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1. Introduction

In this note, we explain a geometric proof of Lie’s third Theorem:

Theorem 1. A finite-dimensional Lie algebra g over R is integrable, that is, there
exists a Lie group G with Lie(G) ∼= g.

The version stated above could not have been proved by Lie himself, because the
concept of a global Lie group was missing in the 19th century. What Lie proved
was a local version of the theorem. The standard proof of this result is via Ado’s
Theorem - stating that g has a finite-dimensional faithful representation. Thus g
is linear, i.e. isomorphic to a subalgebra of gln(R) for n large enough. But a linear
Lie algebra is integrable, the group in question is generated by all exponentials of
elements of g inside GLn(R). A standard, but nontrivial fact is that such a group is
a Lie group (the topology is possibly different from the subpace topology induced
by GLn(R). There is an alternative proof in the book [2] that does not involve any
structure theory of Lie algebras. In this note, we present a geometric proof that we
found in Willem Van Est’s paper [4], who in turn ascribes the proof to Elie Cartan.
The ingredients of the proof are:

• The integrability of linear Lie algebras.
• A characterization of Lie groups as a manifold equipped with a certain Lie

algebra of vector fields.
• A dualization of that characterization in terms of the Chevalley-Eilenberg

complex of a Lie algebra.
• The vanishing of H2

dR(G) for a simply-connected Lie group (this is also used
in [2]).

This might seem quite involved, but Ado’s theorem is a hard result and I found
the present proof marvellous enough to write down the details.

1.1. The idea of the proof. In the first section, we analyze the definition of a Lie
group in depth. By definition, the Lie algebra g of G is the space of all left-invariant
vector fields on G, with Lie bracket given by the commutator of vector fields. For
each g ∈ G, the evaluation g → TgG is an isomorphism of vector spaces; if g = 1,
this is the well-known identification g ∼= T1G.

The group G acts on itself both, from the left and the right and both actions
commute. It turns out that GL is the transformation group that leaves L invariant,
while GR is the transformation group that is generated by L. This remarkable
symmetry has its roots in the double nature of vector fields, as derivations and
infinitesimal symmetries.
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Thus we are led to consider a manifoldM , equipped with a Lie algebra L of vector
fields, such that the evaluation map M×L→ TM is an isomorphism. There are two
groups associated with this structure: GL, which is the group of diffeomorphisms
fixing the Lie algebra and the group ΓL generated by the Lie algebra. In order
to make sense out of ΓL, one needs L to consist of complete vector fields. This
condition is guaranteed by the transitivity of GL. Under this condition, it follows
that both ΓL and GL act transitively and freely on M . An important point is
that until now, we do not need to care about topologies on these groups; the setup
separates the manifold structure and the group structure. It requires an argument
to equip both GL and ΓL with Lie group structures; they are mutually isomorphic
and their Lie algebra is L. We call this structure an ”integral manifold” for g if
g ∼= L.

Vector fields are good for geometric constructions, but it is much easier to com-
pute with their duals - differential forms. Therefore we then proceed to a dual
formulation of the above results, involving the Chevalley-Eilenberg-complex.

The actual proof of Lie’s third theorem is by induction on the dimension of the
center. If the center is trivial, the Lie algebra is linear and hence integrable. An
easy algebraic argument shows that it is enough to prove that a central extension
u → g → h of an integrable Lie algebra h is integrable. Starting from an integral
manifold for h, we construct a suitable Lie algebra of vector fields on M ×R. Here
we meet the crucial condition that a simply connected finite-dimensional Lie group
has trivial second cohomology - this is completely false for infinite-dimensional Lie
groups. The proof of the transitivity of the symmetry group is not difficult - this
is the reason why the transitivity is emphasized in the basic construction theorem.

2. What is a Lie group?

Let us first fix conventions and notation. If M is a smooth manifold, V(M) de-
notes the Lie algebra of vector fields on M ; that is, all linear maps X : C∞(M)→
C∞(M) with X(ab) = (Xa)b+ aXb. The Lie bracket is the commutator [X,Y ] :=
XY −Y X. We can identify V(M) with the space of smooth sections of the tangent
bundle TM → M . The value of X at x ∈ M is denoted Xx. Let G be a Lie
group (which we will assume to be connected throughout). Left-multiplication by
g ∈ G is a diffeomorphism Lg : G → G; likewise, right-multiplication is denoted
Rg. The subspace V(G)G ⊂ V(G) of left-invariant vector-fields is a Lie subal-
gebra. Evaluation at 1 ∈ G gives a linear map V(G)G → T1G; and this is an
isomorphism. More generally, we could take any other element instead of 1. By
definition, Lie(G) := V(G)G is the Lie algebra of G; often denoted by g. Our in-
vestigation begins with an axiomatization of the structure that we found. At the
beginning of the argument, the Lie algebra structure on L does not play a role.

Definition 1. Let M be a smooth manifold. A framing of M is a subspace
L ⊂ V(M) such that the evaluation map M × L → TM ; (x,X) 7→ Xx is a vector
bundle isomorphism. The symmetry group of the framing is the group of all dif-
feomorphisms f : M →M with f∗X = X for all X ∈ L. The framing is transitive
if GL acts transitively on M .

Note that the expression f∗(X) is only defined when f is a diffeomorphism; it is
(f∗(X))(a) := X(a ◦ f−1). We have seen an example of a transitive framing: if G
is a Lie group and L the Lie algebra of left-invariant vector fields on G, then L is
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a framing of G. By definition, the left translation Lg(x) := gx by an element of G
is in GL (the notational coincidence is deliberate). We will soon learn that these
are all elements of GL. By definition, this framing is transitive. It is important to
note that GL is an abstract group, acting by diffeomorphisms on M (no topology
is specified on GL - not yet).

A vector field X on a manifold M has a schizophrenic double nature. First,
it serves as a derivation C∞(M) → C∞(M). On the other hand, it generates a
1-parameter group t → φtX of diffeomorphisms of M . The relation between both
aspects is given by

d

dt
|t=0(a ◦ φtX(x)) = (Xa)(x)

when x ∈M and a ∈ C∞(M). Of course, this is not quite true: the 1-parameter
group is defined if and only if the vector field is complete in the sense that the flow
lines exist for arbitrary times t.

Definition 2. A framed manifold (M ;L) is complete if the elements of L are
complete vector fields.

Definition 3. Let (M ;L) be a complete framing. Let ΓL be the group generated by
all diffeomorphisms φX , X ∈ L. It is called the group generated by L.

Again, no topology on ΓL is specified yet. It acts by diffeomorphisms on M ,
this time not by definition, but by the smooth dependence of solutions of ODEs on
initial values.

Theorem 2. Let (M ;L) be a framed manifold.

(1) If (M ;L) is transitive, then it is is complete.
(2) If (M ;L) is complete and M is connected, then ΓL acts transitively on M

and the actions of GL and ΓL commute.
(3) If (M ;L) is transitive, then both groups GL and ΓL act transitively and

freely on M .

Proof. Ad 1.) LetX ∈ L and x0 ∈M . Consider an integral curve c : (−2ε, 2ε)→M
to X through x0. Pick g ∈ GL with gx0 = c(ε). The curve gc is a curve through
c(ε). Because the action of G preserves X, gc is an integral curve to X through
c(ε). By this process, we have extended c to the interval (−2ε, 3ε). Proceeding in
this manner, also to the negative side, we extend it to all of R.

Ad 2.) That the actions of ΓL and GL commute should be clear by now (the
infinitesimal generators of ΓL are invariant under GL!). To prove transitivity of
the Γ-action, we prove that for a given x ∈ M , the orbit ΓLx contains an open
neighborhood U of x. Thus the orbits are open in M ; by formal nonsense they are
also closed in M . Since M is connected, the orbit Γx exhaust M , thus the action
is transitive. To prove existence of U , let

(1) Φ : R×M × L→M ; Φ(t, x,X) := φtX(x)

be the map that associates to (t, x,X) the point on the integral curve to X
through x at the time t. By the smooth dependance of solutions of ODEs on
parameters and initial values, Φ is smooth. We claim that Φ|1×x×L : L → M is
regular at 0. To see this, note that Φ(t, x,X) = Φ(1, x, tX) and thus
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d

dt
|t=0Φ(1, x, tX) =

d

dt
|t=0Φ(t, x,X) = X(x).

As L → TxM ; X 7→ X(x) is an isomorphism, regularity of Φ|1×x×L at 0 fol-
lows. By the inverse function theorem, the image of Φ|1×x×L contains a small open
neighborhood of x; and since Φ(R× x× L) ⊂ ΓLx by definition, we are done with
the second statement.

Ad 3.) This follows from the first two ones and the (trivial) Lemma below. �

Lemma 1. Let X be a set and G0, G1 two groups that act faithfully on X, such
that the actions commute. If one action is transitive, the other one is free.

Proof. Write the G0-action from the left, and the G1-action from the right and
let G1 be transitive. Let gx = x and let y ∈ X. Pick h with xh = y. Then
gy = g(xh) = (gx)h = xh = y. So each g ∈ G0 with a fixed point acts trivially. �

The previous theorem applies to the framing of a Lie group, because the left
action is transitive. Another trivial lemma shows what the group ΓL is.

Lemma 2. Let G be a group and Γ be a group acting transitively from the right on
the set G. If Γ commutes with {Lg|g ∈ G}, then Γ = {Rg|g ∈ G}.

Proof. If f ∈ Γ and g ∈ G, we find that f(g) = f(Lg(1)) = Lgf(1) = Rf(1)(g), so
f is a right translation, and the transitivity implies the claim �

So if we start from a Lie group G, we find that GL == {Lg|g ∈ G} and ΓL =
{Rg|g ∈ G}. To finish the geometric part of the proof of Lie’s third theorem, we
finally show how to recover the Lie group structure from the situation in Theorem
2.

Theorem 3. Let (M ;L) be a transitive framing of a connected manifold. There are
unique Lie group structures on GL and ΓL such that the actions on M are smooth.
A choice of a basepoint determines a diffeomorphism (GL, 1) ∼= (M ;x) and an
isomorphism GL ∼= ΓL. Under these isomorphisms, GL acts by left-translations
and ΓL by right-translation. The space L is the space of left-invariant vector fields
on GL (in particular, L is a Lie algebra and it is the Lie algebra of GL).

Proof. Fix a basepoint x ∈M . We continue to write the action of GL from the left
and that of ΓL from the right. Define A : GL →M by A(g) = gx; this is a bijective
map. The relation

gx = xF (g)

defines a bijection F : GL → ΓL (because both actions are free and transitive),
which is an isomorphism because

xF (gh) = ghx = g(hx) = gxF (g) = xF (h)F (g).

The diagram

GL ×M × ΓL // M

GL ×GL ×GL //

1×A×F

OO

GL

A

OO
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is commutative (the horizontal arrows are the group actions). Now we have to
put a smooth structure on GL; this is done by requiring that A is a diffeomorphism
(there is no other choice if the GL-action on M should be smooth). Moreover, we
define the smooth manifold structure on ΓL by saying that F is a diffeomorphism.
It follows that the bijection B : ΓL →M , h 7→ xh is a diffeomorphism as well, since
B(h) = xh = F−1(h)x = A ◦ F−1(h).

More or less by definition, the groups GL and ΓL act by diffeomorphisms on M .
This translates into the statement that left- and right-translations by fixed group
elements are diffeomorphisms GL → GL. This is not yet enough to prove that
GL is a Lie group, but it reduces the task to proving that there is a neighborhood
1 ∈ U ⊂ GL such that the multiplication µ : U × U → GL is smooth, by the
following argument. For (g, h) ∈ GL ×GL, the diagram

gU × Uh
µ // GL

U × U

Lg×Rh

OO

µ // GL

Lg◦Rh

OO

commutes, the vertical arrows are diffeomorphisms and if the the bottom map
is smooth, so is the top map. If GL ×GL → GL is smooth, the smoothness of the
inversion follows from the implicit function theorem.

So far we have given the groups GL and ΓL smooth manifold structures and a
smooth isomorphism GL ∼= ΓL. The proof that the multiplication is locally smooth
near the origin can therefore be carried out on ΓL. Recall that ΓL is generated
by the Lie algebra L. In the proof of Theorem 2, we found a map L → M and a
neighborhood V of 0 ∈ L such that V maps diffeomorphically onto an open U ⊂M .
Since ΓL → M is - by definition - a diffeomorphism, we have a map e : L → ΓL
that is a local diffeomorphism in a neighborhood of 0 (of course, this will be the
exponential map of the Lie group GL) and we redefine U to be e(V ) for a suitably
small V ⊂ L. The composition

V × V e×e→ U × U → ΓL ∼= M

is given by

(X,Y ) 7→ φY φX(x)

and again the smooth dependence of solutions of ODE on parameters and initial
values proves that this map is smooth. Therefore, multiplication in Γ is smooth
around the origin, and by the above arguments, the proof that ΓL and GL are Lie
groups is complete.

Finally, L is a space of G-invariant vector fields; thus L ⊂ Lie(GL), and equality
follows by dimension reasons. �

The nice feature is that we really need both groups to accomplish the goal. Also,
the two roles of vector field are related by a certain ”duality”: L is the Lie algebra
of G-invariant vector fields, and it generates Γ. We conclude this section by the
answer to the question posed in its title.

Definition 4. Let g be a Lie algebra and M a smooth manifold. A Maurer-Cartan-
g-structure on M is a framing L of M , such that L is closed under Lie brackets
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and L ∼= g as Lie algebras. A Maurer-Cartan-structure is transitive/complete if
the framing L is transitive/complete.

What is a Lie group?. A connected Lie group with Lie algebra g is a transitive
Maurer-Cartan structure (M ;L) with connected M , together with an isomorphism
of Lie algebras L ∼= g.

3. An algebraic reformulation

More notation: If M is a smooth manifold, its de Rham algebra is A∗(M). For
a real vector space V , V ∨ will denote its dual space.

Definition 5. Let (M ;L) be a manifold with a framing. A p-form ω ∈ Ap(M)
is constant if for all X1, . . . , Xp ∈ L, the function ω(X1, . . . , Xp) is a constant
function on M .

By the formula for exterior products, the space of constant forms is closed under
wedge products. Moreover, the algebra of constant forms is the same as Λ∗(L∨).

Lemma 3. A framing is a Maurer-Cartan structure (i.e., [L,L] ⊂ L) if and only
if d(Λ∗L∨) ⊂ Λ∗L∨.

Proof. Recall the following formula for the exterior derivative:

dw(X0, . . . , Xp) =

p∑
i=0

(−1)iXi(w(X0, . . . , X̂i, . . . , Xp)) +∑
i<j

(−1)i+jw([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)

for each p-form w and vector fields Xi on a manifold. The first sum is zero if
Xi ∈ L and w is constant. Thus if L is a Lie algebra, the above expression is a
constant function for all Xi ∈ L and constant forms w. Vice versa, assume that for
each constant form w, dw is again constant. If w is a constant 1-form, we find that

dw(X0, X1) = w([X0, X1])

for all Xi ∈ L. Thus [X0, X1] is constant. �

The formula in the above proof suggests the following definition:

Definition 6. Let g be a Lie algebra. The Chevalley-Eilenberg complex of g is
C∗CE(g) := Λ∗g∨, together with d : Λp(g∨)→ Λp+1(g∨) defined by

dw(X0, . . . , Xp) =
∑
i<j

(−1)i+jw([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp).

This definition is due to Chevalley and Eilenberg [1]. It remains to verify that
C∗CE(g) is a d.g.a. (differential graded algebra). First, one verifies that d(w ∧ v) =

(dw) ∧ v + (−1)|w]w ∧ dv for all v, w, by a straightforward but slightly tedious
calculation. Therefore, it is enough to verify the propery d2w = 0 when w is a
0-form (this is clear) or a 1-form. But the equation ddw = 0 for a 1-form is an
immediate consequence of the Jacobi identity.
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Definition 7. Let g be a Lie algebra. An algebraic Maurer-Cartan g-structure
on a manifold M is a d.g.a. homomorphism Θ : C∗CE(g) → A∗(M) such that the
evaluation map M × g∨ → T∨M , (x,w) 7→ wx is a vector bundle isomorphism.
The symmetry group is the group of all diffeomorphisms f with f∗ ◦Θ = Θ.

We summarize what we have proven so far.

Theorem 4. Let g be a finite-dimensional Lie algebra. Then g is integrable if and
only if there exists a connected manifold M , together with an algebraic Maurer-
Cartan structure Θ : C∗CE(g)→ A∗(M) that has a transitive symmetry group. The
pair (M ; Θ) is called an integral manifold for g.

Finally, we reformulate the result in more concrete terms in order to simplify the
calculations. To that end, choose a basis B = (X1, . . . , Xn) of g and let (w1, . . . , wn)
be the dual basis of g∨. The structure constants of g with respect to B are given
by

(2) [Xi, Xj ] = ckijXk,

using the Einstein summation convention. The axioms for a Lie algebra translate
into the equations

ckij = −ckji; cljkc
m
il + clkic

m
jl + clijc

m
kl = 0.

One quickly verifies that the differential in C∗CE(g) has the form

(3) dwl = −clijwi ∧ wj .

Lemma 4. To give a d.g.a. morphism Θ : C∗CE(g) → A∗(M), it is sufficient
and necessary to give 1-forms θ1, . . . , θn ∈ A1(M) such that the structure equation
dwl = −clijwi ∧ wj holds.

This is obvious.

4. Proof of Lie’s third theorem, main part

We now prove Lie’s theorem. Along the proof, we will meet an obstruction whose
vanishing will be shown afterwards. According to our integrability theorem 4, we
have to find a certain d.g.a. map C∗CE(g)→ A∗(M). The proof will be by induction
on the dimension of the center and it begins with:

Proposition 1. A Lie algebra with trivial center is integrable.

Proof. By definition, the center of g is the kernel of the adjoint representation
ad : g→ gl(g), so under our assumption, the adjoint representation is injective and
g is linear. But any subalgebra of gl(V ) is integrable. �

Now let g be a general Lie algebra, z ⊂ g its center. If dim(z) ≥ 1, take a one-
dimensional subspace u ⊂ z. Being in the center, u is an ideal and h := g/u is a Lie
algebra whose center is z/u (look at the adjoint representations) and dim(z/u) <
dim(z). Thus the proof of Lie’s theorem will be accomplished by the following
result.

Theorem 5. Let 0→ u ⊂ g
p→ h→ 0 be a short exact sequence of Lie algebras, u

one-dimensional and central in g. If h is integrable, then so is g.
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Proof. Let (M ; Θh) be an integral manifold for h. We will construct a g-Maurer-
Cartan-structure on M × R.

Let 0 6= X1 ∈ u; let (w2, . . . , wn) be a basis of h∨. Let vi := p∗wi. Pick v1 with
v1(X1) = 1. Then (v1, . . . , vn) is a basis of g∨, and X1 is the first element of the
dual basis (X1, . . . , Xn) of g. The associated structure constants are denoted ckij .
The condition that X1 is in the center of g translates into the fact that

(4) ck1i = cki1 = 0 for all i, k.

Therefore

dv1 = −c1jkvj ∧ vk

is a linear combination of wedge products vj ∧ vk for k, l ≥ 2. Since p∗ is
injective, there is a unique α

′ ∈ Λ2(h∨) with p∗α′ = dv1. Moreover, dα′ = 0. Let

α := Θh(α
′
) ∈ A2(M); a closed 2-form. We now have to make a crucial assumption,

that will be justified at the end of the proof.

Assumption 1. The second de Rham cohomology of M is trivial; H2
dR(M) = 0.

By this assumption, we find a 1-form τ1 ∈ A1(M) with dτ1 = α. Moreover, put
τ i := Θh(wi), i ≥ 2. Let π : M × R → M be the projection. Let θ1 := π∗τ1 + dt
and θi := π∗τ i for i ≥ 2.

Claim 1. The linear map g∨ → A∗(M×R) given by vi 7→ θi extends to an algebraic
Maurer-Cartan structure.

The isomorphism property is clear (because the original Θh satisfied this condi-
tion and because we added the summand dt to the first form. We have to verify
the structure equation. We already observed that the centrality of u implies that
cki1 = ck1i = 0, which means that the old structure equation in h translates to the
structure equation in g for the forms θi, i ≥ 2 (dθi does not involve θ1!). Moreover

dθ1 = π∗dτ1 = Θh(α
′
) = Θh(−c1jkwj ∧ wk) = −c1jkθj ∧ θk,

which verifies the structure equation. According to the integrability theorem, we
now have to prove that the automorphism group of this Maurer-Cartan structure
acts transitively on M × R. For a given y ∈ R, the map

(m,x) 7→ (m,x+ y)

is clearly an automorphism, since the form dt ∈ A1(R) is translation-invariant.
So the automorphism group acts transitively ”in the R-direction”. Let H be the
automorphism group of (M ; Θh). We want to lift each h ∈ H to φh : M × R and
make the following:

Ansatz 1. For given h ∈ H, find a function f : M → R such that φh,f (m,x) :=
(hm, x+ f(m)) preserves the differential system.

Clearly π ◦ φh,f = h ◦ π and therefore φ∗h,fθ
i = θi for i ≥ 2 (this holds for

arbitrary f). Moreover

φ∗h,fdt = π∗df + dt.

Thus we seek a function f with

φ∗h,fπ
∗τ1 = −π∗df + π∗τ1.
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Because

φ∗h,fπ
∗τ1 = π∗h∗τ1

and because π∗ is injective, we have to solve the equation −df + τ1 = h∗τ1 or

(5) df = τ1 − h∗τ1.

If τ1 were closed, the existence of such an f follows from the homotopy-invariance
of the de Rham cohomology. However, τ1 is closed only if g = h⊕ u. On the other
hand, dτ1 is in the image of Θh and therefore invariant under H: h∗dτ1 = dτ1.
Thus d(τ1−h∗τ1) = 0, and we find an f solving 5 provided that H1(M) = 0. This
holds if π1(M) = 1. Because M is a Lie group and we know that universal coverings
of Lie groups are again Lie groups (with canonically isomorphic Lie algebra), this
assumption can be made without loss of generality.

This finishes the proof of Lie’s third theorem, except that we have to justify
the assumption 1. It is a classical result, due to Hopf, that a simply connected
Lie group G satisfies H2

dR(G)) = 0 (even the stronger fact π2(G) = 0 is true). An
algebraic topology textbook that covers this result is [3], p. 285, with the little
caveat that the proof given there assumes finite-dimensionality of H∗dR(G). This
is true, as any Lie group is homotopy equivalent to a maximal compact subgroup,
but this latter result is not easy to prove. A proof which takes care of this issue
can be found in [2], Theorem 1.14.2. �

5. The failure in infinite dimensions

The following example of a nonintegrable Lie algebra is due to Serre [5]. First
observe that Lie’s second theorem holds for Banach Lie groups.

Proposition 1. If g is the Lie algebra of the simply-connected Banach Lie group
G, h ⊂ g a closed ideal and H ⊂ G the subgroup generated by h. If g/h is integrable,
then H ⊂ G is closed.

Proof. Let K be a Lie group with Lie algebra g/h. By Lie’s second theorem, one
finds a (continuous) homomorphism G→ K that induces g→ g/h on Lie algebras.
The kernel is a closed subgroup and it must be the group H. �

Now let V be a separable Hilbert space of infinite dimension. The group GL(V )
of all continuous linear automorphisms is a Banach Lie group. Now inside GL(V )×
GL(V ), we find a central subgroup C isomorphic to §1×S1. Let H ⊂ C be a dense
wind; this is a central connected subgroup in GL(V )×GL(V ) that is not closed. Its
Lie algebra is an ideal h ⊂ gl(V ) ⊕ gl(V ). This contradicts the above proposition;
therefore (gl(V )⊕ gl(V ))/h is not integrable.

The role of the condition H2(G) = 0 also becomes transparent in this example.
The quotient G := (GL(V ) × GL(V ))/C is a Lie group. By Kuipers theorem,
GL(V ) × GL(V ) is contractible, and this implies that π1(G) = 1 and H2(G) 6= 0.
But there is a central extension of Lie algebras

R→ (gl(V )⊕ gl(V ))/c→ g.

Even though g is integrable, the middle is not, because H2(G) fails to vanish.
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