数学の一分野である圏論において中核的な概念を成す圏(けん、英: category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる。 二つの圏が等しいとは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは "General Theory of Natural Equivalences"(「自然同値に関する一般理論」)と題された論文 (Eilenberg & Mac Lane ) である。古典的だが今もなお広く用いられる教科書として、マクレーンの『圏論の基礎』がある。

Property Value
dbo:abstract
  • 数学の一分野である圏論において中核的な概念を成す圏(けん、英: category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる。 二つの圏が等しいとは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは "General Theory of Natural Equivalences"(「自然同値に関する一般理論」)と題された論文 (Eilenberg & Mac Lane ) である。古典的だが今もなお広く用いられる教科書として、マクレーンの『圏論の基礎』がある。 (ja)
  • 数学の一分野である圏論において中核的な概念を成す圏(けん、英: category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる。 二つの圏が等しいとは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは "General Theory of Natural Equivalences"(「自然同値に関する一般理論」)と題された論文 (Eilenberg & Mac Lane ) である。古典的だが今もなお広く用いられる教科書として、マクレーンの『圏論の基礎』がある。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 253041 (xsd:integer)
dbo:wikiPageLength
  • 15510 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91059609 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:last
  • Eilenberg (ja)
  • Mac Lane (ja)
  • Eilenberg (ja)
  • Mac Lane (ja)
prop-en:title
  • Category (ja)
  • category (ja)
  • Category (ja)
  • category (ja)
prop-en:urlname
  • Category (ja)
  • category (ja)
  • Category (ja)
  • category (ja)
prop-en:wikiPageUsesTemplate
prop-en:year
  • 1945 (xsd:integer)
dct:subject
rdfs:comment
  • 数学の一分野である圏論において中核的な概念を成す圏(けん、英: category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる。 二つの圏が等しいとは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは "General Theory of Natural Equivalences"(「自然同値に関する一般理論」)と題された論文 (Eilenberg & Mac Lane ) である。古典的だが今もなお広く用いられる教科書として、マクレーンの『圏論の基礎』がある。 (ja)
  • 数学の一分野である圏論において中核的な概念を成す圏(けん、英: category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる。 二つの圏が等しいとは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは "General Theory of Natural Equivalences"(「自然同値に関する一般理論」)と題された論文 (Eilenberg & Mac Lane ) である。古典的だが今もなお広く用いられる教科書として、マクレーンの『圏論の基礎』がある。 (ja)
rdfs:label
  • 圏 (数学) (ja)
  • 圏 (数学) (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of