Vai al contenuto

Composizione di funzioni

Da Wikipedia, l'enciclopedia libera.

In matematica, la composizione di funzioni è l'applicazione di una funzione al risultato di un'altra funzione. Più precisamente, una funzione tra due insiemi e associa ogni elemento di a uno di : in presenza di un'altra funzione che associa ogni elemento di a un elemento di un altro insieme , si definisce la composizione di e come la funzione che associa ogni elemento di a uno di usando prima e poi . Il simbolo Unicode dell'operatore è (U+2218).

, la composizione di e

Formalmente, date due funzioni e definiamo la funzione composta:

applicando prima ad e quindi applicando al risultato .

Ad esempio, supponiamo che l'altezza di un aereo al tempo sia data da una funzione e che la concentrazione di ossigeno nell'atmosfera all'altezza sia data da un'altra funzione . Allora descrive la concentrazione di ossigeno nella posizione in cui sta l'aereo al tempo .

Per ragioni storiche la composizione è scritta "da destra verso sinistra", in contrasto con la normale lettura "da sinistra a destra" delle lingue europee. Per questo motivo alcuni autori preferiscono usare una notazione invertita, e scrivere invece di .

Per comporre due funzioni è strettamente necessario che il dominio di coincida con il codominio di . In alcuni ambiti, tuttavia, identificando impropriamente due funzioni che hanno la stessa legge di applicazione, ma diversi domini e codomini, si ritiene sufficiente che l'immagine di e il dominio di abbiano un'intersezione non vuota.

La composizione di funzioni è sempre associativa. In altre parole, se , e sono tre funzioni con domini e codomini opportuni, allora . Per questo motivo si possono omettere le parentesi nella composizione di più funzioni.

La composizione di due funzioni iniettive è iniettiva, e di due funzioni suriettive è suriettiva. Quindi la composizione di due funzioni biettive è biettiva. Ma non vale il viceversa.

L'insieme delle funzioni biettive , con l'operazione di composizione, è un gruppo. La proprietà associativa è garantita per quanto detto sopra, l'elemento neutro è la funzione identità per ogni ) e un inverso esiste sempre perché le funzioni sono biettive. Questo gruppo è detto anche gruppo delle permutazioni di . Se l'insieme contiene più di due elementi, tale gruppo non è commutativo: generalmente due funzioni biettive non commutano.

Derivata delle funzioni composte

[modifica | modifica wikitesto]
Lo stesso argomento in dettaglio: Regola della catena.

La derivata della funzione composta è il prodotto tra la derivata della funzione "esterna" moltiplicata per la derivata della funzione "interna":

dove le notazioni e indicano il medesimo significato di derivata.

La formula è valida anche per funzioni di più variabili reali e per funzioni vettoriali. Il teorema di derivazione delle funzioni composte afferma che se:

è un vettore di le cui componenti sono funzioni derivabili:

e se è una funzione differenziabile in , allora la funzione composta:

è differenziabile nella variabile e si ha:

dove è il gradiente di e è il prodotto scalare euclideo standard.

Infine, se e sono due funzioni vettoriali differenziabili componibili, allora:

dove è la moltiplicazione di matrici e è la matrice jacobiana di .

Composizioni iterate

[modifica | modifica wikitesto]

Una funzione (non necessariamente biettiva) può essere composta con sé stessa volte, ed il risultato, detto iterata -esima di , può essere scritto quando non genera ambiguità. Ad esempio con si denota comunemente il quadrato del seno di , cioè , anziché il valore in della composizione del seno con se stesso, cioè .

Lo studio delle composizioni iterate di una funzione è argomento comune nell'ambito dei sistemi dinamici discreti e in particolare nella definizione dei frattali, che si possono trovare iterando infinite volte una funzione.

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica