コンテンツにスキップ

数学上の未解決問題

出典: フリー百科事典『ウィキペディア(Wikipedia)』

数学上の未解決問題(すうがくじょうのみかいけつもんだい、: unsolved problems in mathematics)とは、未だ解決されていない数学上の問題のことで、未解決問題の定義を「未だ証明が得られていない命題」という立場を取るのであれば、そういった問題は数学界に果てしなく存在する。ここでは、リーマン予想のようにその証明結果が数学全域と関わりを持つような命題、P≠NP予想のようにその結論が現代科学、技術のあり方に甚大な影響を及ぼす可能性があるような命題、問いかけのシンプルさ故に数多くの数学者や数学愛好家たちが証明を試みてきたような有名な命題を列挙する。

ミレニアム懸賞問題

[編集]

以下7つの問題はミレニアム懸賞問題と呼ばれ、クレイ数学研究所によってそれぞれ100万ドルの懸賞金が懸けられている。

その他の未解決問題

[編集]

「―は無数に存在するか」系

[編集]

「―は存在するか(否か)」系

[編集]

「―は全て――」系

[編集]

「―はいくつか」系

[編集]

その他

[編集]

分野別

[編集]

加法的整数論

[編集]

加法的整数論については、加法的整数論英語版を参照されたい。

代数

[編集]

代数幾何

[編集]

代数的数論

[編集]
  • Are there infinitely many real quadratic number fields with unique factorization (類数問題)
  • Characterize all algebraic number fields that have some power basis.
  • Stark conjectures (including Brumer–Stark conjecture)

解析

[編集]

組合せ論

[編集]

離散幾何学

[編集]
  • Solving the happy ending problem for arbitrary
  • Finding matching upper and lower bounds for k-sets and halving lines
  • The Hadwiger conjecture on covering n-dimensional convex bodies with at most 2n smaller copies
  • 藤村の三角形問題
  • The McMullen problem on projectively transforming sets of points into convex position
  • Ulam's packing conjecture about the identity of the worst-packing convex solid
  • Filling area conjecture
  • Hopf conjecture
  • 掛谷予想

ユークリッド幾何学

[編集]
  • Inscribed square problem – does every Jordan curve have an inscribed square?
  • en:Moser's worm problem – 平面内のすべての単位長曲線をカバーできる形状の最小領域は何か?
  • ソファ問題[注釈 2]
  • Shephard's problem (a.k.a. Dürer's conjecture) – does every convex polyhedron have a net?
  • トムソン問題
  • Falconer's conjecture
  • g-conjecture
  • Circle packing in an equilateral triangle
  • Circle packing in an isosceles right triangle

力学系

[編集]
  • Furstenberg conjecture – Is every invariant and ergodic measure for the action on the circle either Lebesgue or atomic?
  • Margulis conjecture — Measure classification for diagonalizable actions in higher-rank groups
  • MLC conjecture – Is the Mandelbrot set locally connected ?
  • Weinstein conjecture - Does a regular compact contact type level set of a Hamiltonian on a symplectic manifold carry at least one periodic orbit of the Hamiltonian flow?
  • Is every reversible cellular automaton in three or more dimensions locally reversible?

グラフ理論

[編集]
  • Barnette's conjecture that every cubic bipartite three-connected planar graph has a Hamiltonian cycle
  • The Erdős–Gyárfás conjecture on cycles with power-of-two lengths in cubic graphs
  • The Erdős–Hajnal conjecture on finding large homogeneous sets in graphs with a forbidden induced subgraph
  • The Hadwiger conjecture relating coloring to clique minors
  • The Erdős–Faber–Lovász conjecture on coloring unions of cliques
  • Harborth's conjecture that every planar graph can be drawn with integer edge lengths
  • The total coloring conjecture
  • The list coloring conjecture
  • (en:Hadwiger conjecture)
  • The Ringel–Kotzig conjecture on graceful labeling of trees
  • How many unit distances can be determined by a set of n points? (see Counting unit distances)
  • The Hadwiger–Nelson problem on the chromatic number of unit distance graphs
  • Lovász conjecture
  • Deriving a closed-form expression for the percolation threshold values, especially (square site)
  • Tutte's conjectures that every bridgeless graph has a nowhere-zero 5-flow and every bridgeless graph without the Petersen graph as a minor has a nowhere-zero 4-flow
  • Petersen coloring conjecture
  • The reconstruction conjecture and new digraph reconstruction conjecture concerning whether or not a graph is recognizable by the vertex deleted subgraphs.
  • The cycle double cover conjecture that every bridgeless graph has a family of cycles that includes each edge twice.
  • Does a Moore graph with girth 5 and degree 57 exist?
  • Conway's thrackle conjecture
  • 根上の予想
  • The Blankenship–Oporowski conjecture on the book thickness of subdivisions
  • Hedetniemi's conjecture
  • Vizing's conjecture英語版

群論

[編集]

モデル理論

[編集]
  • Vaught's conjecture
  • The Cherlin–Zilber conjecture: A simple group whose first-order theory is stable in is a simple algebraic group over an algebraically closed field.
  • The Main Gap conjecture, e.g. for uncountable first order theories, for AECs, and for -saturated models of a countable theory.[22]
  • Determine the structure of Keisler's order[23][24]
  • The stable field conjecture: every infinite field with a stable first-order theory is separably closed.
  • Is the theory of the field of Laurent series over decidable? of the field of polynomials over ?
  • (BMTO) Is the Borel monadic theory of the real order decidable? (MTWO) Is the monadic theory of well-ordering consistently decidable?[25]
  • The Stable Forking Conjecture for simple theories[26]
  • For which number fields does Hilbert's tenth problem hold?
  • Assume K is the class of models of a countable first order theory omitting countably many types. If K has a model of cardinality does it have a model of cardinality continuum?[27]
  • Shelah's eventual Categority conjecture: For every cardinal \lambda there exists a cardinal \mu(\lambda) such that If an AEC K with LS(K)<= \lambda is categorical in a cardinal above \mu(\lambda) then it is categorical in all cardinals above \mu(\lambda).[22][28]
  • Shelah's categoricity conjecture for L_{\omega_1,\omega}: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.[22]
  • Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?[29]
  • If the class of atomic models of a complete first order theory is categorical in the , is it categorical in every cardinal?[30][31]
  • Is every infinite, minimal field of characteristic zero algebraically closed? (minimal = no proper elementary substructure)
  • Kueker's conjecture[32]
  • Does there exist an o-minimal first order theory with a trans-exponential (rapid growth) function?
  • Lachlan's decision problem
  • Does a finitely presented homogeneous structure for a finite relational language have finitely many reducts?
  • Do the Henson graphs have the finite model property? (e.g. triangle-free graphs)
  • The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?[33]
  • The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?[34]

数論

[編集]

近年解かれた問題

[編集]

脚注

[編集]

注釈

[編集]
  1. ^ シェルピンスキー数としての被覆集合は {3, 13, 17, 313, 11489}、リーゼル数としての被覆集合は {3, 7, 19, 31, 829, 5167} である。
  2. ^ 2024年11月29日韓国延世大学校博士研究員 Jineon Baek (백진언) によって、ソファ問題を解決したとする論文arXiv に投稿され[1]、現在精査中。

出典

[編集]
  1. ^ Baek, Jineon (29 November 2024). "Optimality of Gerver's Sofa". arXiv:2411.19826 [math.MG]。
  2. ^ Wolchover, Natalie (2017-07-11). “Pentagon Tiling Proof Solves Century-Old Math Problem”. Quanta Magazine. https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/ 2024年12月9日閲覧。. 
  3. ^ Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 [math.NT]。
  4. ^ Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252 [math.NT]。
  5. ^ Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748 [math.NT]。

関連項目

[編集]