dbo:abstract
|
- 数学における多項式列(つまり、自然数の集合 {0, 1, 2, 3, …} で添字付けられた多項式の成す列であって、かつ各多項式の添字がその多項式の次数に等しいもの){pn(x) : n = 0, 1, 2, 3, …} が二項型(にこうがた、英: binomial type)であるとは、この列が恒等式 を満足するときに言う。このような数列は無数に存在し、二項型多項式列をすべて集めて得られる集合は後述のように陰合成のもとで群を成す。任意の二項型多項式列はベル多項式で表すことができる。任意の二項型多項式列はシェファー列だが、逆は必ずしも成り立たない。多項式列は19世紀の漠然とした umbral calculus の概念を下敷きにしている。 二項型多項式列の概念は組合せ論、確率論、統計学、その他さまざまな分野に応用を持つ。 (ja)
- 数学における多項式列(つまり、自然数の集合 {0, 1, 2, 3, …} で添字付けられた多項式の成す列であって、かつ各多項式の添字がその多項式の次数に等しいもの){pn(x) : n = 0, 1, 2, 3, …} が二項型(にこうがた、英: binomial type)であるとは、この列が恒等式 を満足するときに言う。このような数列は無数に存在し、二項型多項式列をすべて集めて得られる集合は後述のように陰合成のもとで群を成す。任意の二項型多項式列はベル多項式で表すことができる。任意の二項型多項式列はシェファー列だが、逆は必ずしも成り立たない。多項式列は19世紀の漠然とした umbral calculus の概念を下敷きにしている。 二項型多項式列の概念は組合せ論、確率論、統計学、その他さまざまな分野に応用を持つ。 (ja)
|
rdfs:comment
|
- 数学における多項式列(つまり、自然数の集合 {0, 1, 2, 3, …} で添字付けられた多項式の成す列であって、かつ各多項式の添字がその多項式の次数に等しいもの){pn(x) : n = 0, 1, 2, 3, …} が二項型(にこうがた、英: binomial type)であるとは、この列が恒等式 を満足するときに言う。このような数列は無数に存在し、二項型多項式列をすべて集めて得られる集合は後述のように陰合成のもとで群を成す。任意の二項型多項式列はベル多項式で表すことができる。任意の二項型多項式列はシェファー列だが、逆は必ずしも成り立たない。多項式列は19世紀の漠然とした umbral calculus の概念を下敷きにしている。 二項型多項式列の概念は組合せ論、確率論、統計学、その他さまざまな分野に応用を持つ。 (ja)
- 数学における多項式列(つまり、自然数の集合 {0, 1, 2, 3, …} で添字付けられた多項式の成す列であって、かつ各多項式の添字がその多項式の次数に等しいもの){pn(x) : n = 0, 1, 2, 3, …} が二項型(にこうがた、英: binomial type)であるとは、この列が恒等式 を満足するときに言う。このような数列は無数に存在し、二項型多項式列をすべて集めて得られる集合は後述のように陰合成のもとで群を成す。任意の二項型多項式列はベル多項式で表すことができる。任意の二項型多項式列はシェファー列だが、逆は必ずしも成り立たない。多項式列は19世紀の漠然とした umbral calculus の概念を下敷きにしている。 二項型多項式列の概念は組合せ論、確率論、統計学、その他さまざまな分野に応用を持つ。 (ja)
|