Property |
Value |
dbo:abstract
|
- 擬ポテンシャル(ぎポテンシャル、英: pseudopotential)は、第一原理計算において原子核近傍の内核電子を直接取り扱わず、これを価電子に対する単なるポテンシャル関数に置き換える手法である。これは原子間結合距離など、多くの物性において、内核電子の直接の影響が小さいことを利用したものである。平面波基底を用いて第一原理計算を行う場合、計算コストの問題から、何らかの擬ポテンシャルを使う場合がほとんどである。 有効内核ポテンシャル(英: effective core potential, ECP)とも呼ばれる。 こうした擬ポテンシャルは、内核電子が与える静電相互作用や交換相関相互作用とは全く無関係に、原子核から或る半径よりも外側では、波動関数が全電子計算の結果と一致することだけを指針に作成される。そのため平均場近似といった物理的な近似や洞察を含むものではなく、あくまでも計算のための便宜的な手法といえる。価電子帯の波動関数は、原子核近傍で同径方向に節(ノード)を持つが、擬ポテンシャルを作製する際には、こうした節を取り除き、滑らかな波動関数となるように問題をすり替える。このため、擬ポテンシャル法により得られる波動関数(密度汎関数法に用いる場合はKohn-Sham軌道)は擬波動関数と呼ばれることもある。こうした操作が、カットオフエネルギーの大幅な削減へと繋がる。 (ja)
- 擬ポテンシャル(ぎポテンシャル、英: pseudopotential)は、第一原理計算において原子核近傍の内核電子を直接取り扱わず、これを価電子に対する単なるポテンシャル関数に置き換える手法である。これは原子間結合距離など、多くの物性において、内核電子の直接の影響が小さいことを利用したものである。平面波基底を用いて第一原理計算を行う場合、計算コストの問題から、何らかの擬ポテンシャルを使う場合がほとんどである。 有効内核ポテンシャル(英: effective core potential, ECP)とも呼ばれる。 こうした擬ポテンシャルは、内核電子が与える静電相互作用や交換相関相互作用とは全く無関係に、原子核から或る半径よりも外側では、波動関数が全電子計算の結果と一致することだけを指針に作成される。そのため平均場近似といった物理的な近似や洞察を含むものではなく、あくまでも計算のための便宜的な手法といえる。価電子帯の波動関数は、原子核近傍で同径方向に節(ノード)を持つが、擬ポテンシャルを作製する際には、こうした節を取り除き、滑らかな波動関数となるように問題をすり替える。このため、擬ポテンシャル法により得られる波動関数(密度汎関数法に用いる場合はKohn-Sham軌道)は擬波動関数と呼ばれることもある。こうした操作が、カットオフエネルギーの大幅な削減へと繋がる。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2672 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 擬ポテンシャル(ぎポテンシャル、英: pseudopotential)は、第一原理計算において原子核近傍の内核電子を直接取り扱わず、これを価電子に対する単なるポテンシャル関数に置き換える手法である。これは原子間結合距離など、多くの物性において、内核電子の直接の影響が小さいことを利用したものである。平面波基底を用いて第一原理計算を行う場合、計算コストの問題から、何らかの擬ポテンシャルを使う場合がほとんどである。 有効内核ポテンシャル(英: effective core potential, ECP)とも呼ばれる。 こうした擬ポテンシャルは、内核電子が与える静電相互作用や交換相関相互作用とは全く無関係に、原子核から或る半径よりも外側では、波動関数が全電子計算の結果と一致することだけを指針に作成される。そのため平均場近似といった物理的な近似や洞察を含むものではなく、あくまでも計算のための便宜的な手法といえる。価電子帯の波動関数は、原子核近傍で同径方向に節(ノード)を持つが、擬ポテンシャルを作製する際には、こうした節を取り除き、滑らかな波動関数となるように問題をすり替える。このため、擬ポテンシャル法により得られる波動関数(密度汎関数法に用いる場合はKohn-Sham軌道)は擬波動関数と呼ばれることもある。こうした操作が、カットオフエネルギーの大幅な削減へと繋がる。 (ja)
- 擬ポテンシャル(ぎポテンシャル、英: pseudopotential)は、第一原理計算において原子核近傍の内核電子を直接取り扱わず、これを価電子に対する単なるポテンシャル関数に置き換える手法である。これは原子間結合距離など、多くの物性において、内核電子の直接の影響が小さいことを利用したものである。平面波基底を用いて第一原理計算を行う場合、計算コストの問題から、何らかの擬ポテンシャルを使う場合がほとんどである。 有効内核ポテンシャル(英: effective core potential, ECP)とも呼ばれる。 こうした擬ポテンシャルは、内核電子が与える静電相互作用や交換相関相互作用とは全く無関係に、原子核から或る半径よりも外側では、波動関数が全電子計算の結果と一致することだけを指針に作成される。そのため平均場近似といった物理的な近似や洞察を含むものではなく、あくまでも計算のための便宜的な手法といえる。価電子帯の波動関数は、原子核近傍で同径方向に節(ノード)を持つが、擬ポテンシャルを作製する際には、こうした節を取り除き、滑らかな波動関数となるように問題をすり替える。このため、擬ポテンシャル法により得られる波動関数(密度汎関数法に用いる場合はKohn-Sham軌道)は擬波動関数と呼ばれることもある。こうした操作が、カットオフエネルギーの大幅な削減へと繋がる。 (ja)
|
rdfs:label
|
- 擬ポテンシャル (ja)
- 擬ポテンシャル (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |