Costante di Hermite
In matematica, la costante di Hermite è una costante dipendente da un intero n > 0. Il nome fa riferimento al matematico Charles Hermite.
La costante è definita nel modo seguente. Sia L un reticolo nello spazio euclideo Rn, cioè un sottogruppo discreto che genera (come spazio vettoriale) tutto lo spazio. Sia λ1(L) la minima norma di tutti gli elementi non-nulli di L.
La costante è definita come il massimo di λ1(L) fra tutti i reticoli L di covolume unitario, cioè tali che vol(Rn/L) = 1.
La radice quadrata nella definizione della costante di Hermite è presente per ragioni storiche.
In alternativa, la costante di Hermite può essere definita come il quadrato della sistola massimale di un toro piatto di n dimensioni di volume unitario.
Esempio
[modifica | modifica wikitesto]La costante di Hermite è conosciuta in dimensioni 1-8 e 24. Per n = 2, si ha . Questo valore è ottenuto dagli interi di Eisenstein.
Collegamenti esterni
[modifica | modifica wikitesto]- (EN) Eric W. Weisstein, Costante di Hermite, su MathWorld, Wolfram Research.