初等幾何学において接する(せっする、英: tangent)とは、その名を「触れること」を意味するラテン語: tangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、英: tangent line、tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 y = f(x) の x = c(あるいは曲線上の点 (c, f(c))における接線であるとは、その直線が曲線上の点 (c, f (c)) を通り、傾きが f の微分係数 f'(c) に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (英: point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。

Property Value
dbo:abstract
  • 初等幾何学において接する(せっする、英: tangent)とは、その名を「触れること」を意味するラテン語: tangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、英: tangent line、tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 y = f(x) の x = c(あるいは曲線上の点 (c, f(c))における接線であるとは、その直線が曲線上の点 (c, f (c)) を通り、傾きが f の微分係数 f'(c) に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (英: point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。 (ja)
  • 初等幾何学において接する(せっする、英: tangent)とは、その名を「触れること」を意味するラテン語: tangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、英: tangent line、tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 y = f(x) の x = c(あるいは曲線上の点 (c, f(c))における接線であるとは、その直線が曲線上の点 (c, f (c)) を通り、傾きが f の微分係数 f'(c) に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (英: point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 220004 (xsd:integer)
dbo:wikiPageLength
  • 8100 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92322671 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Tangent Line (ja)
  • Tangent line (ja)
  • Tangent Line (ja)
  • Tangent line (ja)
prop-ja:urlname
  • TangentLine (ja)
  • Tangent_line (ja)
  • TangentLine (ja)
  • Tangent_line (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 初等幾何学において接する(せっする、英: tangent)とは、その名を「触れること」を意味するラテン語: tangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、英: tangent line、tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 y = f(x) の x = c(あるいは曲線上の点 (c, f(c))における接線であるとは、その直線が曲線上の点 (c, f (c)) を通り、傾きが f の微分係数 f'(c) に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (英: point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。 (ja)
  • 初等幾何学において接する(せっする、英: tangent)とは、その名を「触れること」を意味するラテン語: tangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、英: tangent line、tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 y = f(x) の x = c(あるいは曲線上の点 (c, f(c))における接線であるとは、その直線が曲線上の点 (c, f (c)) を通り、傾きが f の微分係数 f'(c) に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (英: point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。 (ja)
rdfs:label
  • 接線 (ja)
  • 接線 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of