or connection automatically
closes all consumers associated with it; to close a consumer without closing the session
or connection to which it belongs, you can use its close method:

myConsumer.close();

For a consumer that is a nondurable topic subscriber, this terminates the flow of
messages to the consumer. However, if the consumer is a queue receiver or a durable
topic subscriber, messages will continue to be accumulated for the destination and will
be delivered the next time a consumer for that destination becomes active. To
terminate a durable subscription permanently, call its session's unsubscribe method
with the subscriber name as an argument:

mySession.unsubscribe("mySub");

Table 4–16 Queue Browser Methods

Name Description

getQueue Get queue from which this browser reads

getMessageSelector Get message selector

getEnumeration Get enumeration of all messages in the queue

close Close browser

Working With Messages

The JMS Classic API 4-33

Processing Messages
Processing a message after you have received it may entail examining its header fields,
properties, and body. The following sections describe how this is done.

Retrieving Message Header Fields
The standard JMS message header fields are described in Table 4–3. Table 4–17 shows
the methods provided by the JMS Message interface for retrieving the values of these
fields: for instance, you can obtain a message's reply destination with the statement

Destination replyDest = inMsg.getJMSReplyTo();

Retrieving Message Properties
Table 4–18 lists the methods defined in the JMS Message interface for retrieving the
values of a message's properties (see Message Properties). There is a retrieval method
for each of the possible primitive types that a property value can assume: for instance,
you can obtain a message's time stamp with the statement

long timeStamp = inMsg.getLongProperty("JMSXRcvTimestamp");

Table 4–17 Message Header Retrieval Methods

Name Description

getJMSMessageID Get message identifier

getJMSDestination Get destination

getJMSReplyTo Get reply destination

getJMSCorrelationID Get correlation identifier as string

getJMSCorrelationIDAsBytes Get correlation identifier as byte array

getJMSDeliveryMode Get delivery mode

getJMSPriority Get priority level

getJMSTimestamp Get time stamp

getJMSExpiration Get expiration time

getJMSType Get message type

getJMSRedelivered Get redelivered flag

Table 4–18 Message Property Retrieval Methods

Name Description

getIntProperty Get integer property

getByteProperty Get byte property

getShortProperty Get short integer property

getLongProperty Get long integer property

getFloatProperty Get floating-point property

getDoubleProperty Get double-precision property

getBooleanProperty Get boolean property

getStringProperty Get string property

Working With Messages

4-34 Open Message Queue 4.5.2 Developer's Guide for Java Clients

There is also a generic getObjectProperty method that returns a property value in
objectified form, as a Java object of class Integer, Byte, Short, Long, Float , Double,
Boolean, or String . For example, another way to obtain a message's time stamp,
equivalent to that shown above, would be

Long timeStampObject = (Long)inMsg.getObjectProperty("JMSXRcvTimestamp");
long timeStamp = timeStampObject.longValue();

If the message has no property with the requested name, getObjectProperty will
return null; the message method propertyExists tests whether this is the case.

The getPropertyNames method returns a Java enumeration object for iterating through
all of the property names associated with a given message; you can then use the
retrieval methods shown in the table to retrieve each of the properties by name, as
shown in Example 4–5.

Example 4–5 Enumerating Message Properties

Enumeration propNames = inMsg.getPropertyNames();
String eachName;
Object eachValue;

while (propNames.hasMoreElements())
 { eachName = propNames.nextElement();
 eachValue = inMsg.getObjectProperty(eachName);
 /* Do something with the value */
 }

Processing the Message Body
The methods for retrieving the contents of a message's body essentially parallel those
for composing the body, as described earlier under Composing Messages. The
following sections describe these methods for each of the possible message types (text,
stream, map, object, and bytes).

Processing Text Messages The text message method getText (Table 4–19) retrieves the
contents of a text message's body in the form of a string:

String textBody = inMsg.getText();

Processing Stream Messages Reading the contents of a stream message is similar to
reading from a data stream, using the access methods shown in Table 4–20: for
example, the statement

getObjectProperty Get property as object

getPropertyNames Get property names

propertyExists Does property exist?

Table 4–19 Text Message Access Method

Name Description

getText Get content string

Table 4–18 (Cont.) Message Property Retrieval Methods

Name Description

Working With Messages

The JMS Classic API 4-35

int intVal = inMsg.readInt();

retrieves an integer value from the message stream.

The readObject method returns the next value from the message stream in objectified
form, as a Java object of the class corresponding to the value's primitive data type: for
instance, if the value is of type int, readObject returns an object of class Integer. The
following statements are equivalent to the one shown above:

Integer intObject = (Integer) inMsg.readObject();
int intVal = intObject.intValue();

Processing Map Messages The MapMessage interface provides the methods shown in
Table 4–21 for reading the body of a map message. Each access method takes a name
string as an argument and returns the value to which that name is mapped: for
instance, under the example shown in Composing Map Messages, the statement

int meaningOfLife = inMsg.getInt("The Meaning of Life");

would set the variable meaningOfLife to the value 42.

Table 4–20 Stream Message Access Methods

Name Description

readInt Read integer from message stream

readByte Read byte value from message stream

readBytes Read byte array from message stream

readShort Read short integer from message stream

readLong Read long integer from message stream

readFloat Read floating-point value from message stream

readDouble Read double-precision value from message stream

readBoolean Read boolean value from message stream

readChar Read character from message stream

readString Read string from message stream

readObject Read value from message stream as object

Table 4–21 Map Message Access Methods

Name Description

getInt Get integer from message map by name

getByte Get byte value from message map by name

getBytes Get byte array from message map by name

getShort Get short integer from message map by name

getLong Get long integer from message map by name

getFloat Get floating-point value from message map by name

getDouble Get double-precision value from message map by name

getBoolean Get boolean value from message map by name

getChar Get character from message map by name

Working With Messages

4-36 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Like stream messages, map messages provide an access method, getObject, that
returns a value from the map in objectified form, as a Java object of the class
corresponding to the value's primitive data type: for instance, if the value is of type
int, getObject returns an object of class Integer. The following statements are
equivalent to the one shown above:

Integer meaningObject = (Integer) inMsg.getObject("The Meaning of Life");
int meaningOfLife = meaningObject.intValue();

The itemExists method returns a boolean value indicating whether the message map
contains an association for a given name string:

if (inMsg.itemExists("The Meaning of Life"))
 { /* Life is meaningful */
 }
else
 { /* Life is meaningless */
 }

The getMapNames method returns a Java enumeration object for iterating through all of
the names defined in the map; you can then use getObject to retrieve the
corresponding values, as shown in Example 4–6.

Example 4–6 Enumerating Map Message Values

Enumeration mapNames = inMsg.getMapNames();
String eachName;
Object eachValue;

while (mapNames.hasMoreElements())
 { eachName = mapNames.nextElement();
 eachValue = inMsg.getObject(eachName);
 /* Do something with the value */
 }

Processing Object Messages The ObjectMessage interface provides just one method,
getObject (Table 4–22), for retrieving the serialized object that is the body of an object
message:

Object messageBody = inMsg.getObject();

You can then typecast the result to a more specific class and process it in whatever way
is appropriate.

getString Get string from message map by name

getObject Get object from message map by name

itemExists Does map contain an item with specified name?

getMapNames Get enumeration of all names in map

Table 4–21 (Cont.) Map Message Access Methods

Name Description

Working With Messages

The JMS Classic API 4-37

Processing Bytes Messages The body of a bytes message simply consists of a stream of
uninterpreted bytes; its interpretation is entirely a matter of agreement between sender
and receiver. This type of message is intended primarily for decoding message formats
used by other existing message systems; Message Queue clients should generally use
one of the other, more specific message types instead.

Reading the body of a bytes message is similar to reading a stream message (see
Processing Stream Messages): you use the methods shown in Table 4–23 to decode
primitive values from the message's byte stream. For example, the statement

int intVal = inMsg.readInt();

retrieves an integer value from the byte stream. The getBodyLength method returns
the length of the entire message body in bytes:

int bodyLength = inMsg.getBodyLength();

Simplified Extraction of Message Bodies
You can use the getBody method to provide a convenient way to obtain the body from
a newly-received Message object. Use getBody to:

■ Return the body of a TextMessage, MapMessage, or BytesMessage as a String, Map,
or byte[] without the need to cast the Message first to the appropriate subtype.

■ Return the body of an ObjectMessage without the need to cast the Message to
ObjectMessage, extract the body as a Serializable, and cast it to the specified
type.

Table 4–22 Object Message Access Method

Name Description

getObject Get serialized object from message body

Table 4–23 Bytes Message Access Methods

Name Description

getBodyLength Get length of message body in bytes

readInt Read integer from message stream

readByte Read signed byte value from message stream

readUnsignedByte Read unsigned byte value from message stream

readBytes Read byte array from message stream

readShort Read signed short integer from message stream

readUnsignedShort Read unsigned short integer from message stream

readLong Read long integer from message stream

readFloat Read floating-point value from message stream

readDouble Read double-precision value from message stream

readBoolean Read boolean value from message stream

readChar Read character from message stream

readUTF Read UTF-8 string from message stream

Using the Autocloseable Interface

4-38 Open Message Queue 4.5.2 Developer's Guide for Java Clients

The isBodyAssignableTo method can be used to determine whether a subsequent call
to getBody would be able to return the body of a particular Message object as a
particular type.

Using the Autocloseable Interface
Objects from interfaces that extend the java.lang.Autocloseable and use a
try-with-resources statement do not need to explicitly call close() when these
objects are no longer required.

The following interfaces extend the java.lang.Autocloseable interface:

■ Connection

■ Session

■ MessageProducer

■ MessageConsumer

■ QueueBrowser

For example:

. . .
try (Connection connection = connectionFactory.createConnection();){
 // use connection in this try block
 // it will be closed when try block completes
} catch (JMSException e){
 // exception handling
}
. . .

5

Using the Metrics Monitoring API 5-1

5Using the Metrics Monitoring API

Message Queue provides several ways of obtaining metrics data as a means of
monitoring and tuning performance. One of these methods, message-based
monitoring, allows metrics data to be accessed programmatically and then to be
processed in whatever way suits the consuming client. Using this method, a client
subscribes to one or more metrics destinations and then consumes and processes
messages produced by the broker to those destinations. Message-based monitoring is
the most customized solution to metrics gathering, but it does require the effort of
writing a consuming client that retrieves and processes metrics messages.

The methods for obtaining metrics data are described in "Monitoring Broker
Operations" in Open Message Queue Administration Guide, which also discusses the
relative merits of each method and the set of data that is captured by each. Before you
decide to used message-based monitoring, you should consult this guide to make sure
that you will be able to obtain the information you need using this method.

Message-based monitoring is enabled by the combined efforts of administrators and
programmers. The administrator is responsible for configuring the broker so that it
produces the messages of interest at a specified interval and that it persists these
messages for a set time. The programmer is responsible for selecting the data to be
produced and for creating the client that will consume and process the data.

This chapter focuses on the work the programmer must do to implement a
message-based monitoring client. It includes the following sections:

■ Monitoring Overview

■ Creating a Metrics-Monitoring Client

■ Format of Metrics Messages

■ Metrics Monitoring Client Code Examples

Monitoring Overview
Message Queue includes an internal client that is enabled by default to produce
different types of metrics messages. Production is actually enabled when a client
subscribes to a topic destination whose name matches one of the metrics message
types. For example, if a client subscribes to the topic mq.metrics.jvm, the client
receives information about JMV memory usage.

The metrics topic destinations (metric message types) are described in Table 5–1.

Monitoring Overview

5-2 Open Message Queue 4.5.2 Developer's Guide for Java Clients

A metrics message that is produced to one of the destinations listed in Table 5–1 is a
normal JMS message; its header and body are defined to hold the following
information:

■ The message header has several properties, one that specifies the metrics message
type, one that records the time the message was produced (timestamp), and a
collection of properties identifying the broker that sent the metric message (broker
host, port, and address/URL).

■ The message body contains name-value pairs that vary with the message type.

The section Format of Metrics Messages provides complete information about the
types of metrics messages and their content (name-value pairs).

To receive metrics messages, the consuming client must be subscribed to the
destination of interest. Otherwise, consuming a metrics message is exactly the same as
consuming any JMS message. The message can be consumed synchronously or
asynchronously, and then processed as needed by the client.

Message-based monitoring is concerned solely with obtaining metrics information. It
does not include methods that you can call to work with physical destinations,
configure or update the broker, or shutdown and restart the broker.

Administrative Tasks
By default the Message Queue metrics-message producing client is enabled to produce
nonpersistent messages every sixty seconds. The messages are allowed to remain in
their respective destinations for 5 minutes before being automatically deleted. To
persist metrics messages, to change the interval at which they are produced, or to
change their time-to-live interval, the administrator must set the following properties
in the config.properties file: imq.metrics.topic.persist ,
imq.metrics.topic.interval, and imq.metrics.topic.timetolive .

In addition, the administrator might want to set access controls on the metrics
destinations. This restricts access to sensitive metrics data and helps limit the impact of
metrics subscriptions on overall performance. For more information about
administrative tasks in enabling message-based monitoring and access control, see
"Using the Message-Based Monitoring API" in Open Message Queue Administration
Guide.

Table 5–1 Metrics Topic Destinations

Topic Destination Name Type of Metrics Messages

mq.metrics.broker Broker metrics: information on connections,
message flow, and volume of messages in the
broker.

mq.metrics.jvm Java Virtual Machine metrics: information on
memory usage in the JVM.

mq.metrics.destination_list A list of all destinations on the broker, and their
types.

mq.metrics.destination.queue.dn Destination metrics for a queue of the specified
name. Metrics data includes number of consumers,
message flow or volume, disk usage, and more.
Specify the destination name for the dn variable.

mq.metrics.destination.topic.dn Destination metrics for a topic of the specified
name. Metrics data includes number of consumers,
message flow or volume, disk usage, and more.
Specify the destination name for the dn variable.

Creating a Metrics-Monitoring Client

Using the Metrics Monitoring API 5-3

Implementation Summary
The following task list summarizes the steps required to implement message based
monitoring:

To Implement Message-Based Monitoring
1. The developer designs and writes a client that subscribes to one or more metrics

destinations.

2. The administrator sets those metrics-related broker properties whose default
values are not satisfactory.

3. (Optional) The administrator sets entries in the access.control.properties file to
restrict access to metrics information.

4. The developer or the administrator starts the metrics monitoring client.

When consumers subscribe to a metrics topic, the topic's physical destination is
automatically created. After the metrics topic has been created, the broker's
metrics message producer begins to send metrics messages to the appropriate
destination.

Creating a Metrics-Monitoring Client
You create a metrics monitoring client in the same way that you would write any JMS
client, except that the client must subscribe to one or more special metrics message
topic and must be ready to receive and process messages of a specific type and format.

No hierarchical naming scheme is implied in the metrics-message names. You can't use
a wildcard character (*) to identify multiple destination names.

A client that monitors broker metrics must perform the following basic tasks:

To Monitor Broker Metrics
1. Create a TopicConnectionFactory object.

2. Create a TopicConnection to the Message Queue service.

3. Create a TopicSession.

4. Create a metrics Topic destination object.

5. Create a TopicSubscriber.

6. Register as an asynchronous listener to the topic, or invoke the synchronous
receive() method to wait for incoming metrics messages.

7. Process metrics messages that are received.

In general, you would use JNDI lookups of administered objects to make your
client code provider-independent. However, the metrics-message production is
specific to Message Queue, there is no compelling reason to use JNDI lookups. You
can simply instantiate these administered objects directly in your client code. This
is especially true for a metrics destination for which an administrator would not
normally create an administered object.

Notice that the code examples in this chapter instantiate all the relevant
administered objects directly.

You can use the following code to extract the type (String) or timestamp (long)
properties in the message header from the message:

Format of Metrics Messages

5-4 Open Message Queue 4.5.2 Developer's Guide for Java Clients

MapMessage mapMsg;
/*
* mapMsg is the metrics message received
*/
String type = mapMsg.getStringProperty("type");
long timestamp = mapMsg.getLongProperty("timestamp");

You use the appropriate get method in the class javax.jms.MapMessage to extract
the name-value pairs. The get method you use depends on the value type. Three
examples follow:

long value1 = mapMsg.getLong("numMsgsIn");
long value2 = mapMsg.getLong("numMsgsOut");
int value3 = mapMsg.getInt("diskUtilizationRatio");

Format of Metrics Messages
In order to consume and process a metrics messages, you must know its type and
format. This section describes the general format of metrics messages and provides
detailed information on the format of each type of metrics message.

Metrics messages are of type MapMessage. (A type of message whose body contains a
set of name-value pairs. The order of entries is not defined.)

■ The message header has properties that are useful to applications. The type
property identifies the type of metric message (and therefore its contents). It is
useful if the same subscriber processes more than one type of metrics message for
example, messages from the topics mq.metrics.broker and mq.metrics.jvm. The
timestamp property indicates when the metric sample was taken and is useful for
calculating rates or drawing graphs. The brokerHost, brokerPort, and
brokerAddress properties identify the broker that sent the metric message and are
useful when a single application needs to process metric messages from different
brokers.

■ The body of the message contains name-value pairs, and the data values depend
on the type of metrics message. The following subsections describe the format of
each metrics message type.

Note that the names of name-value pairs (used in code to extract data) are
case-sensitive and must be coded exactly as shown. For example, NumMsgsOut is
incorrect; numMsgsOut is correct.

Broker Metrics
The messages you receive when you subscribe to the topic mq.metrics.broker have
the type property set to mq.metrics.broker in the message header and have the data
listed in Table 5–2 in the message body.

Table 5–2 Data in the Body of a Broker Metrics Message

Metric Name Value Type Description

numConnections long Current number of connections to the broker

numMsgsIn long Number of JMS messages that have flowed into the broker
since it was last started

numMsgsOut long Number of JMS messages that have flowed out of the broker
since it was last started

Format of Metrics Messages

Using the Metrics Monitoring API 5-5

JVM Metrics
The messages you receive when you subscribe to the topic mq.metrics.jvm have the
type property set to mq.metrics.jvm in the message header and have the data listed in
Table 5–3 in the message body.

Destination-List Metrics
The messages you receive when you subscribe to a topic named
mq.metrics.destination_list have the type property set to
mq.metrics.destination_list in the message header.

The message body contains a list of map names. Each destination on the broker is
specified by a unique map name (a name-value pair) in the message body. The type of
the name-value pair is hashtable.

The name (in the name-value pair) depends on whether the destination is a queue or a
topic, and is constructed as follows:

numMsgs long Current number of JMS messages stored in broker memory
and persistent store

msgBytesIn long Number of JMS message bytes that have flowed into the
broker since it was last started

msgBytesOut long Number of JMS message bytes that have flowed out of the
broker since it was last started

totalMsgBytes long Current number of JMS message bytes stored in broker
memory and persistent store

numPktsIn long Number of packets that have flowed into the broker since it
was last started; this includes both JMS messages and control
messages

numPktsOut long Number of packets that have flowed out of the broker since it
was last started; this includes both JMS messages and control
messages

pktBytesIn long Number of packet bytes that have flowed into the broker since
it was last started; this includes both JMS messages and
control messages

pktBytesOut long Number of packet bytes that have flowed out of the broker
since it was last started; this includes both JMS messages and
control messages

numDestinations long Current number of destinations in the broker

Table 5–3 Data in the Body of a JVM Metrics Message

Metric Name Value Type Description

freeMemory long Amount of free memory available for use in the JVM heap

maxMemory long Maximum size to which the JVM heap can grow

totalMemory long Total memory in the JVM heap

Table 5–2 (Cont.) Data in the Body of a Broker Metrics Message

Metric Name Value Type Description

Format of Metrics Messages

5-6 Open Message Queue 4.5.2 Developer's Guide for Java Clients

■ mq.metrics.destination.queue.monitored_destination_name

■ mq.metrics.destination.topic.monitored_destination_name

The value (in the name-value pair) is an object of type java.util.Hashtable . This
hashtable contains the key-value pairs described in Table 5–4.

Notice that the destination name and type could be extracted directly from the metrics
topic destination name, but the hashtable includes it for your convenience.

By enumerating through the map names and extracting the hashtable described in
Table 5–4, you can form a complete list of destination names and some of their
characteristics.

The destination list does not include the following kinds of destinations:

■ Destinations that are used by Message Queue administration tools

■ Destinations that the Message Queue broker creates for internal use

Destination Metrics
The messages you receive when you subscribe to the topic
mq.metrics.destination.queue.monitored_destination_name have the type property
mq.metrics.destination.queue.monitored_destination_name set in the message
header. The messages you receive when you subscribe to the topic
mq.metrics.destination.topic.monitored_destination_name have the type property
mq.metrics.destination.topic. monitored_destination_name set in the message
header. Either of these messages has the data listed in Table 5–5 in the message body.

Table 5–4 Value of a Name-Value Pair

Key (String) Value type Value or Description

name String Destination name

type String Destination type (queue or topic)

isTemporary Boolean Is destination temporary?

Table 5–5 Data in the Body of a Destination Metrics Message

Metric Name Value Type Description

numActiveConsumers long Current number of active consumers

avgNumActiveConsumers long Average number of active consumers since the
broker was last started

peakNumActiveConsumers long Peak number of active consumers since the broker
was last started

numBackupConsumers long Current number of backup consumers (applies only
to queues)

avgNumBackupConsumers long Average number of backup consumers since the
broker was last started (applies only to queues)

peakNumBackupConsumers long Peak number of backup consumers since the broker
was last started (applies only to queues)

numMsgsIn long Number of JMS messages that have flowed into this
destination since the broker was last started

Metrics Monitoring Client Code Examples

Using the Metrics Monitoring API 5-7

Metrics Monitoring Client Code Examples
Several complete monitoring example applications (including source code and full
documentation) are provided when you install Message Queue. You'll find the
examples in your IMQ home directory under /demo/monitoring. Before you can run
these clients, you must set up your environment (for example, the CLASSPATH
environment variable). For details, see Setting Up Your Environment.

Next are brief descriptions of three examples—Broker Metrics, Destination List
Metrics, and Destination Metrics—with annotated code examples from each.

These examples use the utility classes MetricsPrinter and MultiColumnPrinter to
print formatted and aligned columns of text output. However, rather than explaining
how those utility classes are used, the following code examples focus on how to
subscribe to the metrics topic and how to extract information from the metrics
messages received.

numMsgsOut long Number of JMS messages that have flowed out of
this destination since the broker was last started

numMsgs long Number of JMS messages currently stored in
destination memory and persistent store

avgNumMsgs long Average number of JMS messages stored in
destination memory and persistent store since the
broker was last started

peakNumMsgs long Peak number of JMS messages stored in destination
memory and persistent store since the broker was
last started

msgBytesIn long Number of JMS message bytes that have flowed into
this destination since the broker was last started

msgBytesOut long Number of JMS message bytes that have flowed out
of this destination since the broker was last started

totalMsgBytes long Current number of JMS message bytes stored in
destination memory and persistent store

avgTotalMsgBytes long Average number of JMS message bytes stored in
destination memory and persistent store since the
broker was last started

peakTotalMsgBytes long Peak number of JMS message bytes stored in
destination memory and persistent store since the
broker was last started

peakMsgBytes long Peak number of JMS message bytes in a single
message since the broker was last started

diskReserved long Disk space (in bytes) used by all message records
(active and free) in the destination file-based store

diskUsed long Disk space (in bytes) used by active message records
in destination file-based store

diskUtilizationRatio int Quotient of used disk space over reserved disk
space. The higher the ratio, the more the disk space is
being used to hold active messages

Table 5–5 (Cont.) Data in the Body of a Destination Metrics Message

Metric Name Value Type Description

Metrics Monitoring Client Code Examples

5-8 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Notice that in the source files, the code for subscribing to metrics topics and processing
messages is actually spread across various methods. However, for the sake of clarity,
the examples are shown here as though they were contiguous blocks of code.

A Broker Metrics Example
The source file for this code example is BrokerMetrics.java. This metrics monitoring
client subscribes to the topic mq.metrics.broker and prints broker-related metrics to
the standard output.

Example 5–1 shows how to subscribe to mq.metrics.broker.

Example 5–1 Example of Subscribing to a Broker Metrics Topic

com.sun.messaging.TopicConnectionFactory metricConnectionFactory;
 TopicConnection metricConnection;
 TopicSession metricSession;
 TopicSubscriber metricSubscriber;
 Topic metricTopic;

 metricConnectionFactory = new com.sun.messaging.TopicConnectionFactory();

 metricConnection = metricConnectionFactory.createTopicConnection();
 metricConnection.start();

 metricSession = metricConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 metricTopic = metricSession.createTopic("mq.metrics.broker");

 metricSubscriber = metricSession.createSubscriber(metricTopic);
 metricSubscriber.setMessageListener(this);

The incoming message is processed in the onMessage() and doTotals() methods, as
shown in Example 5–2.

Example 5–2 Example of Processing a Broker Metrics Message

public void onMessage(Message m) {
 try {
 MapMessage mapMsg = (MapMessage)m;
 String type = mapMsg.getStringProperty("type");

 if (type.equals("mq.metrics.broker")) {
 if (showTotals) {
 doTotals(mapMsg);
 ...
 }
}

private void doTotals(MapMessage mapMsg) {
 try {
 String oneRow[] = new String[8];
 int i = 0;

 /*
 * Extract broker metrics
 */
 oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsIn"));

Metrics Monitoring Client Code Examples

Using the Metrics Monitoring API 5-9

 oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsOut"));
 oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesIn"));
 oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesOut"));
 oneRow[i++] = Long.toString(mapMsg.getLong("numPktsIn"));
 oneRow[i++] = Long.toString(mapMsg.getLong("numPktsOut"));
 oneRow[i++] = Long.toString(mapMsg.getLong("pktBytesIn"));
 oneRow[i++] = Long.toString(mapMsg.getLong("pktBytesOut"));
 ...
 } catch (Exception e) {
 System.err.println("onMessage: Exception caught: " + e);
 }
}

Notice how the metrics type is extracted, using the getStringProperty() method, and
is checked. If you use the onMessage() method to process metrics messages of
different types, you can use the type property to distinguish between different
incoming metrics messages.

Also notice how various pieces of information on the broker are extracted, using the
getLong() method of mapMsg.

Run this example monitoring client with the following command:

java BrokerMetrics

The output looks like the following:

--
Msgs Msg Bytes Pkts Pkt Bytes
In Out In Out In Out In Out
--
0 0 0 0 6 5 888 802
0 1 0 633 7 8 1004 1669

A Destination List Metrics Example
The source file for this code example is DestListMetrics.java. This client application
monitors the list of destinations on a broker by subscribing to the topic
mq.metrics.destination_list. The messages that arrive contain information
describing the destinations that currently exist on the broker, such as destination
name, destination type, and whether the destination is temporary.

Example 5–3 shows how to subscribe to mq.metrics.destination_list.

Example 5–3 Example of Subscribing to the Destination List Metrics Topic

com.sun.messaging.TopicConnectionFactory metricConnectionFactory;
TopicConnection metricConnection;
TopicSession metricSession;
TopicSubscriber metricSubscriber;
Topic metricTopic;
String metricTopicName = null;

metricConnectionFactory = new com.sun.messaging.TopicConnectionFactory();
metricConnection = metricConnectionFactory.createTopicConnection();
metricConnection.start();

metricSession = metricConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

Metrics Monitoring Client Code Examples

5-10 Open Message Queue 4.5.2 Developer's Guide for Java Clients

metricTopicName = "mq.metrics.destination_list";
metricTopic = metricSession.createTopic(metricTopicName);

metricSubscriber = metricSession.createSubscriber(metricTopic);
metricSubscriber.setMessageListener(this);

The incoming message is processed in the onMessage() method, as shown in
Example 5–4:

Example 5–4 Example of Processing a Destination List Metrics Message

public void onMessage(Message m) {
 try{
 MapMessage mapMsg = (MapMessage)m;
 String type = mapMsg.getStringProperty("type");

 if (type.equals(metricTopicName)) {
 String oneRow[] = new String[3];

 /*
 * Extract metrics
 */
 for (Enumeration e = mapMsg.getMapNames();
 e.hasMoreElements();) {

 String metricDestName = (String)e.nextElement();
 Hashtable destValues =
 (Hashtable)mapMsg.getObject(metricDestName);
 int i = 0;

 oneRow[i++] = (destValues.get("name")).toString();
 oneRow[i++] = (destValues.get("type")).toString();
 oneRow[i++] = (destValues.get("isTemporary")).toString();

 mp.add(oneRow);
 }

 mp.print();
 System.out.println("");

 mp.clear();
 } else {
 System.err.println("Msg received:
 not destination list metric type");
 }
 } catch (Exception e) {
 System.err.println("onMessage: Exception caught: " + e);
 }
}

Notice how the metrics type is extracted and checked, and how the list of destinations
is extracted. By iterating through the map names in mapMsg and extracting the
corresponding value (a hashtable), you can construct a list of all the destinations and
their related information.

As discussed in Format of Metrics Messages, these map names are metrics topic names
having one of two forms:

mq.metrics.destination.queue.monitored_destination_name

Metrics Monitoring Client Code Examples

Using the Metrics Monitoring API 5-11

mq.metrics.destination.topic.monitored_destination_name

(The map names can also be used to monitor a destination, but that is not done in this
particular example.)

Notice that from each extracted hashtable, the information on each destination is
extracted using the keys name, type, and isTemporary. The extraction code from the
previous code example is reiterated here for your convenience.

Example 5–5 Example of Extracting Destination Information From a Hash Table

 String metricDestName = (String)e.nextElement();
 Hashtable destValues = (Hashtable)mapMsg.getObject(metricDestName);
 int i = 0;

 oneRow[i++] = (destValues.get("name")).toString();
 oneRow[i++] = (destValues.get("type")).toString();
 oneRow[i++] = (destValues.get("isTemporary")).toString();

Run this example monitoring client with the following command:

java DestListMetrics

The output looks like the following:

Destination Name Type IsTemporary

SimpleQueue queue false
fooQueue queue false
topic1 topic false

A Destination Metrics Example
The source file for this code example is DestMetrics.java. This client application
monitors a specific destination on a broker. It accepts the destination type and name as
parameters, and it constructs a metrics topic name of the form
mq.metrics.destination.queue.monitored_destination_name or
mq.metrics.destination.topic.monitored_destination_name .

Example 5–6 shows how to subscribe to the metrics topic for monitoring a specified
destination.

Example 5–6 Example of Subscribing to a Destination Metrics Topic

com.sun.messaging.TopicConnectionFactory metricConnectionFactory;
TopicConnection metricConnection;
TopicSession metricSession;
TopicSubscriber metricSubscriber;
Topic metricTopic;
String metricTopicName = null;
String destName = null,
 destType = null;

for (int i = 0; i < args.length; ++i) {
 ...
 } else if (args[i].equals("-n")) {
 destName = args[i+1];

Metrics Monitoring Client Code Examples

5-12 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 } else if (args[i].equals("-t")) {
 destType = args[i+1];
 }
}

metricConnectionFactory = new com.sun.messaging.TopicConnectionFactory();

metricConnection = metricConnectionFactory.createTopicConnection();
metricConnection.start();

metricSession = metricConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

if (destType.equals("q")) {
 metricTopicName = "mq.metrics.destination.queue." + destName;
} else {
 metricTopicName = "mq.metrics.destination.topic." + destName;
}

metricTopic = metricSession.createTopic(metricTopicName);

metricSubscriber = metricSession.createSubscriber(metricTopic);
metricSubscriber.setMessageListener(this);

The incoming message is processed in the onMessage() method, as shown in
Example 5–7:

Example 5–7 Example of Processing a Destination Metrics Message

public void onMessage(Message m) {
 try {
 MapMessage mapMsg = (MapMessage)m;
 String type = mapMsg.getStringProperty("type");

 if (type.equals(metricTopicName)) {
 String oneRow[] = new String[11];
 int i = 0;

 /*
 * Extract destination metrics
 */
 oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsIn"));
 oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsOut"));
 oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesIn"));
 oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesOut"));

 oneRow[i++] = Long.toString(mapMsg.getLong("numMsgs"));
 oneRow[i++] = Long.toString(mapMsg.getLong("peakNumMsgs"));
 oneRow[i++] = Long.toString(mapMsg.getLong("avgNumMsgs"));

 oneRow[i++] = Long.toString(mapMsg.getLong("totalMsgBytes")/1024);
 oneRow[i++] = Long.toString
 (mapMsg.getLong("peakTotalMsgBytes")/1024);
 oneRow[i++] = Long.toString
 (mapMsg.getLong("avgTotalMsgBytes")/1024);

 oneRow[i++] = Long.toString(mapMsg.getLong("peakMsgBytes")/1024);

 mp.add(oneRow);
 ...

Metrics Monitoring Client Code Examples

Using the Metrics Monitoring API 5-13

 }
 } catch (Exception e) {
 System.err.println("onMessage: Exception caught: " + e);
 }
}

Notice how the metrics type is extracted, using the getStringProperty() method as in
the previous examples, and is checked. Also notice how various destination data are
extracted, using the getLong() method of mapMsg.

You can run this example monitoring client with one of the following commands:

java DestMetrics -t t -n topic_name
java DestMetrics -t q -n queue_name

Using a queue named SimpleQueue as an example, the command would be:

java DestMetrics -t q -n SimpleQueue

The output looks like the following:

--
Msgs Msg Bytes Msg Count Tot Msg Bytes(k) Largest Msg
In Out In Out Curr Peak Avg Curr Peak Avg (k)
--
500 0 318000 0 500 500 250 310 310 155 0

Metrics Monitoring Client Code Examples

5-14 Open Message Queue 4.5.2 Developer's Guide for Java Clients

6

Working with SOAP Messages 6-1

6Working with SOAP Messages

SOAP is a protocol that allows for the exchange of data whose structure is defined by
an XML scheme. Using Message Queue, you can send JMS messages that contain a
SOAP payload. This allows you to transport SOAP messages reliably and to publish
SOAP messages to JMS subscribers. This chapter covers the following topics:

■ What is SOAP?

■ SOAP Messaging in JAVA

■ SOAP Messaging Models and Examples

■ Integrating SOAP and Message Queue

If you are familiar with the SOAP specification, you can skip the introductory section
and start by reading SOAP Messaging in JAVA.

What is SOAP?
SOAP, the Simple Object Access Protocol, is a protocol that allows the exchange of
structured data between peers in a decentralized, distributed environment. The
structure of the data being exchanged is specified by an XML scheme.

The fact that SOAP messages are encoded in XML makes SOAP messages portable,
because XML is a portable, system-independent way of representing data. By
representing data using XML, you can access data from legacy systems as well as share
your data with other enterprises. The data integration offered by XML also makes this
technology a natural for Web-based computing such as Web services. Firewalls can
recognize SOAP packets based on their content type (text/xml-SOAP) and can filter
messages based on information exposed in the SOAP message header.

The SOAP specification describes a set of conventions for exchanging XML messages.
As such, it forms a natural foundation for Web services that also need to exchange
information encoded in XML. Although any two partners could define their own
protocol for carrying on this exchange, having a standard such as SOAP allows
developers to build the generic pieces that support this exchange. These pieces might
be software that adds functionality to the basic SOAP exchange, or might be tools that
administer SOAP messaging, or might even comprise parts of an operating system
that supports SOAP processing. Once this support is put in place, other developers can
focus on creating the Web services themselves.

The SOAP protocol is fully described at http://www.w3.org/TR/SOAP. This section
restricts itself to discussing the reasons why you would use SOAP and to describing
basic concepts that will make it easier to work with SOAP messages.

What is SOAP?

6-2 Open Message Queue 4.5.2 Developer's Guide for Java Clients

SOAP with Attachments API for Java
The Soap with Attachments API for Java (SAAJ) is a JAVA-based API that enforces
compliance to the SOAP standard. When you use this API to assemble and
disassemble SOAP messages, it ensures the construction of syntactically correct SOAP
messages. SAAJ also makes it possible to automate message processing when several
applications need to handle different parts of a message before forwarding it to the
next recipient.

Figure 6–1 shows the layers that can come into play in the implementation of SOAP
messaging. This chapter focuses on the SOAP and language implementation layers.

Figure 6–1 SOAP Messaging Layers

The sections that follow describe each layer shown in the preceding figure in greater
detail. The rest of this chapter focuses on the SOAP and language implementation
layers.

The Transport Layer
Underlying any messaging system is the transport or wire protocol that governs the
serialization of the message as it is sent across a wire and the interpretation of the
message bits when it gets to the other side. Although SOAP messages can be sent
using any number of protocols, the SOAP specification defines only the binding with
HTTP. SOAP uses the HTTP request/response message model. It provides SOAP
request parameters in an HTTP request and SOAP response parameters in an HTTP
response. The HTTP binding has the advantage of allowing SOAP messages to go
through firewalls.

The SOAP Layer
Above the transport layer is the SOAP layer. This layer, which is defined in the SOAP
Specification, specifies the XML scheme used to identify the message parts: envelope,
header, body, and attachments. All SOAP message parts and contents, except for the
attachments, are written in XML. The following sample SOAP message shows how
XML tags are used to define a SOAP message:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Wire Transport Protocol

SOAP with Attachments Encoding

Language Implementation

Profile
(Messaging and Delivery Semantics)

What is SOAP?

Working with SOAP Messages 6-3

The wire transport and SOAP layers are actually sufficient to do SOAP messaging. You
could create an XML document that defines the message you want to send, and you
could write HTTP commands to send the message from one side and to receive it on
the other. In this case, the client is limited to sending synchronous messages to a
specified URL. Unfortunately, the scope and reliability of this kind of messaging is
severely restricted. To overcome these limitations, the provider and profile layers are
added to SOAP messaging.

The Language Implementation Layer
A language implementation allows you to create XML messages that conform to
SOAP, using API calls. For example, the SAAJ implementation of SOAP, allows a Java
client to construct a SOAP message and all its parts as Java objects. The client would
also use SAAJ to create a connection and use it to send the message. Likewise, a Web
service written in Java could use the same implementation (SAAJ), or any other
language implementation, to receive the message, to disassemble it, and to
acknowledge its receipt.

The Profiles Layer
In addition to a language implementation, a SOAP implementation can offer services
that relate to message delivery. These could include reliability, persistence, security,
and administrative control, and are typically delivered by a SOAP messaging provider.
These services will be provided for SOAP messaging by Message Queue in future
releases.

Interoperability
Because SOAP providers must all construct and deconstruct messages as defined by
the SOAP specification, clients and services using SOAP are interoperable. That is, as
shown in Figure 6–2, the client and the service doing SOAP messaging do not need to
be written in the same language nor do they need to use the same SOAP provider. It is
only the packaging of the message that must be standard.

Figure 6–2 SOAP Interoperability

SOAP
Messaging

Client

SOAP Service

SOAP
Implementation

HTTP
HTTP

SOAP
Msg

SAAJ

SOAP
Implementation

What is SOAP?

6-4 Open Message Queue 4.5.2 Developer's Guide for Java Clients

In order for a SAAJ client or service to interoperate with a service or client using a
different implementation, the parties must agree on two things:

■ They must use the same transport bindings--that is, the same wire protocol.

■ They must use the same profile in constructing the SOAP message being sent.

The SOAP Message
Having surveyed the SOAP messaging layers, let's examine the SOAP message itself.
Although the work of rendering a SOAP message in XML is taken care of by the SAAJ
implementation, you must still understand its structure in order to make the SAAJ
calls in the right order.

A SOAP message is an XML document that consists of a SOAP envelope, an optional
SOAP header, and a SOAP body. The SOAP message header contains information that
allows the message to be routed through one or more intermediate nodes before it
reaches its final destination.

■ The envelope is the root element of the XML document representing the message. It
defines the framework for how the message should be handled and by whom.
Once it encounters the Envelope element, the SOAP processor knows that the
XML is a SOAP message and can then look for the individual parts of the message.

■ The header is a generic mechanism for adding features to a SOAP message. It can
contain any number of child elements that define extensions to the base protocol.
For example, header child elements might define authentication information,
transaction information, locale information, and so on. The actors, the software that
handle the message may, without prior agreement, use this mechanism to define
who should deal with a feature and whether the feature is mandatory or optional.

■ The body is a container for mandatory information intended for the ultimate
recipient of the message.

A SOAP message may also contain an attachment, which does not have to be in XML.
For more information, see SOAP Packaging Models next.

A SOAP message is constructed like a nested matrioshka doll. When you use SAAJ to
assemble or disassemble a message, you need to make the API calls in the appropriate
order to get to the message part that interests you. For example, in order to add
content to the message, you need to get to the body part of the message. To do this you
need to work through the nested layers: SOAP part, SOAP envelope, SOAP body, until
you get to the SOAP body element that you will use to specify your data. For more
information, see The SOAP Message Object.

SOAP Packaging Models
The SOAP specification describes two models of SOAP messages: one that is encoded
entirely in XML and one that allows the sender to add an attachment containing
non-XML data. You should look over the following two figures and note the parts of
the SOAP message for each model. When you use SAAJ to define SOAP messages and
their parts, it will be helpful for you to be familiar with this information.

Figure 6–3 shows the SOAP model without attachments. This package includes a
SOAP envelope, a header, and a body. The header is optional.

What is SOAP?

Working with SOAP Messages 6-5

Figure 6–3 SOAP Message Without Attachments

When you construct a SOAP message using SAAJ, you do not have to specify which
model you're following. If you add an attachment, a message like that shown in
Figure 6–4 is constructed; if you don't, a message like that shown in Figure 6–3 is
constructed.

Figure 6–3 shows a SOAP Message with attachments. The attachment part can contain
any kind of content: image files, plain text, and so on. The sender of a message can
choose whether to create a SOAP message with attachments. The message receiver can
also choose whether to consume an attachment.

A message that contains one or more attachments is enclosed in a MIME envelope that
contains all the parts of the message. In SAAJ, the MIME envelope is automatically
produced whenever the client creates an attachment part. If you add an attachment to
a message, you are responsible for specifying (in the MIME header) the type of data in
the attachment.

Figure 6–4 SOAP Message with Attachments

Communication Protocol Envelope HTTP, SMTP, ...

MIME Envelope

SOAP 1.1
Message Package

Envelope

Header

Body

Communication Protocol Envelope

MIME Envelope

SOAP Part

Envelope

Header

Attachment Part

SOAP Attachment
(XML or non-XML)

Body

HTTP, SMTP, ...

SOAP Messaging in JAVA

6-6 Open Message Queue 4.5.2 Developer's Guide for Java Clients

SOAP Messaging in JAVA
The SOAP specification does not provide a programming model or even an API for the
construction of SOAP messages; it simply defines the XML schema to be used in
packaging a SOAP message.

 SAAJ is an application programming interface that can be implemented to support a
programming model for SOAP messaging and to furnish Java objects that application
or tool writers can use to construct, send, receive, and examine SOAP messages. SAAJ
defines two packages:

■ javax.xml.soap: you use the objects in this package to define the parts of a SOAP
message and to assemble and disassemble SOAP messages. You can also use this
package to send a SOAP message without the support of a provider.

■ javax.xml.messaging: you use the objects in this package to send a SOAP
message using a provider and to receive SOAP messages.

This chapter focuses on the javax.xml.soap package and how you use the objects and
methods it defines

■ to assemble and disassemble SOAP messages

■ to send and receive these messages

It also explains how you can use the JMS API and Message Queue to send and receive
JMS messages that carry SOAP message payloads.

The SOAP Message Object
A SOAP Message Object is a tree of objects as shown in Figure 6–5. The classes or
interfaces from which these objects are derived are all defined in the javax.xml.soap
package.

Note: Beginning with SAAJ 1.3, you must put the file mail.jar
explicitly in CLASSPATH.

SOAP Messaging in JAVA

Working with SOAP Messages 6-7

Figure 6–5 SOAP Message Object

As shown in the figure, the SOAPMessage object is a collection of objects divided in two
parts: a SOAP part and an attachment part. The main thing to remember is that the
attachment part can contain non-xml data.

The SOAP part of the message contains an envelope that contains a body (which can
contain data or fault information) and an optional header. When you use SAAJ to
create a SOAP message, the SOAP part, envelope, and body are created for you: you
need only create the body elements. To do that you need to get to the parent of the
body element, the SOAP body.

In order to reach any object in the SOAPMessage tree, you must traverse the tree
starting from the root, as shown in the following lines of code. For example, assuming
the SOAPMessage is MyMsg, here are the calls you would have to make in order to get
the SOAP body:

SOAPPart MyPart = MyMsg.getSOAPPart();
SOAPEnvelope MyEnv = MyPart.getEnvelope();
SOAPBody MyBody = envelope.getBody();

At this point, you can create a name for a body element (as described in Namespaces)
and add the body element to the SOAPMessage.

For example, the following code line creates a name (a representation of an XML tag)
for a body element:

Name bodyName = envelope.createName("Temperature");

The next code line adds the body element to the body:

SOAPBodyElement myTemp = MyBody.addBodyElement(bodyName);

SOAP Message

SOAP
Part

SOAP
Envelope

Attachment
Part

MIME
Headers

MIME
Header

SOAP
Fault

Detail

Attachment

Detail
Entry

SOAP
Header

SOAP
Body

SOAP
Header

Element

SOAP Body
Element

SOAP Messaging in JAVA

6-8 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Finally, this code line defines some data for the body element bodyName :

myTemp.addTextNode("98.6");

Inherited Methods
The elements of a SOAP message form a tree. Each node in that tree implements the
Node interface and, starting at the envelope level, each node implements the
SOAPElement interface as well. The resulting shared methods are described in
Table 6–1.

Table 6–1 Inherited Methods

Inherited
From Method Name Purpose

SOAPElement addAttribute(Name, String)

Add an attribute with the specified Name
object and string value

addChildElement(Name)
addChildElement(String,
String)
addChildElement
 (String, String, String)

Create a new SOAPElement object, initialized
with the given Name object, and add the new
element

(Use the Envelope.createName method to
create a Name object)

addNameSpaceDeclaration
 (String, String)

Add a namespace declaration with the
specified prefix and URI

addTextnode(String) Create a new Text object initialized with the
given String and add it to this SOAPElement
object

getAllAttributes() Return an iterator over all the attribute
names in this object

getAttributeValue(Name) Return the value of the specified attribute

getChildElements() Return an iterator over all the immediate
content of this element

getChildElements(Name) Return an iterator over all the child elements
with the specified name

getElementName()

Return the name of this object

getEncodingStyle() Return the encoding style for this object

getNameSpacePrefixes() Return an iterator of namespace prefixes

getNamespaceURI(String) Return the URI of the namespace with the
given prefix

removeAttribute(Name) Remove the specified attribute

SOAP Messaging in JAVA

Working with SOAP Messages 6-9

Namespaces
An XML namespace is a means of qualifying element and attribute names to
disambiguate them from other names in the same document. This section provides a
brief description of XML namespaces and how they are used in SOAP. For complete
information, see http://www.w3.org/TR/REC-xml-names/

An explicit XML namespace declaration takes the following form:

<prefix:myElement
xmlns:prefix ="URI">

The declaration defines prefix as an alias for the specified URI. In the element
myElement, you can use prefix with any element or attribute to specify that the element
or attribute name belongs to the namespace specified by the URI.

The following is an example of a namespace declaration:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

This declaration defines SOAP_ENV as an alias for the namespace:

http://schemas.xmlsoap.org/soap/envelope/

After defining the alias, you can use it as a prefix to any attribute or element in the
Envelope element. In Example 6–1, the elements <Envelope> and <Body> and the
attribute encodingStyle all belong to the SOAP namespace specified by the
http://schemas.sxmlsoap.org/soap/envelope/URI .

Example 6–1 Explicit Namespace Declarations

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">

removeNamespaceDeclaration
(String)

Remove the namespace declaration that
corresponds to the specified prefix

setEncodingStyle(String) Set the encoding style for this object to that
specified by String

Node

detachNode() Remove this Node object from the tree

getParentElement() Return the parent element of this Node object

getValue Return the value of the immediate child of
this Node object if a child exists and its value
is text

recycleNode() Notify the implementation that his Node
object is no longer being used and is free for
reuse

setParentElement(SOAPElement) Set the parent of this object to that specified
by the SOAPElement parameter

Table 6–1 (Cont.) Inherited Methods

Inherited
From Method Name Purpose

SOAP Messaging in JAVA

6-10 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 <SOAP-ENV:Header>
 <HeaderA
 xmlns="HeaderURI"
 SOAP-ENV:mustUnderstand="0">

 The text of the header
 </HeaderA>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
.
.
.
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Note that the URI that defines the namespace does not have to point to an actual
location; its purpose is to disambiguate attribute and element names.

Pre-defined SOAP Namespaces SOAP defines two namespaces:

■ The SOAP envelope, the root element of a SOAP message, has the following
namespace identifier:

"http://schemas.xmlsoap.org/soap/envelope"

■ The SOAP serialization, the URI defining SOAP's serialization rules, has the
following namespace identifier:

"http://schemas.xmlsoap.org/soap/encoding"

When you use SAAJ to construct or consume messages, you are responsible for setting
or processing namespaces correctly and for discarding messages that have incorrect
namespaces.

Using Namespaces when Creating a SOAP Name When you create the body elements or
header elements of a SOAP message, you must use the Name object to specify a
well-formed name for the element. You obtain a Name object by calling the method
SOAPEnvelope.createName.

When you call this method, you can pass a local name as a parameter or you can
specify a local name, prefix, and URI. For example, the following line of code defines a
name object bodyName.

Name bodyName = MyEnvelope.createName("TradePrice",
 "GetLTP","http://foo.eztrade.com");

This would be equivalent to the namespace declaration:

<GetLTP:TradePrice xmlns:GetLTP= "http://foo.eztrade.com">

The following code shows how you create a name and associate it with a SOAPBody
element. Note the use and placement of the createName method.

SoapBody body = envelope.getBody();//get body from envelope
Name bodyName = envelope.createName("TradePrice", "GetLTP",
 "http://foo.eztrade.com");
SOAPBodyElement gltp = body.addBodyElement(bodyName);

Parsing Name Objects For any given Name object, you can use the following Name
methods to parse the name:

SOAP Messaging in JAVA

Working with SOAP Messages 6-11

■ getQualifiedName returns "prefix:LocalName ", for the given name, this would be
GetLTP:TradePrice.

■ getURI would return "http://foo.eztrade.com" .

■ getLocalName would return "TradePrice ".

■ getPrefix would return "GetLTP".

Destination, Message Factory, and Connection Objects
SOAP messaging occurs when a SOAP message, produced by a message factory , is sent
to an endpoint by way of a connection .

If you are working without a provider, you must do the following:

■ Create a SOAPConnectionFactory object.

■ Create a SOAPConnection object.

■ Create an Endpoint object that represents the message's destination.

■ Create a MessageFactory object and use it to create a message.

■ Populate the message.

■ Send the message.

If you are working with a provider, you must do the following:

■ Create a ProviderConnectionFactory object.

■ Get a ProviderConnection object from the provider connection factory.

■ Get a MessageFactory object from the provider connection and use it to create a
message.

■ Populate the message.

■ Send the message.

The following three sections describe endpoint, message factory, and connection
objects in greater detail.

Endpoint
An endpoint identifies the final destination of a message. An endpoint is defined either
by the Endpoint class (if you use a provider) or by the URLEndpoint class (if you don't
use a provider).)

Constructing an Endpoint You can initialize an endpoint by calling its constructor. The
following code uses a constructor to create a URLEndpoint.

myEndpoint = new URLEndpoint("http://somehost/myServlet");

Using the Endpoint to Address a Message To address a message to an endpoint, specify the
endpoint as a parameter to the SOAPConnection.call method, which you use to send a
SOAP message.

Message Factory
You use a Message Factory to create a SOAP message.

To instantiate a message factory directly, use a statement like the following:

SOAP Messaging Models and Examples

6-12 Open Message Queue 4.5.2 Developer's Guide for Java Clients

MessageFactory mf = MessageFactory.newInstance();

Connection
To send a SOAP message using SAAJ, you must obtain a SOAPConnection . You can
also transport a SOAP message using Message Queue; for more information, see
Integrating SOAP and Message Queue.

SOAP Connection
A SOAPConnection allows you to send messages directly to a remote party. You can
obtain a SOAPConnection object simply by calling the static method
SOAPConnectionFactory.newInstance(). Neither reliability nor security are
guaranteed over this type of connection.

SOAP Messaging Models and Examples
This section explains how you use SAAJ to send and receive a SOAP message. It is also
possible to construct a SOAP message using SAAJ and to send it as the payload of a
JMS message. For information, see Integrating SOAP and Message Queue.

SOAP Messaging Programming Models
This section provides a brief summary of the programming models used in SOAP
messaging using SAAJ.

A SOAP message is sent to an endpoint by way of a point-to-point connection
(implemented by the SOAPConnection class).

You use point-to-point connections to establish a request-reply messaging model. The
request-reply model is illustrated in Figure 6–6.

Figure 6–6 Request-Reply Messaging

Using this model, the client does the following:

■ Creates an endpoint that specifies the URL that will be passed to the
SOAPConnection.call method that sends the message.

See Endpoint for a discussion of the different ways of creating an endpoint.

■ Creates a SOAPConnection factory and obtains a SOAP connection.

■ Creates a message factory and uses it to create a SOAP message.

■ Creates a name for the content of the message and adds the content to the
message.

■ Uses the SOAPConnection.call method to send the message.

SOAP
Endpoint

SOAP
Message

Sender
Blocks

Sender

Sender Call
Returns

Receive
and

Process
Message

SOAP Messaging Models and Examples

Working with SOAP Messages 6-13

It is assumed that the client will ignore the SOAPMessage object returned by the call
method because the only reason this object is returned is to unblock the client.

The SOAP service listening for a request-reply message uses a ReqRespListener object
to receive messages.

For a detailed example of a client that does point-to-point messaging, see Writing a
SOAP Client.

Working with Attachments
If a message contains any data that is not XML, you must add it to the message as an
attachment. A message can have any number of attachment parts. Each attachment
part can contain anything from plain text to image files.

To create an attachment, you must create a URL object that specifies the location of the
file that you want to attach to the SOAP message. You must also create a data handler
that will be used to interpret the data in the attachment. Finally, you need to add the
attachment to the SOAP message.

To create and add an attachment part to the message, you need to use the JavaBeans
Activation Framework (JAF) API. This API allows you to determine the type of an
arbitrary piece of data, encapsulate access to it, discover the operations available on it,
and activate a bean that can perform these operations. You must include the
activation.jar library in your application code in order to work with the JavaBeans
Activation Framework.

To Create and Add an Attachment
1. Create a URL object and initialize it to contain the location of the file that you want

to attach to the SOAP message.

URL url = new URL("http://wombats.com/img.jpg");

2. Create a data handler and initialize it with a default handler, passing the URL as
the location of the data source for the handler.

DataHandler dh = new DataHandler(url);

3. Create an attachment part that is initialized with the data handler containing the
URL for the image.

AttachmentPart ap1 = message.createAttachmentPart(dh);

4. Add the attachment part to the SOAP message.

myMessage.addAttachmentPart(ap1);

After creating the attachment and adding it to the message, you can send the
message in the usual way.

If you are using JMS to send the message, you can use the
SOAPMessageIntoJMSMessage conversion utility to convert a SOAP message that
has an attachment into a JMS message that you can send to a JMS queue or topic
using Message Queue.

Exception and Fault Handling
A SOAP application can use two error reporting mechanisms: SOAP exceptions and
SOAP faults:

SOAP Messaging Models and Examples

6-14 Open Message Queue 4.5.2 Developer's Guide for Java Clients

■ Use a SOAP exception to handle errors that occur on the client side during the
generation of the SOAP request or the unmarshalling of the response.

■ Use a SOAP fault to handle errors that occur on the server side when
unmarshalling the request, processing the message, or marshalling the response.
In response to such an error, server-side code should create a SOAP message that
contains a fault element, rather than a body element, and then it should send that
SOAP message back to the originator of the message. If the message receiver is not
the ultimate destination for the message, it should identify itself as the soapactor
so that the message sender knows where the error occurred. For additional
information, see Handling SOAP Faults.

Writing a SOAP Client
The following steps show the calls you have to make to write a SOAP client for
point-to-point messaging.

To Write a SOAP Client for Point-to-Point Messaging
1. Get an instance of a SOAPConnectionFactory:

SOAPConnectionFactory myFct = SOAPConnectionFactory.newInstance();

2. Get a SOAP connection from the SOAPConnectionFactory object:

SOAPConnection myCon = myFct.createConnection();

The myCon object that is returned will be used to send the message.

3. Get a MessageFactory object to create a message:

MessageFactory myMsgFct = MessageFactory.newInstance();

4. Use the message factory to create a message:

SOAPMessage message = myMsgFct.createMessage();

The message that is created has all the parts that are shown in Figure 6–7.

SOAP Messaging Models and Examples

Working with SOAP Messages 6-15

Figure 6–7 SOAP Message Parts

At this point, the message has no content. To add content to the message, you need
to create a SOAP body element, define a name and content for it, and then add it
to the SOAP body.

Remember that to access any part of the message, you need to traverse the tree,
calling a get method on the parent element to obtain the child. For example, to
reach the SOAP body, you start by getting the SOAP part and SOAP envelope:

SOAPPart mySPart = message.getSOAPPart();
SOAPEnvelope myEnvp = mySPart.getEnvelope();

5. Now, you can get the body element from the myEnvp object:

SOAPBody body = myEnvp.getBody();

The children that you will add to the body element define the content of the
message. (You can add content to the SOAP header in the same way.)

6. When you add an element to a SOAP body (or header), you must first create a
name for it by calling the envelope.createName method. This method returns a
Name object, which you must then pass as a parameter to the method that creates
the body element (or the header element).

Name bodyName = envelope.createName("GetLastTradePrice", "m",
 "http://eztrade.com")
SOAPBodyElement gltp = body.addBodyElement(bodyName);

7. Now create another body element to add to the gltp element:

Name myContent = envelope.createName("symbol");
SOAPElement mySymbol = gltp.addChildElement(myContent);

8. And now you can define data for the body element mySymbol:

mySymbol.addTextNode("SUNW");

The resulting SOAP message object is equivalent to this XML scheme:

<SOAP-ENV: Envelope

SOAP Message

SOAP Part

SOAP Header SOAP Body

SOAP Envelope

SOAP Messaging Models and Examples

6-16 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 xmlns:SOAPENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="http://eztrade.com">
 <symbol>SUNW</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV: Envelope>

9. Every time you send a message or write to it, the message is automatically saved.
However if you change a message you have received or one that you have already
sent, this would be the point when you would need to update the message by
saving all your changes. For example:

message.saveChanges();

10. Before you send the message, you must create a URLEndpoint object with the URL
of the endpoint to which the message is to be sent. (If you use a profile that adds
addressing information to the message header, you do not need to do this.)

URLEndpoint endPt = new URLEndpoint("http://eztrade.com//quotes");

11. Now, you can send the message:

SOAPMessage reply = myCon.call(message, endPt);

The reply message (reply) is received on the same connection.

12. Finally, you need to close the SOAPConnection object when it is no longer needed:

myCon.close();

Writing a SOAP Service
A SOAP service represents the final recipient of a SOAP message and should currently
be implemented as a servlet. You can write your own servlet or you can extend the
JAXMServlet class, which is furnished in the soap.messaging package for your
convenience. This section describes the task of writing a SOAP service based on the
JAXMServlet class.

Your servlet must implement either the ReqRespListener or OneWayListener
interfaces. The difference between these two is that ReqRespListener requires that you
return a reply.

Using either of these interfaces, you must implement a method called
onMessage(SOAPMsg). JAXMServlet will call onMessage after receiving a message using
the HTTP POST method, which saves you the work of implementing your own
doPost() method to convert the incoming message into a SOAP message.

Example 6–2 shows the basic structure of a SOAP service that uses the JAXMServlet
utility class.

Example 6–2 Skeleton Message Consumer

public class MyServlet extends JAXMServlet implements
 ReqRespListener
{
 public SOAPMessage onMessage(SOAP Message msg)
 { //Process message here
 }
}

SOAP Messaging Models and Examples

Working with SOAP Messages 6-17

Example 6–3 shows a simple ping message service:

Example 6–3 A Simple Ping Message Service

public class SOAPEchoServlet extends JAXMServlet
 implements ReqRespListener{

 public SOAPMessage onMessage(SOAPMessage mySoapMessage) {
 return mySoapMessage
 }
}

Table 6–2 describes the methods that the JAXM servlet uses. If you were to write your
own servlet, you would need to provide methods that performed similar work. In
extending JAXMServlet , you may need to override the Init method and the
SetMessageFactory method; you must implement the onMessage method.

Disassembling Messages
The onMessage method needs to disassemble the SOAP message that is passed to it by
the servlet and process its contents in an appropriate manner. If there are problems in
the processing of the message, the service needs to create a SOAP fault object and send
it back to the client as described in Handling SOAP Faults.

Processing the SOAP message may involve working with the headers as well as
locating the body elements and dealing with their contents. The following code sample

Table 6–2 JAXMServlet Methods

Method Description

void init (ServletConfig) Passes the ServletConfig object to its parent's constructor and
creates a default messageFactory object.

If you want incoming messages to be constructed according to
a certain profile, you must call the SetMessageFactory
method and specify the profile it should use in constructing
SOAP messages.

void doPost (HTTPRequest,
HTTPResponse

Gets the body of the HTTP request and creates a SOAP
message according to the default or specified MessageFactory
profile.

Calls the onMessage() method of an appropriate listener,
passing the SOAP message as a parameter.

It is recommended that you do not override this method.

void setMessageFactory
 (MessageFactory)

Sets the MessageFactory object. This is the object used to
create the SOAP message that is passed to the onMessage
method.

MimeHeaders getHeaders
 (HTTPRequest)

Returns a MimeHeaders object that contains the headers in the
given HTTPRequest object.

void putHeaders
(mimeHeaders,
 HTTPresponse)

Sets the given HTTPResponse object with the headers in the
given MimeHeaders object.

onMessage
(SOAPMesssage)

User-defined method that is called by the servlet when the
SOAP message is received. Normally this method needs to
disassemble the SOAP message passed to it and to send a
reply back to the client (if the servlet implements the
ReqRespListener interface.)

SOAP Messaging Models and Examples

6-18 Open Message Queue 4.5.2 Developer's Guide for Java Clients

shows how you might disassemble a SOAP message in the body of your onMessage
method. Basically, you need to use a Document Object Model (DOM) API to parse
through the SOAP message.

See http://xml.coverpages.org/dom.html for more information about the
DOM API.

Example 6–4 Processing a SOAP Message

{http://xml.coverpages.org/dom.html
 SOAPEnvelope env = reply.getSOAPPart().getEnvelope();
 SOAPBody sb = env.getBody();
 // create Name object for XElement that we are searching for
 Name ElName = env.createName("XElement");

 //Get child elements with the name XElement
 Iterator it = sb.getChildElements(ElName);

 //Get the first matched child element.
 //We know there is only one.
 SOAPBodyElement sbe = (SOAPBodyElement) it.next();

 //Get the value for XElement
 MyValue = sbe.getValue();
}

Handling Attachments
A SOAP message may have attachments. For sample code that shows you how to
create and add an attachment, see Code Samples. For sample code that shows you
how to receive and process an attachment, see Code Samples.

In handling attachments, you will need to use the Java Activation Framework API. See
http://java.sun.com/products/javabeans/glasgow/jaf.html for more information.

Replying to Messages
In replying to messages, you are simply taking on the client role, now from the server
side.

Handling SOAP Faults
Server-side code must use a SOAP fault object to handle errors that occur on the server
side when unmarshalling the request, processing the message, or marshalling the
response. The SOAPFault interface extends the SOAPBodyElement interface.

SOAP messages have a specific element and format for error reporting on the server
side: a SOAP message body can include a SOAP fault element to report errors that
happen during the processing of a request. Created on the server side and sent from
the server back to the client, the SOAP message containing the SOAPFault object
reports any unexpected behavior to the originator of the message.

Within a SOAP message object, the SOAP fault object is a child of the SOAP body, as
shown in the figure below. Detail and detail entry objects are only needed if one needs
to report that the body of the received message was malformed or contained
inappropriate data. In such a case, the detail entry object is used to describe the
malformed data.

SOAP Messaging Models and Examples

Working with SOAP Messages 6-19

Figure 6–8 SOAP Fault Element

The SOAP Fault element defines the following four sub-elements:

■ faultcode

A code (qualified name) that identifies the error. The code is intended for use by
software to provide an algorithmic mechanism for identifying the fault.
Predefined fault codes are listed in Table 6–3. This element is required.

■ faultstring

A string that describes the fault identified by the fault code. This element is
intended to provide an explanation of the error that is understandable to a human.
This element is required.

■ faultactor

A URI specifying the source of the fault: the actor that caused the fault along the
message path. This element is not required if the message is sent to its final
destination without going through any intermediaries. If a fault occurs at an
intermediary, then that fault must include a faultactor element.

■ detail

This element carries specific information related to the Body element. It must be
present if the contents of the Body element could not be successfully processed.
Thus, if this element is missing, the client should infer that the body element was

SOAP Message

SOAP Part

SOAP Envelope

SOAP Body

SOAP Fault

Detail

Detail Entry

SOAP Messaging Models and Examples

6-20 Open Message Queue 4.5.2 Developer's Guide for Java Clients

processed. While this element is not required for any error except a malformed
payload, you can use it in other cases to supply additional information to the
client.

Predefined Fault Codes The SOAP specification lists four predefined faultcode values.
The namespace identifier for these is http://schemas.xmlsoap.org/soap/envelope/.

These standard fault codes represent classes of faults. You can extend these by
appending a period to the code and adding an additional name. For example, you
could define a Server.OutOfMemory code, a Server.Down code, and so forth.

Defining a SOAP Fault Using SAAJ you can specify the value for faultcode,
faultstring, and faultactor using methods of the SOAPFault object. The following
code creates a SOAP fault object and sets the faultcode, faultstring, and
faultactor attributes:

SOAPFault fault;
reply = factory.createMessage();
envp = reply.getSOAPPart().getEnvelope(true);
someBody = envp.getBody();
fault = someBody.addFault():
fault.setFaultCode("Server");
fault.setFaultString("Some Server Error");
fault.setFaultActor(http://xxx.me.com/list/endpoint.esp/)
reply.saveChanges();

The server can return this object in its reply to an incoming SOAP message in case of a
server error.

The next code sample shows how to define a detail and detail entry object. Note that
you must create a name for the detail entry object.

SOAPFault fault = someBody.addFault();
fault.setFaultCode("Server");

Table 6–3 SOAP Faultcode Values

Faultcode Name Meaning

VersionMismatch The processing party found an invalid namespace for the SOAP envelope
element; that is, the namespace of the SOAP envelope element was not
http://schemas.xmlsoap.org/soap/envelope/ .

MustUnderstand An immediate child element of the SOAP Header element was either not
understood or not appropriately processed by the recipient. This element's
mustUnderstand attribute was set to 1 (true).

Client The message was incorrectly formed or did not contain the appropriate
information. For example, the message did not have the proper
authentication or payment information. The client should interpret this
code to mean that the message must be changed before it is sent again.

If this is the code returned, the SOAPFault object should probably include a
detailEntry object that provides additional information about the
malformed message.

Server The message could not be processed for reasons that are not connected
with its content. For example, one of the message handlers could not
communicate with another message handler that was upstream and did
not respond. Or, the database that the server needed to access is down.
The client should interpret this error to mean that the transmission could
succeed at a later point in time.

Integrating SOAP and Message Queue

Working with SOAP Messages 6-21

fault.setFaultActor("http://foo.com/uri");
fault.setFaultString ("Unkown error");
Detail myDetail = fault.addDetail();
detail.addDetailEntry(envelope.createName("125detail", "m",
 "Someuri")).addTextNode("the message cannot contain
 the string //");
reply.saveChanges();

Integrating SOAP and Message Queue
This section explains how you can send, receive, and process a JMS message that
contains a SOAP payload.

Message Queue provides a utility to help you send and receive SOAP messages using
the JMS API. With the support it provides, you can convert a SOAP message into a
JMS message and take advantage of the reliable messaging service offered by Message
Queue. You can then convert the message back into a SOAP message on the receiving
side and use SAAJ to process it.

To send, receive, and process a JMS message that contains a SOAP payload, you must
do the following:

■ Import the library com.sun.messaging.xml.MessageTransformer . This is the
utility whose methods you will use to convert SOAP messages to JMS messages
and vice versa.

■ Before you transport a SOAP message, you must call the
MessageTransformer.SOAPMessageIntoJMSMessage method. This method
transforms the SOAP message into a JMS message. You then send the resulting
JMS message as you would a normal JMS message. For programming simplicity, it
would be best to select a destination that is dedicated to receiving SOAP messages.
That is, you should create a particular queue or topic as a destination for your
SOAP message and then send only SOAP messages to this destination.

Message myMsg= MessageTransformer.SOAPMessageIntoJMSMessage
 (SOAPMessage, Session);

The Session argument specifies the session to be used in producing the Message.

■ On the receiving side, you get the JMS message containing the SOAP payload as
you would a normal JMS message. You then call the
MessageTransformer.SOAPMessageFromJMSMessage utility to extract the SOAP
message, and then use SAAJ to disassemble the SOAP message and do any further
processing. For example, to obtain the SOAPMessage make a call like the
following:

SOAPMessage myMsg= MessageTransformer.SOAPMessageFromJMSMessage
 (Message, MessageFactory);

The MessageFactory argument specifies a message factory that the utility should
use to construct the SOAPMessage from the given JMS Message.

The following sections offer several use cases and code examples to illustrate this
process.

Example 1: Deferring SOAP Processing
In the first example, illustrated in Figure 6–9, an incoming SOAP message is received
by a servlet. After receiving the SOAP message, the servlet MyServlet uses the

Integrating SOAP and Message Queue

6-22 Open Message Queue 4.5.2 Developer's Guide for Java Clients

MessageTransformer utility to transform the message into a JMS message, and
(reliably) forwards it to an application that receives it, turns it back into a SOAP
message, and processes the contents of the SOAP message.

For information on how the servlet receives the SOAP message, see Writing a SOAP
Service.

Figure 6–9 Deferring SOAP Processing

To Transform the SOAP Message into a JMS Message and Send the JMS Message
1. Instantiate a ConnectionFactory object and set its attribute values, for example:

QueueConnectionFactory myQConnFact =
 new com.sun.messaging.QueueConnectionFactory();

2. Use the ConnectionFactory object to create a Connection object.

QueueConnection myQConn =
 myQConnFact.createQueueConnection();

3. Use the Connection object to create a Session object.

QueueSession myQSess = myQConn.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

4. Instantiate a Message Queue Destination administered object corresponding to a
physical destination in the Message Queue message service. In this example, the
administered object is mySOAPQueue and the physical destination to which it refers
is myPSOAPQ.

Queue mySOAPQueue = new com.sun.messaging.Queue("myPSOAPQ");

5. Use the MessageTransformer utility, as shown, to transform the SOAP message
into a JMS message. For example, given a SOAP message named MySOAPMsg,

Message MyJMS = MessageTransformer.SOAPMessageIntoJMSMessage
 (MySOAPMsg, MyQSess);

6. Create a QueueSender message producer.

MyServlet

MyListener

Message
Queue
Broker

SOAPMsg

JMSMsg JMSMsg

SOAPMessageIntoJMSMessage
(mySOAP, mySession)

SOAPMessageFromJMSMessage
(myJMS, myFactory)

//process SOAP message here

Integrating SOAP and Message Queue

Working with SOAP Messages 6-23

This message producer, associated with mySOAPQueue, is used to send messages to
the queue destination named myPSOAPQ.

QueueSender myQueueSender = myQSess.createSender(mySOAPQueue);

7. Send a message to the queue.

myQueueSender.send(myJMS);

To Receive the JMS Message, Transform it into a SOAP Message, and Process It
1. Instantiate a ConnectionFactory object and set its attribute values.

QueueConnectioFactory myQConnFact = new
 com.sun.messaging.QueueConnectionFactory();

2. Use the ConnectionFactory object to create a Connection object.

QueueConnection myQConn = myQConnFact.createQueueConnection();

3. Use the Connection object to create one or more Session objects.

QueueSession myRQSess = myQConn.createQueueSession(false,
 session.AUTO_ACKNOWLEDGE);

4. Instantiate a Destination object and set its name attribute.

Queue myRQueue = new com.sun.messaging.Queue("mySOAPQ");

5. Use a Session object and a Destination object to create any needed
MessageConsumer objects.

QueueReceiver myQueueReceiver =
 myRQSess.createReceiver(myRQueue);

6. If needed, instantiate a MessageListener object and register it with a
MessageConsumer object.

7. Start the QueueConnection you created in Example 1: Deferring SOAP Processing.
Messages for consumption by a client can only be delivered over a connection that
has been started.

myQConn.start();

8. Receive a message from the queue.

The code below is an example of a synchronous consumption of messages:

Message myJMS = myQueueReceiver.receive();

9. Use the Message Transformer to convert the JMS message back to a SOAP
message.

SOAPMessage MySoap =
 MessageTransformer.SOAPMessageFromJMSMessage
 (myJMS, MyMsgFactory);

If you specify null for the MessageFactory argument, the default Message Factory
is used to construct the SOAP Message.

10. Disassemble the SOAP message in preparation for further processing. See The
SOAP Message Object for information.

Integrating SOAP and Message Queue

6-24 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Example 2: Publishing SOAP Messages
In the next example, illustrated in Figure 6–10, an incoming SOAP message is received
by a servlet. The servlet packages the SOAP message as a JMS message and (reliably)
forwards it to a topic. Each application that subscribes to this topic, receives the JMS
message, turns it back into a SOAP message, and processes its contents.

Figure 6–10 Publishing a SOAP Message

The code that accomplishes this is exactly the same as in the previous example, except
that instead of sending the JMS message to a queue, you send it to a topic. For an
example of publishing a SOAP message using Message Queue, see Example 6–5.

Code Samples
This section includes and describes two code samples: one that sends a JMS message
with a SOAP payload, and another that receives the JMS/SOAP message and
processes the SOAP message.

Example 6–5 illustrates the use of the JMS API, the SAAJ API, and the JAF API to send
a SOAP message with attachments as the payload to a JMS message. The code shown
for the SendSOAPMessageWithJMS includes the following methods:

■ A constructor that calls the init method to initialize all the JMS objects required to
publish a message

■ A send method that creates the SOAP message and an attachment, converts the
SOAP message into a JMS message, and publishes the JMS message

■ A close method that closes the connection

■ A main method that calls the send and close methods

MyServlet

MyListener3MyListener2MyListener1

Message
Queue
Broker

SOAPMsg

JMSMsg

JMSMsg

SOAPMessageIntoJMSMessage
(mySOAP, mySession)

SOAPMessageFromJMSMessage
(myJMS, myFactory)

//process SOAP message here

SOAPMessageFromJMSMessage
(myJMS, myFactory)

//process SOAP message here

SOAPMessageFromJMSMessage
(myJMS, myFactory)

//process SOAP message here

Integrating SOAP and Message Queue

Working with SOAP Messages 6-25

Example 6–5 Sending a JMS Message with a SOAP Payload

//Libraries needed to build SOAP message
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.AttachmentPart;
import javax.xml.soap.Name

//Libraries needed to work with attachments (Java Activation Framework API)
import java.net.URL;
import javax.activation.DataHandler;

//Libraries needed to convert the SOAP message to a JMS message and to send it
import com.sun.messaging.xml.MessageTransformer;
import com.sun.messaging.BasicConnectionFactory;

//Libraries needed to set up a JMS connection and to send a message
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicConnection;
import javax.jms.JMSException;
import javax.jms.Session;
import javax.jms.Message;
import javax.jms.TopicSession;
import javax.jms.Topic;
import javax.jms.TopicPublisher;

//Define class that sends JMS message with SOAP payload
public class SendSOAPMessageWithJMS{

 TopicConnectionFactory tcf = null;
 TopicConnection tc = null;
 TopicSession session = null;
 Topic topic = null;
 TopicPublisher publisher = null;

//default constructor method
public SendSOAPMessageWithJMS(String topicName){
 init(topicName);
 }

//Method to nitialize JMS Connection, Session, Topic, and Publisher
public void init(String topicName) {
 try {
 tcf = new com.sun.messaging.TopicConnectionFactory();
 tc = tcf.createTopicConnection();
 session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 topic = session.createTopic(topicName);
 publisher = session.createPublisher(topic);
 }

//Method to create and send the SOAP/JMS message
public void send() throws Exception{
 MessageFactory mf = MessageFactory.newInstance(); //create default factory
 SOAPMessage soapMessage=mfcreateMessage(); //create SOAP message object
 SOAPPart soapPart = soapMessage.getSOAPPart();//start to drill down to body
 SOAPEnvelope soapEnvelope = soapPart.getEnvelope(); //first the envelope
 SOAPBody soapBody = soapEnvelope.getBody();

Integrating SOAP and Message Queue

6-26 Open Message Queue 4.5.2 Developer's Guide for Java Clients

 Name myName = soapEnvelope.createName("HelloWorld", "hw",
 http://www.sun.com/imq');
 //name for body element
 SOAPElement element = soapBody.addChildElement(myName); //add body element
 element.addTextNode("Welcome to SUnOne Web Services."); //add text value

 //Create an attachment with the Java Framework Activation API
 URL url = new URL("http://java.sun.com/webservices/");
 DataHandler dh = new DataHnadler (url);
 AttachmentPart ap = soapMessage.createAttachmentPart(dh);

 //Set content type and ID
 ap.setContentType("text/html");
 ap.setContentID('cid-001");

 //Add attachment to the SOAP message
 soapMessage.addAttachmentPart(ap);
 soapMessage.saveChanges();

 //Convert SOAP to JMS message.
 Message m = MessageTransformer.SOAPMessageIntoJMSMessage
 (soapMessage,session);

//Publish JMS message
 publisher.publish(m);

//Close JMS connection
 public void close() throws JMSException {
 tc.close();
 }

//Main program to send SOAP message with JMS
public static void main (String[] args) {
 try {
 String topicName = System.getProperty("TopicName");
 if(topicName == null) {
 topicName = "test";
 }

 SendSOAPMEssageWithJMS ssm = new SendSOAPMEssageWithJMS(topicName);
 ssm.send();
 ssm.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Example 6–6 illustrates the use of the JMS API, SAAJ, and the DOM API to receive a
SOAP message with attachments as the payload to a JMS message. The code shown
for the ReceiveSOAPMessageWithJMS includes the following methods:

■ A constructor that calls the init method to initialize all the JMS objects needed to
receive a message.

■ An onMessage method that delivers the message and which is called by the
listener. The onMessage method also calls the message transformer utility to
convert the JMS message into a SOAP message and then uses SAAJ to process the
SOAP body and uses SAAJ and the DOM API to process the message attachments.

Integrating SOAP and Message Queue

Working with SOAP Messages 6-27

■ A main method that initializes the ReceiveSOAPMessageWithJMS class.

Example 6–6 Receiving a JMS Message with a SOAP Payload

//Libraries that support SOAP processing
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.AttachmentPart

//Library containing the JMS to SOAP transformer
import com.sun.messaging.xml.MessageTransformer;

//Libraries for JMS messaging support
import com.sun.messaging.TopicConnectionFactory

//Interfaces for JMS messaging
import javax.jms.MessageListener;
import javax.jms.TopicConnection;
import javax.jms.TopicSession;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.Topic;
import javax.jms.JMSException;
import javax.jms.TopicSubscriber

//Library to support parsing attachment part (from DOM API)
import java.util.iterator;

public class ReceiveSOAPMessageWithJMS implements MessageListener{
 TopicConnectionFactory tcf = null;
 TopicConnection tc = null;
 TopicSession session = null;
 Topic topic = null;
 TopicSubscriber subscriber = null;
 MessageFactory messageFactory = null;

//Default constructor
public ReceiveSOAPMessageWithJMS(String topicName) {
 init(topicName);
}
//Set up JMS connection and related objects
public void init(String topicName){
 try {
 //Construct default SOAP message factory
 messageFactory = MessageFactory.newInstance();

 //JMS set up
 tcf = new. com.sun.messaging.TopicConnectionFactory();
 tc = tcf.createTopicConnection();
 session = tc.createTopicSesstion(false, Session.AUTO_ACKNOWLEDGE);
 topic = session.createTopic(topicName);
 subscriber = session.createSubscriber(topic);
 subscriber.setMessageListener(this);
 tc.start();

 System.out.println("ready to receive SOAP m essages...");
 }catch (Exception jmse){
 jmse.printStackTrace();
 }
 }

Integrating SOAP and Message Queue

6-28 Open Message Queue 4.5.2 Developer's Guide for Java Clients

//JMS messages are delivered to the onMessage method
public void onMessage(Message message){
 try {
 //Convert JMS to SOAP message
 SOAPMessage soapMessage = MessageTransformer.SOAPMessageFromJMSMessage
 (message, messageFactory);

 //Print attchment counts
 System.out.println("message received! Attachment counts:
 " + soapMessage.countAttachments());

 //Get attachment parts of the SOAP message
 Iterator iterator = soapMessage.getAttachments();
 while (iterator.hasNext()) {
 //Get next attachment
 AttachmentPart ap = (AttachmentPart) iterator.next();

 //Get content type
 String contentType = ap.getContentType();
 System.out.println("content type: " + conent TYpe);

 //Get content id
 String contentID = ap.getContentID();
 System.out.println("content Id:" + contentId);

 //Check to see if this is text
 if(contentType.indexOf"text")>=0 {
 //Get and print string content if it is a text attachment
 String content = (String) ap.getContent();
 System.outprintln("*** attachment content: " + content);
 }
 }
 }catch (Exception e) {
 e.printStackTrace();
 }
}

//Main method to start sample receiver
public static void main (String[] args){
 try {
 String topicName = System.getProperty("TopicName");
 if(topicName == null) {
 topicName = "test";
 }
 ReceiveSOAPMessageWithJMS rsm = new ReceiveSOAPMessageWithJMS(topicName);
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

7

Embedding a Message Queue Broker in a Java Client 7-1

7Embedding a Message Queue Broker in a
Java Client

Message Queue supports running a broker from within a Java client. Such a broker,
called an embedded broker, runs in the same JVM as the Java client that creates and starts
it.

Beyond operating like a normal standalone broker, an embedded broker offers the
application in which it is embedded access to a special kind of connection called a
direct mode connection. Direct mode connections are used just like ordinary connections,
but they are much higher performing because they use in-memory transport instead of
TCP. To specify a direct mode connection, the client specifies mq://localhost/direct
as the broker address in the connection factory from which it subsequently creates the
connection.

The following sections provide more information about creating and managing
embedded brokers:

■ Creating, Initializing and Starting an Embedded Broker

■ Creating a Direct Connection to an Embedded Broker

■ Creating a TCP Connection to an Embedded Broker

■ Stopping and Shutting Down an Embedded Broker

■ Embedded Broker Example

Creating, Initializing and Starting an Embedded Broker
To create, initialize, and start an embedded broker, you:

1. Create a broker instance in the client runtime.

2. Create a broker event listener.

3. Define properties to use when initializing the broker instance.

4. Initialize the broker instance.

5. Start the broker instance.

The following listing shows an example of creating, initializing, and starting an
Embedded Broker. In this example, args represents the string of arguments to pass as
properties when initializing the broker instance, and EmbeddedBrokerEventListener is an
existing class that implements the BrokerEventListener interface.

import com.sun.messaging.jmq.jmsclient.runtime.BrokerInstance;
import com.sun.messaging.jmq.jmsclient.runtime.ClientRuntime;
import com.sun.messaging.jmq.jmsservice.BrokerEvent;

Creating, Initializing and Starting an Embedded Broker

7-2 Open Message Queue 4.5.2 Developer's Guide for Java Clients

import com.sun.messaging.jmq.jmsservice.BrokerEventListener;

// Obtain the ClientRuntime singleton object
ClientRuntime clientRuntime = ClientRuntime.getRuntime();

// Create a broker instance
BrokerInstance brokerInstance = clientRuntime.createBrokerInstance();

// Create a broker event listener
BrokerEventListener listener = new EmbeddedBrokerEventListener();

// Convert the broker arguments into Properties. Note that parseArgs is
// a utility method that does not change the broker instance.
Properties props = brokerInstance.parseArgs(args);

// Initialize the broker instance using the specified properties and
// broker event listener
brokerInstance.init(props, listener);

// now start the embedded broker
brokerInstance.start();

Creating a Broker Event Listener
When initializing an embedded broker, you must provide a broker event listener. This
listener is an instance of a class that implements the BrokerEventListener interface.
This interface specifies two methods:

■ public void brokerEvent(BrokerEvent brokerEvent), which is called when the
broker starts and stops. This method is not required to perform any specific
actions, so you can implement an empty method.

■ public boolean exitRequested(BrokerEvent event, Throwable thr), which is
called when the embedded broker is about to shut down, either because of a user
command or because of a fatal error. This method is not required to perform any
specific actions, so you can implement an empty method. The return value is
ignored.

The following listing shows an example class that implements the
BrokerEventListener interface.

class EmbeddedBrokerEventListener implements BrokerEventListener {

 public void brokerEvent(BrokerEvent brokerEvent) {
 System.out.println ("Received broker event:"+brokerEvent);
 }

 public boolean exitRequested(BrokerEvent event, Throwable thr) {
 System.out.println ("Broker is about to shut down because of:"+event+"
with "+thr);
 // return value will be ignored
 return true;
 }
}

Creating a TCP Connection to an Embedded Broker

Embedding a Message Queue Broker in a Java Client 7-3

Arguments to Specify When Initializing an Embedded Broker
When initializing an embedded broker, you can provide a list of arguments as
properties.

Because a Java client runtime (not the imqbrokerd utility) is initializing the broker, you
should specify these arguments:

-imqhome path
The home directory of the Message Queue installation (see "Directory Variable
Conventions").

-libhome path
The directory in which Message Queue libraries are stored, IMQ_HOME/lib.

-varhome path
The directory in which Message Queue temporary or dynamically created
configuration and data files are stored installation (see "Directory Variable
Conventions").

You can also specify imqbrokerd options as arguments. Two useful options to specify
as arguments are:

-name instanceName
The instance name of the broker.

-port portNumber
The port number for the broker's Port Mapper. This is port number on which the
broker listens for client connections.

Creating a Direct Connection to an Embedded Broker
Once an embedded broker has been started, you can create direct connections to it
from the client in which it is embedded. To do so, you create a connection as you
would with an ordinary broker, but you specify mq://localhost/direct as broker
address in the connection factory. For example:

com.sun.messaging.ConnectionFactory cf = new
com.sun.messaging.ConnectionFactory();
cf.setProperty(ConnectionConfiguration.imqAddressList, "mq://localhost/direct");
Connection connection = cf.createConnection();

Creating a TCP Connection to an Embedded Broker
Once an embedded broker has been started, clients other than the one in which it is
embedded can connect to it as though it were an ordinary standalone broker. For
example:

com.sun.messaging.ConnectionFactory cf = new
com.sun.messaging.ConnectionFactory();
cf.setProperty(ConnectionConfiguration.imqAddressList,
"mq://myhost.example.com:7676");
Connection connection = cf.createConnection();

Stopping and Shutting Down an Embedded Broker

7-4 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Stopping and Shutting Down an Embedded Broker
To stop and shut down an embedded broker, use the stop() and shutdown() methods
of the broker instance. For example:

// Stop the embedded broker
brokerInstance.stop();
// Shut down the embedded broker
brokerInstance.shutdown();

Embedded Broker Example
The following listing demonstrates how to:

■ Create, initialize and start an embedded broker

■ Create a direct connection

■ Send and receive messages across a direct connection

■ Stop and shut down an embedded broker

■ Create a broker event listener

package test.direct;

import java.util.Properties;

import javax.jms.Connection;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;

import com.sun.messaging.ConnectionConfiguration;
import com.sun.messaging.jmq.jmsclient.runtime.BrokerInstance;
import com.sun.messaging.jmq.jmsclient.runtime.ClientRuntime;
import com.sun.messaging.jmq.jmsservice.BrokerEvent;
import com.sun.messaging.jmq.jmsservice.BrokerEventListener;

public class EmbeddedBrokerExample {

 public void run(String[] args) throws Exception{

 // obtain the ClientRuntime singleton object
 ClientRuntime clientRuntime = ClientRuntime.getRuntime();

 // create the embedded broker instance
 BrokerInstance brokerInstance = clientRuntime.createBrokerInstance();

 // convert the specified broker arguments into Properties
 // this is a utility function: it doesn't change the broker
 Properties props = brokerInstance.parseArgs(args);

 // initialise the broker instance
 // using the specified properties
 // and a BrokerEventListener
 BrokerEventListener listener = new ExampleBrokerEventListener();
 brokerInstance.init(props, listener);

Embedded Broker Example

Embedding a Message Queue Broker in a Java Client 7-5

 // now start the embedded broker
 brokerInstance.start();

 System.out.println ("Embedded broker started");

 // now create a direct connection to the embedded broker
 // this is identical to a normal TCP connection except that a special URL
is used
 com.sun.messaging.ConnectionFactory qcf = new
com.sun.messaging.ConnectionFactory();
 qcf.setProperty(ConnectionConfiguration.imqAddressList,
"mq://localhost/direct");

 Connection connection = qcf.createConnection();
 System.out.println ("Created direct connection to embedded broker");

 // now create a session and a producer and consumer in the normal way
 Session session = connection.createSession(false, Session.AUTO_
ACKNOWLEDGE);
 Queue queue = session.createQueue("exampleQueue");
 MessageConsumer consumer = session.createConsumer(queue);
 MessageProducer producer = session.createProducer(queue);

 // send a message to the queue in the normal way
 TextMessage textMessage = session.createTextMessage("This is a message");
 producer.send(textMessage);

 // receive a message from the queue in the normal way
 connection.start();
 Message receivedMessage = consumer.receive(1000);
 System.out.println ("Received message
"+((TextMessage)receivedMessage).getText());

 // close the client connection
 connection.close();

 // stop the embedded broker
 brokerInstance.stop();

 // shutdown the embedded broker
 brokerInstance.shutdown();

 }

 public static void main(String[] args) throws Exception {

 EmbeddedBrokerExample ebe = new EmbeddedBrokerExample();
 ebe.run(args);

 }

 class ExampleBrokerEventListener implements BrokerEventListener {

 public void brokerEvent(BrokerEvent brokerEvent) {
 System.out.println ("Received broker event:"+brokerEvent);
 }

 public boolean exitRequested(BrokerEvent event, Throwable thr) {
 System.out.println ("Broker is about to shut down because of:"+event+"

Embedded Broker Example

7-6 Open Message Queue 4.5.2 Developer's Guide for Java Clients

with "+thr);

 // return value will be ignored
 return true;
 }
 }
}

A

Warning Messages and Client Error Codes A-1

AWarning Messages and Client Error Codes

This appendix provides reference information for warning messages and for error
codes returned by the Message Queue client runtime when it raises a JMS exception.

■ A warning message is a message output when the Message Queue Java client
runtime experiences a problem that should not occur under normal operating
conditions. The message is displayed where the application displays its output.
Usually, this is the window from which the application is started. Table A–1 lists
Message Queue warning messages.

In general, a warning message does not cause message loss or affect reliability.
issues. But when warning messages appear constantly on the application's
console, the user should contact Message Queue technical support to diagnose the
cause of the warning messages.

■ Error codes and messages are returned by the client runtime when it raises an
exception. You can obtain the error code and its corresponding message using the
JMSException.getErrorCode() method and the JMSException.getMessage()
method. Table A–2 lists Message Queue error codes.

Note that warning messages and error codes are not defined in the JMS specification,
but are specific to each JMS provider. Applications that rely on these error codes in
their programming logic are not portable across JMS providers.

Warning Messages and Error Codes

Table A–1 Message Queue Warning Message Codes

Code Message and Description

W2000 Message Warning: Received unknown packet: mq-packet-dump.

Cause The Message Queue client runtime received an unrecognized Message Queue
packet, where mq-packet-dump is replaced with the specific Message Queue packet
dump that caused this warning message.

The Message Queue broker may not be fully compatible with the client runtime
version.

W2001 Message Warning: pkt not processed, no message consumer:mq-packet-dump.

Cause The Message Queue client runtime received an unexpected Message Queue
acknowledge message. The variable mq-packet-dump is replaced with the specific
Message Queue packet dump that caused this warning message.

Warning Messages and Error Codes

A-2 Open Message Queue 4.5.2 Developer's Guide for Java Clients

Table A–2 lists the error codes in numerical order. For each code listed, it supplies the
error message and a probable cause.

Each error message returned has the following format:

[Code]: "Message -cause Root-cause-exception-message
."

Message text provided for -cause is only appended to the message if there is an
exception linked to the JMS exception. For example, a JMS exception with error code
C4003 returns the following error message:

[C4003]: Error occurred on connection creation [localhost:7676]
 - cause: java.net.ConnectException: Connection refused: connect

W2003 Message Warning: Broker not responding X for Y seconds. Still trying....

Cause The Message Queue client runtime has not received a response from the broker
for more than 2 minutes (default). In the actual message, the X variable is replaced
with the Message Queue packet type that the client runtime is waiting for, and the Y
variable is replaced with the number of seconds that the client runtime has been
waiting for the packet.

Table A–2 Message Queue Client Error Codes

Code Message and Description

C4000 Message Packet acknowledge failed.

Cause The client runtime was not able to receive or process the expected
acknowledgment sent from the broker.

C4001 Message Write packet failed.

Cause The client runtime was not able to send information to the broker. This might
be caused by an underlying network I/O failure or by the JMS connection being
closed.

C4002 Message Read packet failed.

Cause The client runtime was not able to process inbound message properly. This
might be caused by an underlying network I/O failure.

C4003 Message Error occurred on connection creation [host, port].

Cause The client runtime was not able to establish a connection to the broker with the
specified host name and port number.

C4004 Message An error occurred on connection close.

Cause The client runtime encountered one or more errors when closing the connection
to the broker.

C4005 Message Get properties from packet failed.

Cause The client runtime was not able to retrieve a property object from the Message
Queue packet.

C4006 Message Set properties to packet failed.

Cause The client runtime was not able to set a property object in the Message Queue
packet.

Table A–1 (Cont.) Message Queue Warning Message Codes

Code Message and Description

Warning Messages and Error Codes

Warning Messages and Client Error Codes A-3

C4007 Message Durable subscription {0} in use.

{0} is replaced with the subscribed destination name.

Cause The client runtime was not able to unsubscribe the durable subscriber because
it is currently in use by another consumer.

C4008 Message Message in read-only mode.

Cause An attempt was made to write to a JMS Message that is in read-only mode.

C4009 Message Message in write-only mode.

Cause An attempt was made to read a JMS Message that is in write-only mode.

C4010 Message Read message failed.

Cause The client runtime was not able to read the stream of bytes from a
BytesMessage type message.

C4011 Message Write message failed.

Cause The client runtime was not able to write the stream of bytes to a BytesMessage
type message.

C4012 Message message failed.

Cause The client runtime encountered an error when processing the reset() method
for a BytesMessage or StreamMessage type message.

C4013 Message Unexpected end of stream when reading message.

Cause The client runtime reached end-of-stream when processing the readXXX()
method for a BytesMessage or StreamMessage type message.

C4014 Message Serialize message failed.

Cause The client runtime encountered an error when processing the serialization of an
object, such as ObjectMessage.setObject(java.io.Serializable object).

C4015 Message Deserialize message failed.

Cause The client runtime encountered an error when processing the deserialization of
an object, for example, when processing the method ObjectMessage.getObject().

C4016 Message Error occurred during message acknowledgment.

Cause The client runtime encountered an error during the process of message
acknowledgment in a session.

C4017 Message Invalid message format.

Cause The client runtime encountered an error when processing a JMS Message; for
example, during data type conversion.

C4018 Message Error occurred on request message redeliver.

Cause The client runtime encountered an error when processing recover() or
rollback() for the JMS session.

C4019 Message Destination not found: {0}.

{0} is replaced with the destination name specified in the API parameter.

Cause The client runtime was unable to process the API request due to an invalid
destination specified in the API, for example, the call MessageProducer.send (null,
message) raises JMSException with this error code and message.

C4020 Message Temporary destination belongs to a closed connection or another connection
- {0}.

{0} is replaced with the temporary destination name specified in the API parameter.

Cause An attempt was made to use a temporary destination that is not valid for the
message producer.

Table A–2 (Cont.) Message Queue Client Error Codes

Code Message and Description

Warning Messages and Error Codes

A-4 Open Message Queue 4.5.2 Developer's Guide for Java Clients

C4021 Message Consumer not found.

Cause The Message Queue session could not find the message consumer for a
message sent from the broker. The message consumer may have been closed by the
application or by the client runtime before the message for the consumer was
processed.

C4022 Message Selector invalid: {0}.

{0} is replaced with the selector string specified in the API parameter.

Cause The client runtime was unable to process the JMS API call because the specified
selector is invalid.

C4023 Message Client unacknowledged messages over system defined limit.

Cause The client runtime raises a JMSException with this error code and message if
unacknowledged messages exceed the system defined limit in a CLIENT_ACKNOWLEDGE
session.

C4024 Message The session is not transacted.

Cause An attempt was made to use a transacted session API in a non-transacted
session. For example, calling the methods commit() or rollback in a AUTO_
ACKNOWLEDGE session.

C4025 Message Cannot call this method from a transacted session.

Cause An attempt was made to call the Session.recover() method from a transacted
session.

C4026 Message Client non-committed messages over system defined limit.

Cause The client runtime raises a JMSException with this error code and message if
non committed messages exceed the system-defined limit in a transacted session.

C4027 Message Invalid transaction ID: {0}.

{0} is replaced with the internal transaction ID.

Cause An attempt was made to commit or rollback a transacted session with a
transaction ID that is no longer valid.

C4028 Message Transaction ID {0} in use.

{0} is replaced with the internal transaction ID.

Cause The internal transaction ID is already in use by the system. An application
should not receive a JMSException with this error code under normal operations.

C4029 Message Invalid session for ServerSession.

Cause An attempt was made to use an invalid JMS session for the ServerSession
object, for example, no message listener was set for the session.

C4030 Message Illegal maxMessages value for ServerSession: {0}.

{0} was replaced with maxMessages value used by the application.

Cause The configured maxMessages value for ServerSession is less than 0.

C4031 Message MessageConsumer and ServerSession session conflict.

Cause An attempt was made to create a message consumer for a session already used
by a ServerSession object.

C4032 Message Can not usereceive() when message listener was set.

Cause An attempt was made to do a synchronous receive with an asynchronous
message consumer.

Table A–2 (Cont.) Message Queue Client Error Codes

Code Message and Description

Warning Messages and Error Codes

Warning Messages and Client Error Codes A-5

C4033 Message Authentication type does not match: {0} and {1}.

{0} is replaced with the authentication type used by the client runtime. {1} is replaced with the
authentication type requested by the broker.

Cause The authentication type requested by the broker does not match the
authentication type in use by the client runtime.

C4034 Message Illegal authentication state.

Cause The authentication handshake failed between the client runtime and the broker.

C4035 Message Received AUTHENTICATE_REQUEST status code FORBIDDEN.

Cause The client runtime authentication to the broker failed.

C4036 Message A broker error occurred.

Cause A generic error code indicating that the client's requested operation to the
broker failed.

C4037 Message Broker unavailable or broker timeout.

Cause The client runtime was unable to establish a connection to the broker.

C4038 Message [4038] - cause: {0}

{0} is replaced with a root cause exception message.

Cause The client runtime caught an exception thrown from the JVM. The client
runtime throws JMSException with the "root cause exception" set as the linked
exception.

C4039 Message Cannot delete destination.

Cause The client runtime was unable to delete the specified temporary destination.
See TemporaryTopic.delete() and TemporaryQueue.delete() API Javadoc for
constraints on deleting a temporary destination.

C4040 Message Invalid ObjectProperty type.

Cause An attempt was made to set a non-primitive Java object as a JMS message
property. Please see Message.setObjectProperty() API Javadoc for valid object
property types.

C4041 Message Reserved word used as property name - {0}.

{0} is replaced with the property name.

Cause An attempt was made to use a reserved word, defined in the JMS Message API
Javadoc, as the message property name, for example, NULL, TRUE, FALSE.

C4042 Message Illegal first character of property name - {0}

{0} is replaced with the illegal character.

Cause An attempt was made to use a property name with an illegal first character. See
JMS Message API Javadoc for valid property names.

C4043 Message Illegal character used in property name - {0}

{0} is replaced with the illegal character used.

Cause An attempt was made to use a property name containing an illegal character.
See JMS Message API Javadoc for valid property names.

C4044 Message Browser timeout.

Cause The queue browser was unable to return the next available message to the
application within the system's predefined timeout period.

C4045 Message No more elements.

Cause In QueueBrowser, the enumeration object has reached the end of element but
nextElement() is called by the application.

Table A–2 (Cont.) Message Queue Client Error Codes

Code Message and Description

Warning Messages and Error Codes

A-6 Open Message Queue 4.5.2 Developer's Guide for Java Clients

C4046 Message Browser closed.

Cause An attempt was made to use QueueBrowser methods on a closed QueueBrowser
object.

C4047 Message Operation interrupted.

Cause ServerSession was interrupted. The client runtime throws RuntimeException
with the above exception message when it is interrupted in the ServerSession.

C4048 Message ServerSession is in progress.

Cause Multiple threads attempted to operate on a server session concurrently.

C4049 Message Can not call Connection.close(), stop(), etc from message listener.

Cause An attempt was made to call Connection.close(), ...stop(), etc from a
message listener.

C4050 Message Invalid destination name - {0} .

{0} is replaced with the invalid destination name used

Cause An attempt was made to use an invalid destination name, for example, NULL.

C4051 Message Invalid delivery parameter. {0} : {1}

{0} is replaced with delivery parameter name, such as "DeliveryMode".{1} is replaced with
delivery parameter value used by the application.

Cause An attempt was made to use invalid JMS delivery parameters in the API, for
example, values other than DeliveryMode.NON_PERSISTENT or
DeliveryMode.PERSISTENT were used to specify the delivery mode.

C4052 Message Client ID is already in use - {0}

{0} is replaced with the client ID that is already in use.

Cause An attempt was made to set a client ID to a value that is already in use by the
system.

C4053 Message Invalid client ID - {0}

{0} is replaced with the client ID used by the application.

Cause An attempt was made to use an invalid client ID, for example, null or empty
client ID.

C4054 Message Can not set client ID, invalid state.

Cause An attempt was made to set a connection's client ID at the wrong time or when
it has been administratively configured.

C4055 Message Resource in conflict. Concurrent operations on a session.

Cause An attempt was made to concurrently operate on a session with multiple
threads.

C4056 Message Received goodbye message from broker.

Cause A Message Queue client received a GOOD_BYE message from broker.

C4057 Message No username or password.

Cause An attempt was made to use a null object as a user name or password for
authentication.

C4058 Message Cannot acknowledge message for closed consumer.

Cause An attempt was made to acknowledge message(s) for a closed consumer.

C4059 Message Cannot perform operation, session is closed.

Cause An attempt was made to call a method on a closed session.

Table A–2 (Cont.) Message Queue Client Error Codes

Code Message and Description

Warning Messages and Error Codes

Warning Messages and Client Error Codes A-7

C4060 Message Login failed: {0}

{0} message is replaced with user name.

Cause Login with the specified user name failed.

C4061 Message Connection recovery failed, cannot recover connection.

Cause The client runtime was unable to recover the connection due to internal error.

C4062 Message Cannot perform operation, connection is closed.

Cause An attempt was made to call a method on a closed connection.

C4063 Message Cannot perform operation, consumer is closed.

Cause An attempt was made to call a method on a closed message consumer.

C4064 Message Cannot perform operation, producer is closed.

Cause An attempt was made to call a method on a closed message producer.

C4065 Message Incompatible broker version encountered. Client version {0}.Broker version
{1}

{0} is replaced with client version number. {1} is replaced with broker version number.

Cause An attempt was made to connect to a broker that is not compatible with the
client version.

C4066 Message Invalid or empty Durable Subscription Name was used: {0}

{0} is replaced with the durable subscription name used by the application.

Cause An attempt was made to use a null or empty string to specify the name of a
durable subscription.

C4067 Message Invalid session acknowledgment mode: {0}

{0} is replaced with the acknowledge mode used by the application.

Cause An attempt was made to use a non-transacted session mode that is not defined
in the JMS Session API.

C4068 Message Invalid Destination Classname: {0}.

{0} is replaced with the name of the class name.

Cause An attempt was made to create a message producer or message consumer with
an invalid destination class type. The valid class type must be either Queue or Topic.

C4069 Message Cannot commit or rollback on an XASession.

Cause The application tried to make a session.commit() or a session.rollback()
call in an application server component whose transactions are being managed by the
Transaction Manager using the XAResource. These calls are not allowed in this
context.

C4070 Message Error when converting foreign message.

Cause The client runtime encountered an error when processing a non-Message
Queue JMS message.

C4071 Message Invalid method in this domain: {0}

{0} is replaced with the method name used.

Cause An attempt was made to use a method that does not belong to the current
messaging domain. For example calling TopicSession.createQueue() will raise a
JMSException with this error code and message.

C4072 Message Illegal property name - "" or null.

Cause An attempt was made to use a null or empty string to specify a property name.

Table A–2 (Cont.) Message Queue Client Error Codes

Code Message and Description

Warning Messages and Error Codes

A-8 Open Message Queue 4.5.2 Developer's Guide for Java Clients

C4073 Message A JMS destination limit was reached. Too many Subscribers/Receivers for
{0} : {1}

{0} is replaced with "Queue" or "Topic" {1} is replaced with the destination name.

Cause The client runtime was unable to create a message consumer for the specified
domain and destination due to a broker resource constraint.

C4074 Message Transaction rolled back due to provider connection failover.

Cause An attempt was made to call Session.commit() after connection failover
occurred. The transaction is rolled back automatically.

C4075 Message Cannot acknowledge messages due to provider connection failover.
Subsequent acknowledge calls will also fail until the application calls
session.recover().

Cause As stated in the message.

C4076 Message Client does not have permission to create producer on destination: {0} {0} is
replaced with the destination name that caused the exception.

Cause The application client does not have permission to create a message producer
with the specified destination.

C4077 Message Client is not authorized to create destination : {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create the specified
destination.

C4078 Message Client is unauthorized to send to destination: {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to produce messages to the
specified destination.

C4079 Message Client does not have permission to register a consumer on the destination:
{0}

{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create a message consumer
with the specified destination name.

C4080 Message Client does not have permission to delete consumer: {0}

{0} is replaced with the consumer ID for the consumer to be deleted.

Cause The application does not have permission to remove the specified consumer
from the broker.

C4081 Message Client does not have permission to unsubscribe: {0}

{0} was replaced with the name of the subscriber to unsubscribe.

Cause The client application does not have permission to unsubscribe the specified
durable subscriber.

C4082 Message Client is not authorized to access destination: {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client is not authorized to access the specified destination.

C4083 Message Client does not have permission to browse destination: {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to browse the specified
destination.

Table A–2 (Cont.) Message Queue Client Error Codes

Code Message and Description

Warning Messages and Error Codes

Warning Messages and Client Error Codes A-9

C4084 Message User authentication failed: {0}

{0} is replaced with the user name.

Cause User authentication failed.

C4085 Message Delete consumer failed. Consumer was not found: {0}

{0} is replaced with name of the consumer that could not be found.

Cause The attempt to close a message consumer failed because the broker was unable
to find the specified consumer.

C4086 Message Unsubscribe failed. Subscriber was not found: {0}

{0} is replaced with name of the durable subscriber.

Cause An attempt was made to unsubscribe a durable subscriber with a name that
does not exist in the system.

C4087 Message Set Client ID operation failed. Invalid Client ID: {0}

{0} is replaced with the ClientID that caused the exception.

Cause Client is unable to set Client ID on the broker and receives a BAD_REQUEST status
from broker.

C4088 Message A JMS destination limit was reached. Too many producers for {0} : {1}

{0} is replaced with Queue or Topic {1} is replaced with the destination name for which the
limit was reached.

Cause The client runtime was not able to create a message producer for the specified
domain and destination due to limited broker resources.

C4089 Message Caught JVM Error: {0}

{0} is replaced with root cause error message.

Cause The client runtime caught an error thrown from the JVM; for example,
OutOfMemory error.

C4090 Message Invalid port number. Broker is not available or may be paused:{0}

{0} is replaced with "[host, port]" information.

Cause The client runtime received an invalid port number (0) from the broker. Broker
service for the request was not available or was paused.

C4091 Message Cannot call Session.recover() from a NO_ACKNOWLEDGE session.

Cause The application attempts to call Session.recover() from a NO_ACKNOWLEDGE
session.

C4092 Message Broker does not support Session.NO_ACKNOWLEDGE mode, broker version: {0}

{0} is replaced with the version number of the broker to which the Message Queue application
is connected.

Cause The application attempts to create a NO_ACKNOWLEDGE session to a broker with
version # less than 3.6.

C4093 Message Received wrong packet type. Expected: {0}, but received: {1}

{0} is replaced with the packet type that the Message Queue client runtime expected to receive
from the broker. {1} is replaced with the packet type that the Message Queue client runtime
actually received from the broker.

Cause The Message Queue client runtime received an unexpected Message Queue
packet from broker.

C4094 Message The destination this message was sent to could not be found: {0}

{0} is replaced with the destination name that caused the exception.

Cause: A destination to which a message was sent could not be found.

Table A–2 (Cont.) Message Queue Client Error Codes

Code Message and Description

Warning Messages and Error Codes

A-10 Open Message Queue 4.5.2 Developer's Guide for Java Clients

C4095 Message: Message exceeds the single message size limit for the broker or destination:
{0}

{0} is replaced with the destination name that caused the exception.

Cause: A message exceeds the single message size limit for the broker or destination.

C4096 Message: Destination is full and is rejecting new messages: {0}

{0} is replaced with the destination name that caused the exception.

Cause: A destination is full and is rejecting new messages.

Table A–2 (Cont.) Message Queue Client Error Codes

Code Message and Description

	Contents
	Preface
	1 Overview
	Setting Up Your Environment
	Starting and Testing a Message Broker
	To Start a Broker
	To Test a Broker

	Developing a Client Application
	To Produce Messages
	To Consume Messages

	Compiling and Running a Client Application
	To Compile and Run the HelloWorldMessage Application

	Deploying a Client Application
	Example Application Code

	2 Message Queue Clients: Design and Features
	Client Design Considerations
	Developing Portable Clients
	Choosing which JMS API to Use
	Connections and Sessions
	JMSContext
	Producers and Consumers
	Balancing Reliability and Performance

	Managing Client Threads
	JMS Threading Restrictions
	Thread Allocation for Connections

	Managing Memory and Resources
	Managing Memory
	Managing Message Size
	Managing the Dead Message Queue
	Managing Physical Destination Limits

	Programming Issues for Message Consumers
	Using the Client Runtime Ping Feature
	Preventing Message Loss for Synchronous Consumers
	Synchronous Consumption in Distributed Applications

	Factors Affecting Performance
	Delivery Mode (Persistent/Nonpersistent)
	Use of Transactions
	Acknowledgment Mode
	Durable vs. Nondurable Subscriptions
	Use of Selectors (Message Filtering)

	Connection Event Notification
	Connection Events
	Creating an Event Listener
	Event Listener Examples

	Consumer Event Notification
	Consumer Events
	Creating a Consumer Event Listener
	Consumer Event Listener Examples

	Client Connection Failover (Auto-Reconnect)
	Enabling Auto-Reconnect
	Auto-Reconnect Behaviors
	Auto-Reconnect Limitations
	Handling Exceptions When Failover Occurs

	Custom Client Acknowledgment
	Using Client Acknowledge Mode
	Using No Acknowledge Mode

	Schema Validation of XML Payload Messages
	Communicating with C Clients
	Client Runtime Logging
	Logging Name Spaces, Levels, and Activities
	Using the JRE Logging Configuration File
	Using a Logging Configuration File for a Specific Application
	Setting the Logging Configuration Programmatically

	3 The JMS Simplified API
	Using the Simplified API
	Using the Autocloseable Interface
	Simplified Extraction of Message Bodies

	Developing a JMS Client using the Simplified API
	Working With Connections
	Working With Destinations
	Working With Messages
	Message Structure
	Sending Messages
	Simplified API methods for Asynchronous Sends
	Receiving Messages
	Processing Messages

	4 The JMS Classic API
	Messaging Domains
	Working With Connections
	Obtaining a Connection Factory
	Looking Up a Connection Factory With JNDI
	To Look Up a Connection Factory With JNDI

	Overriding Configuration Settings
	Instantiating a Connection Factory
	To Instantiate and Configure a Connection Factory

	Using Connections
	Creating Secure Connections (SSL)

	Working With Destinations
	Looking Up a Destination With JNDI
	To Look Up a Destination With JNDI

	Instantiating a Destination
	Temporary Destinations

	Working With Sessions
	Acknowledgment Modes
	Transacted Sessions

	Working With Messages
	Message Structure
	Message Header
	Message Properties
	Message Body

	Composing Messages
	Composing Text Messages
	Composing Stream Messages
	Composing Map Messages
	Composing Object Messages
	Composing Bytes Messages

	Sending Messages
	Asynchronous send
	Methods for Asynchronous Sends

	Receiving Messages
	Creating Message Consumers
	Message Selectors
	Durable Subscribers

	Receiving Messages Synchronously
	Receiving Messages Asynchronously
	To Set Up a Message Queue Java Client to Receive Messages Asynchronously

	Acknowledging Messages
	Browsing Messages
	Closing a Consumer

	Processing Messages
	Retrieving Message Header Fields
	Retrieving Message Properties
	Processing the Message Body
	Processing Text Messages
	Processing Stream Messages
	Processing Map Messages
	Processing Object Messages
	Processing Bytes Messages

	Simplified Extraction of Message Bodies

	Using the Autocloseable Interface

	5 Using the Metrics Monitoring API
	Monitoring Overview
	Administrative Tasks
	Implementation Summary

	Creating a Metrics-Monitoring Client
	To Monitor Broker Metrics

	Format of Metrics Messages
	Broker Metrics

	Metrics Monitoring Client Code Examples
	A Broker Metrics Example

	6 Working with SOAP Messages
	What is SOAP?
	SOAP with Attachments API for Java
	The SOAP Message
	SOAP Packaging Models

	SOAP Messaging in JAVA
	The SOAP Message Object
	Destination, Message Factory, and Connection Objects

	SOAP Messaging Models and Examples
	SOAP Messaging Programming Models
	Working with Attachments
	Exception and Fault Handling
	Writing a SOAP Client
	Writing a SOAP Service

	Integrating SOAP and Message Queue
	Example 1: Deferring SOAP Processing
	Example 2: Publishing SOAP Messages
	Code Samples

	7 Embedding a Message Queue Broker in a Java Client
	Creating, Initializing and Starting an Embedded Broker
	Creating a Broker Event Listener
	Arguments to Specify When Initializing an Embedded Broker

	Creating a Direct Connection to an Embedded Broker
	Creating a TCP Connection to an Embedded Broker
	Stopping and Shutting Down an Embedded Broker
	Embedded Broker Example

	A Warning Messages and Client Error Codes
	Warning Messages and Error Codes

