数学において発散級数(はっさんきゅうすう、英: divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし逆に、級数の項が 0 に収束しても級数は収束するとは限らない。最も簡単な反例として、調和級数 が挙げられる。調和級数が発散することは、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。

Property Value
dbo:abstract
  • 数学において発散級数(はっさんきゅうすう、英: divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし逆に、級数の項が 0 に収束しても級数は収束するとは限らない。最も簡単な反例として、調和級数 が挙げられる。調和級数が発散することは、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。 (ja)
  • 数学において発散級数(はっさんきゅうすう、英: divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし逆に、級数の項が 0 に収束しても級数は収束するとは限らない。最も簡単な反例として、調和級数 が挙げられる。調和級数が発散することは、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2147519 (xsd:integer)
dbo:wikiPageLength
  • 10838 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90888636 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:first
  • I.I. (ja)
  • A.A. (ja)
  • I.I. (ja)
  • A.A. (ja)
prop-ja:last
  • Volkov (ja)
  • Zakharov (ja)
  • Volkov (ja)
  • Zakharov (ja)
prop-ja:title
  • Abel summation method (ja)
  • Divergent Series (ja)
  • Lindelöf summation method (ja)
  • Abel summation method (ja)
  • Divergent Series (ja)
  • Lindelöf summation method (ja)
prop-ja:urlname
  • Abel_summation_method (ja)
  • DivergentSeries (ja)
  • Lindelöf_summation_method (ja)
  • Abel_summation_method (ja)
  • DivergentSeries (ja)
  • Lindelöf_summation_method (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において発散級数(はっさんきゅうすう、英: divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし逆に、級数の項が 0 に収束しても級数は収束するとは限らない。最も簡単な反例として、調和級数 が挙げられる。調和級数が発散することは、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。 (ja)
  • 数学において発散級数(はっさんきゅうすう、英: divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし逆に、級数の項が 0 に収束しても級数は収束するとは限らない。最も簡単な反例として、調和級数 が挙げられる。調和級数が発散することは、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。 (ja)
rdfs:label
  • 発散級数 (ja)
  • 発散級数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of