数学におけるヴォルテラ積分方程式(ヴォルテラせきぶんほうていしき、英: Volterra integral equation)とは、積分方程式の一つの特別な形である。その形状により第一種と第二種に分かれる。 線型の第一種ヴォルテラ積分方程式は で与えられる。ここで ƒ は与えられた関数であり、x は求めるべき未知関数である。線型の第二種ヴォルテラ積分方程式は で与えられる。 作用素論およびフレドホルム理論において、上式と対応する方程式はヴォルテラ作用素と呼ばれる。 線型のヴォルテラ積分方程式が で与えられるなら、それは畳み込み方程式である。この時、積分の中の関数 は核と呼ばれる。このような方程式は、ラプラス変換の手法を用いることにより解析することが出来る。 ヴォルテラ積分方程式はヴィト・ヴォルテラにより導入され、エミール・ピカールの指導のもと、の1908年の学位論文「Sur les équations de Volterra」において研究された。ラレスクはその後、1911年に積分方程式に関する初の著書を執筆した。 ヴォルテラ積分方程式は、人口学や、粘弾性物質の研究、保険数学に現れる再生方程式などへと応用されている。

Property Value
dbo:abstract
  • 数学におけるヴォルテラ積分方程式(ヴォルテラせきぶんほうていしき、英: Volterra integral equation)とは、積分方程式の一つの特別な形である。その形状により第一種と第二種に分かれる。 線型の第一種ヴォルテラ積分方程式は で与えられる。ここで ƒ は与えられた関数であり、x は求めるべき未知関数である。線型の第二種ヴォルテラ積分方程式は で与えられる。 作用素論およびフレドホルム理論において、上式と対応する方程式はヴォルテラ作用素と呼ばれる。 線型のヴォルテラ積分方程式が で与えられるなら、それは畳み込み方程式である。この時、積分の中の関数 は核と呼ばれる。このような方程式は、ラプラス変換の手法を用いることにより解析することが出来る。 ヴォルテラ積分方程式はヴィト・ヴォルテラにより導入され、エミール・ピカールの指導のもと、の1908年の学位論文「Sur les équations de Volterra」において研究された。ラレスクはその後、1911年に積分方程式に関する初の著書を執筆した。 ヴォルテラ積分方程式は、人口学や、粘弾性物質の研究、保険数学に現れる再生方程式などへと応用されている。 (ja)
  • 数学におけるヴォルテラ積分方程式(ヴォルテラせきぶんほうていしき、英: Volterra integral equation)とは、積分方程式の一つの特別な形である。その形状により第一種と第二種に分かれる。 線型の第一種ヴォルテラ積分方程式は で与えられる。ここで ƒ は与えられた関数であり、x は求めるべき未知関数である。線型の第二種ヴォルテラ積分方程式は で与えられる。 作用素論およびフレドホルム理論において、上式と対応する方程式はヴォルテラ作用素と呼ばれる。 線型のヴォルテラ積分方程式が で与えられるなら、それは畳み込み方程式である。この時、積分の中の関数 は核と呼ばれる。このような方程式は、ラプラス変換の手法を用いることにより解析することが出来る。 ヴォルテラ積分方程式はヴィト・ヴォルテラにより導入され、エミール・ピカールの指導のもと、の1908年の学位論文「Sur les équations de Volterra」において研究された。ラレスクはその後、1911年に積分方程式に関する初の著書を執筆した。 ヴォルテラ積分方程式は、人口学や、粘弾性物質の研究、保険数学に現れる再生方程式などへと応用されている。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2601172 (xsd:integer)
dbo:wikiPageLength
  • 2100 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91224054 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Volterra Integral Equation of the First Kind (ja)
  • Volterra Integral Equation of the Second Kind (ja)
  • Volterra Integral Equation of the First Kind (ja)
  • Volterra Integral Equation of the Second Kind (ja)
prop-en:urlname
  • VolterraIntegralEquationoftheFirstKind (ja)
  • VolterraIntegralEquationoftheSecondKind (ja)
  • VolterraIntegralEquationoftheFirstKind (ja)
  • VolterraIntegralEquationoftheSecondKind (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学におけるヴォルテラ積分方程式(ヴォルテラせきぶんほうていしき、英: Volterra integral equation)とは、積分方程式の一つの特別な形である。その形状により第一種と第二種に分かれる。 線型の第一種ヴォルテラ積分方程式は で与えられる。ここで ƒ は与えられた関数であり、x は求めるべき未知関数である。線型の第二種ヴォルテラ積分方程式は で与えられる。 作用素論およびフレドホルム理論において、上式と対応する方程式はヴォルテラ作用素と呼ばれる。 線型のヴォルテラ積分方程式が で与えられるなら、それは畳み込み方程式である。この時、積分の中の関数 は核と呼ばれる。このような方程式は、ラプラス変換の手法を用いることにより解析することが出来る。 ヴォルテラ積分方程式はヴィト・ヴォルテラにより導入され、エミール・ピカールの指導のもと、の1908年の学位論文「Sur les équations de Volterra」において研究された。ラレスクはその後、1911年に積分方程式に関する初の著書を執筆した。 ヴォルテラ積分方程式は、人口学や、粘弾性物質の研究、保険数学に現れる再生方程式などへと応用されている。 (ja)
  • 数学におけるヴォルテラ積分方程式(ヴォルテラせきぶんほうていしき、英: Volterra integral equation)とは、積分方程式の一つの特別な形である。その形状により第一種と第二種に分かれる。 線型の第一種ヴォルテラ積分方程式は で与えられる。ここで ƒ は与えられた関数であり、x は求めるべき未知関数である。線型の第二種ヴォルテラ積分方程式は で与えられる。 作用素論およびフレドホルム理論において、上式と対応する方程式はヴォルテラ作用素と呼ばれる。 線型のヴォルテラ積分方程式が で与えられるなら、それは畳み込み方程式である。この時、積分の中の関数 は核と呼ばれる。このような方程式は、ラプラス変換の手法を用いることにより解析することが出来る。 ヴォルテラ積分方程式はヴィト・ヴォルテラにより導入され、エミール・ピカールの指導のもと、の1908年の学位論文「Sur les équations de Volterra」において研究された。ラレスクはその後、1911年に積分方程式に関する初の著書を執筆した。 ヴォルテラ積分方程式は、人口学や、粘弾性物質の研究、保険数学に現れる再生方程式などへと応用されている。 (ja)
rdfs:label
  • ヴォルテラ積分方程式 (ja)
  • ヴォルテラ積分方程式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of