核型空間(かくけいくうかん)とは、数学において有限次元ベクトル空間の良い性質を多く持つ位相ベクトル空間である.その位相は単位球が急速に小さくなる半ノルムの族により定義される.その要素がある意味で「滑らか」なベクトル空間は核型空間となることが多い;核型空間の典型的な例は,コンパクトな多様体上の滑らかな関数の集合である. 有限次元ベクトル空間はすべて核型である (有限次元ベクトル空間上の作用素はすべて核作用素なので). 核型となるバナッハ空間は, 有限次元のものを除いて存在しない.実際にはこれのある種の逆がしばしば成り立つ:もし「自然に現れる」位相ベクトル空間がバナッハ空間でなければ, それが核型となる可能性が大いにある. 核型空間の理論の多くはアレクサンドル・グロタンディークにより展開され,で出版された.

Property Value
dbo:abstract
  • 核型空間(かくけいくうかん)とは、数学において有限次元ベクトル空間の良い性質を多く持つ位相ベクトル空間である.その位相は単位球が急速に小さくなる半ノルムの族により定義される.その要素がある意味で「滑らか」なベクトル空間は核型空間となることが多い;核型空間の典型的な例は,コンパクトな多様体上の滑らかな関数の集合である. 有限次元ベクトル空間はすべて核型である (有限次元ベクトル空間上の作用素はすべて核作用素なので). 核型となるバナッハ空間は, 有限次元のものを除いて存在しない.実際にはこれのある種の逆がしばしば成り立つ:もし「自然に現れる」位相ベクトル空間がバナッハ空間でなければ, それが核型となる可能性が大いにある. 核型空間の理論の多くはアレクサンドル・グロタンディークにより展開され,で出版された. (ja)
  • 核型空間(かくけいくうかん)とは、数学において有限次元ベクトル空間の良い性質を多く持つ位相ベクトル空間である.その位相は単位球が急速に小さくなる半ノルムの族により定義される.その要素がある意味で「滑らか」なベクトル空間は核型空間となることが多い;核型空間の典型的な例は,コンパクトな多様体上の滑らかな関数の集合である. 有限次元ベクトル空間はすべて核型である (有限次元ベクトル空間上の作用素はすべて核作用素なので). 核型となるバナッハ空間は, 有限次元のものを除いて存在しない.実際にはこれのある種の逆がしばしば成り立つ:もし「自然に現れる」位相ベクトル空間がバナッハ空間でなければ, それが核型となる可能性が大いにある. 核型空間の理論の多くはアレクサンドル・グロタンディークにより展開され,で出版された. (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3285781 (xsd:integer)
dbo:wikiPageLength
  • 8041 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90555072 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:author
  • G.L. Litvinov (ja)
  • G.L. Litvinov (ja)
prop-en:title
  • Nuclear space (ja)
  • Nuclear space (ja)
prop-en:urlname
  • Nuclear_space (ja)
  • Nuclear_space (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 核型空間(かくけいくうかん)とは、数学において有限次元ベクトル空間の良い性質を多く持つ位相ベクトル空間である.その位相は単位球が急速に小さくなる半ノルムの族により定義される.その要素がある意味で「滑らか」なベクトル空間は核型空間となることが多い;核型空間の典型的な例は,コンパクトな多様体上の滑らかな関数の集合である. 有限次元ベクトル空間はすべて核型である (有限次元ベクトル空間上の作用素はすべて核作用素なので). 核型となるバナッハ空間は, 有限次元のものを除いて存在しない.実際にはこれのある種の逆がしばしば成り立つ:もし「自然に現れる」位相ベクトル空間がバナッハ空間でなければ, それが核型となる可能性が大いにある. 核型空間の理論の多くはアレクサンドル・グロタンディークにより展開され,で出版された. (ja)
  • 核型空間(かくけいくうかん)とは、数学において有限次元ベクトル空間の良い性質を多く持つ位相ベクトル空間である.その位相は単位球が急速に小さくなる半ノルムの族により定義される.その要素がある意味で「滑らか」なベクトル空間は核型空間となることが多い;核型空間の典型的な例は,コンパクトな多様体上の滑らかな関数の集合である. 有限次元ベクトル空間はすべて核型である (有限次元ベクトル空間上の作用素はすべて核作用素なので). 核型となるバナッハ空間は, 有限次元のものを除いて存在しない.実際にはこれのある種の逆がしばしば成り立つ:もし「自然に現れる」位相ベクトル空間がバナッハ空間でなければ, それが核型となる可能性が大いにある. 核型空間の理論の多くはアレクサンドル・グロタンディークにより展開され,で出版された. (ja)
rdfs:label
  • 核型空間 (ja)
  • 核型空間 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of