Property |
Value |
dbo:abstract
|
- 位相空間論あるいは解析学において、距離空間 M が完備(かんび、英: complete)またはコーシー空間(コーシーくうかん、英: Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 ℚ は完備でないが、これは例えば2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので ℚ からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。 (ja)
- 位相空間論あるいは解析学において、距離空間 M が完備(かんび、英: complete)またはコーシー空間(コーシーくうかん、英: Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 ℚ は完備でないが、これは例えば2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので ℚ からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9410 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:date
| |
prop-en:first
| |
prop-en:last
|
- Voitsekhovskii (ja)
- Voitsekhovskii (ja)
|
prop-en:section
| |
prop-en:title
|
- Complete Metric Space (ja)
- Complete metric space (ja)
- Completion (ja)
- Definition:Complete Metric Space (ja)
- Definition:Completion (ja)
- complete space (ja)
- completion (ja)
- Complete Metric Space (ja)
- Complete metric space (ja)
- Completion (ja)
- Definition:Complete Metric Space (ja)
- Definition:Completion (ja)
- complete space (ja)
- completion (ja)
|
prop-en:urlname
|
- CompleteMetricSpace (ja)
- Complete_metric_space (ja)
- Completion (ja)
- Definition:Complete_Metric_Space (ja)
- Definition:Completion_ (ja)
- complete+space (ja)
- completion (ja)
- CompleteMetricSpace (ja)
- Complete_metric_space (ja)
- Completion (ja)
- Definition:Complete_Metric_Space (ja)
- Definition:Completion_ (ja)
- complete+space (ja)
- completion (ja)
|
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 位相空間論あるいは解析学において、距離空間 M が完備(かんび、英: complete)またはコーシー空間(コーシーくうかん、英: Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 ℚ は完備でないが、これは例えば2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので ℚ からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。 (ja)
- 位相空間論あるいは解析学において、距離空間 M が完備(かんび、英: complete)またはコーシー空間(コーシーくうかん、英: Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 ℚ は完備でないが、これは例えば2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので ℚ からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |