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Learning With Label Proportions via NPSVM

Zhiquan Qi, Bo Wang, Fan Meng, and Lingfeng Niu

Abstract—Recently, learning from label proportions (LLPs),
which seeks generalized instance-level predictors merely based
on bag-level label proportions, has attracted widespread interest.
However, due to its weak label scenario, LLP usually falls into
a transductive learning framework accounting for an intractable
combinatorial optimization issue. In this paper, we propose
a brand new algorithm, called LLPs via nonparallel support
vector machine (LLP-NPSVM), to facilitate this dilemma. To
harness satisfactory data adaption, instead of transductive learn-
ing fashion, our scheme determined instance labels according
to two nonparallel hyper-planes under the supervision of label
proportion information. In a geometrical view, our approach can
be interpreted as an alternative competitive method benefiting
from large margin clustering. In practice, LLP-NPSVM can be
efficiently addressed by applying two fast sequential minimal
optimization paths iteratively. To rationally support the effective-
ness of our method, finite termination and monotonic decrease
of the proposed LLP-NPSVM procedure were essentially ana-
lyzed. Various experiments demonstrated our algorithm enjoys
rapid convergence and robust numerical stability, along with
best accuracies among several recently developed methods in
most cases.

Index Terms—k-plane clustering, learning with label propor-
tions (LLPs), nonparallel support vector machine (NPSVM).

I. INTRODUCTION

UPERVISED, semi-supervised, and unsupervised

learnings are three mainly topics and fashions in the
machine learning society [1]-[11]. Nevertheless, it is arguable
that many real life problems fail in being simply abstracted
into these three machine learning communities, especially
when the labels cannot be fully accessed and none of
them can be explicitly determined. Take an investment
strategy exploration in selling certain sort of product as an
example.
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A marketing company plans to increase its profit in sales
through sending out discount coupons. Normally, it is helpful
to improve profit when and only when sending coupons to cus-
tomers who would just buy the discount products. However,
we cannot identify this sort of potential clients explicitly.
Instead, only proportions of these people in some certain
groups are known somehow. Let us say that about 75%
housewives and only 15% businessmen will be the objec-
tive customers in common sense. What can we do with this
information to promote sales more precisely?

Not only in the social science, similar problems are also
ubiquitous in natural science world. Consider the following
often occurred issue in health-care research.

In view of the privacy protection, only the proportion of
diagnosed diseases in each ZIP code area is literally avail-
able to the public. Suppose that you were an epidemic expert
and hoped to reliably diagnose for every single latent patient.
How can you successfully learn these individual labels (dis-
ease or nondisease) from regular test results and group-level
label proportions?

Besides, in spam filtering, democratic election, similar
interesting puzzles are frequently encountered, which can be
informally concluded into how to obtain a reliable classifier
merely using label proportions information and instances’ fea-
tures. In other words, this issue can be formally regarded
as learning from label proportions (LLPs) problem, which
has generated considerable recent research interests. Generally
speaking, unlike the machine learning problems mentioned
above, in LLP problem, training instances are provided in man-
ner of bags, and only the proportion of each class in every
individual bag is available. On the other hand, the learning
task is to predict labels of new individual instances. Explicitly,
LLP problem can be described in the following specific
fashion.

Consider a binary classification problem. Suppose that the
training set {xi}ﬁi | C & is given in the form of K disjoint
bags, that is

K
{xili € BiX,, UBk ={1,2,....,N}, Bs N B, =0, Vk # L.
k=1

Different from unsupervised learning situation, label infor-
mation is abstracted in bag level somehow. Particularly, the
proportion of positive class points in every bag is available.
In light of this, we explicitly denote yf e {—1,+1},i =
1,2,..., N the unknown ground truth label for every instance
and measure proportion information in the kth bag by py =
({ili € Be, yi = 1}1/1Bkl) € 10, 1], Vk, correspondingly. Our
eventual goal is to learn a classifier based on {xi}ﬁ\’: , and
{pi}X_, in order to predict label in instance level.
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Fig. 1. Comparison between LLP and MIL problems.

As a special learning with bags task for binary classification,
LLP can be associated with another slight different learning
problem: multi-instance learning (MIL) [12]-[19], in which
instance-level labels are not available either. Instead of propor-
tion information, in MIL problem, only two sorts of bags, i.e.,
the positive bag (containing at least one positive instance) and
negative bag (containing no positive instance), are involved.
From this point of view, MIL can be treated as a degeneration
of LLP with extremely high or low proportions. Nonetheless,
in general LLP problem setting, one cannot tell explicit label
of any single instance. By contrast, this is somewhat inconsis-
tent to MIL, where one can label all the instances in negative
bags without hesitation. Thus, MIL can be transferred into a
standard semi-supervised learning problem and be solved by
constrained concave—convex procedure [20], [21] bearing its
transductive learning framework intrinsically. Fig. 1 sketches
these two similar learning problems.

A. Related Work

While the natural born transductive scenario is knotty,
as an alternative learning task, LLP has indeed outlined a
promising middle ground between supervised and unsuper-
vised learning. The related researches mainly fell into four
regimes. The first one could be traced back to the work of
Kuck and de Freitas [22]. They provided an Markov Chain
Monte Carlo algorithm to handle this problem that accounted
for uncertainty in model parameters and unknown individual
labels as well. Whereas, its efficiency was severely limited
by the complexity of the essential weak label information.
Second, learning from aggregate views was introduced by
Chen et al. [23] together with different learning methods for
a special case called learning from projections and counts.
Meanwhile, conditional class estimations were restricted to
match observed ones. Similar work was also mentioned
in [24].

Nevertheless, Quadrianto et al. [25] applied consis-
tent estimators which could reconstruct the correct
labels with high probability in an uniform conver-
gence sense. In detail, they assumed the distribution
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of labels conditioned on the features via a conditional
exponential model: p(ylx,0) = exp((¢(x,y),0) — g(@x)).
Here, g(f]x) = log Zyey exp(¢p(x,y), 0) was called the log-
partition function, and ¢(x,y) denoted a feature map from
X x Y to a reproducing kernel Hilbert space (RKHS) H. The
parameter 6 needed to be estimated based on labels proportion
information. However, a key assumption, p(x|y, i) = p(xly),
where i denoted the ith bag, seemed to be far too unrealistic.
In addition, the estimation process strongly depended on
empirical means and expectations scale.

Later, Riiping [26] proposed an parametric LLP solver out-
performed previous approaches by combining support vector
regression and inverse classifier calibration. In fact, mean of
each bag was treated as a “super-instance” and produced a soft
label through corresponding label proportion.

Unfortunately, this hasty process by integrating property in
bag level was too general to result in acceptable performance
in some uncommon cases argued by Yu et al. [27].

Besides, Stolpe and Morik [28] developed a clustering-
based approach to Tame LLP puzzle. However, it suffered
from the extremely high computing complexity. In addition,
Fan et al. [29] presented theoretical analysis to associate LLP
with supervised learning, through giving a sufficient condition
for learnable binary classification scenario. What is more, they
conducted a fruitful framework on how to build generative
classifiers by density estimation. The experimental results on
benchmark data sets succeeded in promising performance. On
the other hand, Patrini et al. [30] offered a fast learning algo-
rithm to estimate the mean operator via a manifold regularizer
with guaranteed approximation bounds.

Recently, an effective model based on support vector
machine (SVM), called «SVM [27], [31], overwhelmingly
outperformed these former known methods in most situations
with carefully trick setting. A maximum margin framework
was employed to optimize over the unknown instance labels
and the known label proportions simultaneously. Through
alleviating restrictive assumptions on the data, either paramet-
ric or generative (many assumptions cannot hold for general
real-world applications), xSVM discovered a more universal
framework for LLP, which iteratively polished the solution
with annealing loop. In detail, this LLP algorithm based on
the maximum margin framework can be expressed as

N
1 2 T
min —|w|°+C L( W o(x; +b)
yec,w’bzll l ;Zl Vi W @(xi)

1
+ G Y L@iy).p) (D)

i=1

where C indicated {—1, +1}l, L(-) > 0 was the loss func-
tion inherited from supervised learning and L,(-) > 0 was a
1-Lipshitz loss function to penalize the error between the prior
ground truth label proportions and the posteriori ones.
Although «SVM can implement optimization in search-
ing y,w, and b by various methods, it is spiked in some
complicated applications for its predestined disadvantages.
Particularly, weak label information indubitably results in
a nonconvex integer programming for this problem, which
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is often NP-hard. That is to say, the optimization problem
in (1) is substantially combinatorial. As a result, this obstacle
impedes us from obtaining adequately approximate result in
limited time.

In  addition, other references can be  found
in [28] and [32]-[37]. Currently, LLP has also been
enormously applied in marketing, election, span filtering [22],
visual attribute modeling [38], [39], video event detec-
tion [40], predicting income based on census data [31], and
SO on.

B. Motivation

As is introduced above, the essential difference among the
former methods is that different tactics they used to tradeoff
between the deviations in the instance-level feature informa-
tion and bag-level label proportions information. Although
none of them can dominate in all circumstances, there is
no doubt that most of these successes can be attributed to
the exploration of between-class information. For example, a
maximum margin framework explicitly modeling the latent
unknown instance labels together with the known group label
proportions (called xSVM) [27], can greatly boost accuracy in
predicting instance level. On one hand, this remarkable advan-
tage lies in the introduction of large margin mechanism, which
fully implements the data’s between-class information. On the
other hand, taking account of proportion information, empir-
ical proportion risk minimization principle (EPRMP) was
proposed to suppress and alleviate the inconsistency with prior
proportion information. Relying on a systemic compromise
between large margin principle (LMP) and EPRMP, xSVM
achieved a considerable competitiveness in performance.

It is true that between-class information plays an impor-
tant role in LLP problem under separation assumption, but
sufficient illustrations argue that data distribution informa-
tion itself is seemed to be more indispensable in obtaining
a generalized classifier, which will be exactly achieved by
our method proposed in this paper. In stark contrast to this
observation, the neglect of distribution tendency is prone to
commit a fallacy of unseen data and will precipitate a less gen-
eralized classifier. Furthermore, implanting nonparallel hyper-
plane clustering method [11], [41] into binary classification
problem happens to profoundly integrate between-class sepa-
ration and data distribution information to hybridize promising
classifiers.

To illustrate our method, Fig. 2 reports an intuitive expla-
nation of LMP and nonparallel hyperplane clustering. Here,
we assume the data is generated according to two 2-variate
Gaussian distributions in R> with parameters setting as

w= 0 o= [ 5 Y i = 0. o -

4 g , respectively. The blue line denotes the result of
«SVM, in the meantime, the red and cyan lines denote the
result of our method. Consequently, when a new instance
comes, xSVM offers its label according to one single blue
line, yet our method tries to obtain its label based on

the nearest distance principle to two nonparallel lines. By
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Fig. 2. Intuitive explanation of LMP and nonparallel hyper-planes idea. The
o denotes the positive class, which is generated by the normal distribution of
parameters (1, o1, and the ¢ denotes the negative class, which is generated
by the normal distribution of parameters: ©y and o;. The different colors
denotes different bags. The blue line denotes the results of «xSVM, the red
and cyan lines denote the result of our method.

contrast, two hyper-planes are obtained by minimizing the
squared sum of Euclidean distances from each instance to the
nearest hyperplane. That is to say, traditional point-type clus-
ter centers are replaced by hyper-planes, which excellently
describes the ground truth data distribution. In this way, our
method yields the posteriori label of a new instance rely-
ing on two nonparallel lines. From Fig. 2, we can tell that
these two nonparallel lines are more likely to seize and rep-
resent appropriate distribution of data as is described above.
To get a deeper understanding of this character, it can be eas-
ily learned that when there are much more instances sampling
from two Gaussian distributions, these two individual groups
will overlap. Admittedly, between-class-based xSVM shows
insufficient utilization of this observation. At the same time,
two hyper-planes are incorporated into decision functions in
two smaller problems, which is a directly implementation for
LLP problem.

In practice, two smaller models first learn to construct two
nonparallel hyper-planes to recover data distribution informa-
tion. Then, labels in instance level can be supervised under
bag proportion errors minimization principle. This procedure
enables us to perform two sequential minimal optimiza-
tion (SMO) paths iteratively and distributively, which has been
repeatedly reported to drastically reduce the computation time.
All experiments in Section IV indicate our algorithm is supe-
rior to current methods with rapid convergence and robust
numerical stability.

The remaining parts of this paper are organized as fol-
lows. We first introduce the background in Section II, and
then give our new algorithm: LLPs via nonparallel SVM
(LLP-NPSVM) in Section III. All experiment results are
shown in Section IV. Concluding remarks are summarized in
Section V.

II. BACKGROUND

In this section, we briefly introduce the nonparallel
SVM (NPSVM) and k-plane clustering, both of which are
derived by our method.
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A. Nonparallel SVM
Consider binary classification problem with the training set

T = (e + DY Ul - 1)) @)

where x; € R" i = 1,...,p 4+ ¢g. With the generalized
twin SVM (TWSVM) [42] mechanism, incorporating spar-
sity through e¢-band and structural risk minimization principle,
NPSVM receives several remarkable advantages compared
with the existing TWSVMs [43]. Particularly, for linear classi-
fication problem, NPSVM seeks two nonparallel hyper-planes

Wy -x)+by =0and W_-x)+b_ =0 3)

by solving the two problems

| P p+q
min  SlwilP e Y i)+ Y
byn® e 2 ; ;

Wi.byony’, i=1 J=p+l

st —e—nf < (W -xi))+by <e+n Vi
(w+-xj)+b+§—1+§j, vj

ni,n; =0, Vi, §>0, Vj “)
1 p+q P
min  Slw_|P+c3 Y (i) Feay &
wobo ™ &y 2 =, =
i=p+1 Jj=1

st. —e—nf <W--x))+b_<e+mn;, Vi
(W--x)) +b_>1-§, V)
ni,nf >0, Vi, §>0, Vj. &)

Actually, the first constraint in (4) and (5) imple-
ments regression with respect to & insensitive loss function.
Meanwhile, the second constraint is related to the require-
ment far away from the alternative class. Instead of solv-
ing (4) and (5) directly, NPSVM applied SMO to their dual
Quadratic Programming Problems with a minor modification.

B. k-Plane Clustering

By replacing point-type cluster centers with hyper-planes,
Bradley and Mangasarian [41] explored this considerable
clustering method. Clustering around planes appears to have
advantages over clustering around points. Explicitly, consider
a set A of m points in the n-dimensional real space R" rep-
resented by the matrix A € R™*". Group A into k clusters
according to the following nonconvex minimization problem.
Determine k cluster planes in R”

PI::{xeR”|x~w1:yg},l:1,2,...,k (6)

which minimize the sum of the squares of distances from each
point in A to a nearest plane P;. It alternates between assigning
points to a nearest cluster plane (cluster assignment) and, for
a given cluster, computing a cluster plane that minimizes the
sum of the squares of distances to all points in the cluster
(cluster update).

III. NPSVM FOR LLP

First, notations that simplify the statement need to be
defined. Let d*(x) = |wix + bi|,d (x) = |wlx + b_| be
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two measurements for refined distances between any arbitrary
point x and two nonparallel hyper-planes in a certain iteration.

Meanwhile, let {{(xlj )}:1 1 pj}j’.”: | represent the bags with label
proportions and Zj”;l nj = 1. Also, let (1/1) ijzl pjnj = p+.

A. Algorithm

First, we describe LLP-NPSVM as a standard framework
and add annealing loop to avoid being attracted by local
optima.

Specifically, d,j and d;, are indicated to these two dis-
tance measures in iteration k. For simplicity, similar to the
methodology in [41], we conclude the proposed algorithm in
two steps, label assignment and label update. In every sin-
gle bag j, according to the proportion preservation principle,
i.e., EPRM, labels switch will occur when nearest assignment
strategy fails in recovering labels in the last one. In other
words, label update procedure conflicts to label assignment
result in some iteration. For any point xj"., in the kth iteration,
d;, (xj’:) — d,:r (x;) can be regarded as a key measure for label
assignment, regardless of the label assignment result in the
(k — Dyth iteration. Particularly, assigned the labels of top-n;p;
instances with respect to d (xj’.) - d,j' (xJ’.) as +1, without loss

of generality, we denote them as {x{ Vielth) -

B. Finite Termination for Label Assignment

At first, we explicitly define the objective function in
iteration k based on d,j and d; as follows:

m

obj =" Y df(¥)+ Y ar(x) | @

j=1| iel (k) iel(k)

Obviously, proportion information and label assignment pro-
cedure are both in bag level, which allows us to consider the
properties of objective function in each individual bag. First
of all, we can prove the strict decrease of objective function
with respect to label assignment.

Lemma 1: The label assignment procedure in Algorithm 1
renders a strictly decreasing path for the objective function.

Proof: Consider the proportion preservation principle as a
strict constraint for this procedure. There are some pairwise
label switches whenever the top-n;p; labeling is inconsistent
between two sequent iterations, for example between kth and
(k + Dth iterations. For the simplicity’s sake, let us suppose
that there is only one pair of label switch, which means one
positive point and one negative point in the kth iteration should
be relabeled as the opposite classes in the (k + 1)th iteration
simultaneously.

Without loss of generality, assume that d,” (x;. ) — d,:r (xjs. ) <
dk_(xjt.) - d,j(x’.). Here, s and ¢ are positive and negative
label indexes 1n the kth iteration, respectively. As we can
see, it follows that d; (xj) + d,j(xjt.) < d,j(xjs.) +d; (xjt.),
which leads to a strict decrease of objection function value
according to (7). |
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Algorithm 1 LLP-NPSVM
Require' Randomly initialize y; € {—1,1},i=1,2,---

1
i+ 1
[ Zl i + =p+-€1=
=
Apply linear NPSVM (4) and (5) to {x;, y;}{_, to obtain two

nonparallel hyper-planes (w.,.T, by)and w_T, b_);
while (¢ < C)&&(cp < C) do
c1 = c3 = min{(1 + A)cy, C};
¢y = cq4 = min{(1 4+ A)cp, C};
Let distcurrent = distsyisen = 0 and count = 0;
while (distcyrrent > distgyiren)&&(count < 2) do
count = count + 1;
repeat
Relabel bags {{(xJ)} I 1+ Dj j—l in instance level
according to the following rule .(label assignment):
Sort d~(x!) — d* (x]):
Label the Top-njp; instances as +1;
Label the rest instances as —1;
Update y;,i=1,2,---,1[;
Apply linear NPSVM (4) and (5) to new labeled data
{x;. y,} i— to obtain two nonparallel hyper-planes (w+ ,b1) and
(w_T, b_) (label update);
until The change of objective function is smaller than
some predefined threshold t
Compute distcurrent;
Switch labels and compute distg,,;;c;, (SWitch strategy);
end while
end while

, [, keeping
1072pC, ¢y = 1075(1 — pp)C.

Subsequently, we will show that this label assignment pro-
cedure is irreversible, which means the switch occurring in
the kth iteration will not be withdrawn in the following itera-
tions. Due to the finity of points in every bag, this leads to a
finite termination. For simplicity, we choose equal weights for
NPSVM in label update procedure. In addition, let the regu-
larization item be ||w|? = 1, i.e., scaling w. Moreover, let I(k)
be the indexes set for the positive points in iteration k, I(k)’
be the indexes set for negative ones in iteration k. Based on
the optimality of (w, b)T, let 0 < ¢4, cp < 1, there are four
equations should be introduced

Z d,j(xj’:)—ca Z d+( )+J/1

iel (k) iel (k)
. " .

Z k+1( l) ~Ca Z dk+1<x}> @®)

iel(k) iel(k)’
3 d,;(x;ﬁ)—cb 3 dk( )+J/2
iel(k) iel(k)

= Z dk+1( ) b deH( ) €))
iel(k) iel(k)
Z dl:r+l< t) dlj+1( t) —Ca Z dlj+1< l)
iel(k),is iel(k) it
adlo(s) +n= T () +a(s)
iel(k),i#s

Z d;' (x}) — cad,j (xj)

iel(ky it

(10)
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> dk_+1(x;) dk_—H() > k+l<>

il (k) it zel(k) ists
~ e () = Y 4 (x) 4 (5)
iel(k) it
3 d,;<xj’1)—cbd,;(x}). (11)

icl(k),i#s

Here, ;> 0,i=1,2,3, 4.

Lemma 2: For a bag j, let s in +1 and 7 in —1 be the only
switch pair. If ¢, = ¢, then, d+(xJ’-) +d () —df () —
d, (x)>d+1(x)+dk+1(x) +1(x;)—d,:+l(x;).

Proof: Because s in 41 and ¢ in —1 is the only switch pair,
it follows d~(x%) — d+(x )y <d” (x’) d+(xt)

By adding (8]) (11) together we have

dk+1< ) dk+1( )+dk+l( ) dk“(t)

Yit+y2+yvs+ya
+
1+c,

=t () = (5) + 4 (5) - 4 ()

which means
dlj+1( t) dl:r+1< s) +dk7+1(xs') - d];l(x;)
< df () = d () + 47 (55) — (<)
|

Remark 1: Particularly, when there is some positive y;, i =
1,2,3,4, dH(xt) d +1(xs)—l—dkH(x) dk+](x) < Ostrlctly
holds. It follows that: in the (k + 1)th iteration, xs. and x will
not be a switch pair.

Definition 1: In iteration k, define a distance measure for x
as follows: my(x) = d;, (x) — d,:’ (x).

As we can see, the conclusion in Lemma 1 can be expressed
by mj+ 1(xjs. ) — My (xjt.) < mk(xjs.) — mk(x;) < 0. Motivated by
this conclusion, we build the following assumption.

Assumption 1: Let s and ¢t be the positive and negative
indexes switching in the label assignment procedure of the
kth iteration. Assume that mr(xjs.) — mr(x;) < 0 with respect to
Vr > k.

Remark 2: If we regard my as a measure for the degree
of a certain point belonging to positive class, In this way,
Assumption 1 can be obtained by the following two more
strict conditions:

i) = o)) <) e ¢

However, we can tell that (13) is not a necessary condition for
Assumption 1 in many real-life problems. That is to say, we
give a much looser requirement for my(x).

Remark 3: This assumption is not trivial. Particularly,
Mi41 (x ) < Mg+ (x") may hold, for some negative point xJ
the kth iteration. As a result, there is no guarantee for x! not
to be relabeled as a negative point in the following iterations.

Theorem 1: Based on Assumption 1 and Algorithm 1 is
finite terminative.

Proof: First, according to Lemma 2, the switch is irre-
versible between two sequent iterations. Second, based on

(12)

13)
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Assumption 1, mk(x ) — mk(x’) < 0 with respect to Vr > k.
This guarantees that x5 and x! w111 not be a switch pair in all
the following iterations of the kth one. Because the number
of points in every single bag is finite, Algorithm 1 is finite
terminative. |

However, noting Assumption 1 drastically depends on the
distribution of data and may not be guaranteed in some
extreme cases, which can hardly lead to finite termination, we
would like to introduce the monotonic decrease with respect
to objective function in Algorithm 1 instead.

C. Monotonic Decrease of Algorithm 1

For sake of simplicity, we only consider two principal terms
to form the following objective function Obj”, by eliminating
the first regularization term corresponding to RKHS and the
influence of e-band associating to sparsity. This setting gives
rise to an essential expression of our two-step model and can
be cast handily in our discussion

obif = z X[ ) ot ()]
+ 3 [ () —ent (+)]

iel(k)

(14)

As we can see, when parameters ¢, and cp, are very close
to zero, the effect of far away term cannot succeed much,
which gives rise to rigorous oppression to the objective func-
tion. Consequently, a strict value decrease occurs. Here, we
meticulously study the performance of the objective function
with respect to very small positive parameters.

Theorem 2: Let ¢, = c¢p and be small enough positive
numbers. The objective function Obj” decreases monotonously
with respect to Algorithm 1.

Proof: In Algorithm 1, there are two steps in each iteration.
Here, we specifically consider the kth iteration. For the triv-
ial situation, if there is no switch occurs at all, the objective
function will not change and algorithm stops. Otherwise, for
simplicity, we consider only one pair switch occurs. For the
first step, i.e., in cluster assignation, according to Lemma 1,
the objective function Obj® decreases. In the second step, i.c.,
cluster update, we have (10) and (11).

From (10)+ (11), we obtain
> dea(x) +

> i (o) + i () +
icl(k) ,i#t

iel(k),i#s
+df ()

= 2 d)
(s5) + 5 (5)

+ Y. 4

d (%)

iel(k) z;ét

S ) )
icl(k) it

solilf) )

/) -
to 3 (dald) -4 ()

ol (4) i)

15)
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Fig. 3. Toy data. The number of each class is 100. The o denotes the positive
class and the ¢ denotes the negative class. There are ten bags in all, and the
different colors denote different bags.

Plugging (8), (9) into (15), we obtain

2 da(g)+ da(g)+ X dle) + ()
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Again, plugging Section III-B into (16) leads to
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Fig. 4. Result of LLP-NPSVM in the toy data. The red and cyan lines are two hyper-planes obtained by the LLP-NPSVM, the red or cyan shadow of each
point indicates the predicted result in each step.
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Fig. 5. LLP-NPSVM: the change of the average distance from the samples to hyper-planes with the increase of the number of iterations in the eight data sets.
The different colors denote the results of different sizes of bags. (a) German-bank. (b) Breast-cancer. (c) Car. (d) Haberman. (e) Heart-statlog. (f) Ionosphere.

(g) Letter. (h) Vowel.

Noting dk_(x]’.) — d,j(xjt.) > dp (x) — d,j(x;.), combining
the above two results and (16), we can obtain the following
result:
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|
Remark 4: In fact, we have not only proved the strictly
decrease between two label updates in the sequent iterations,
but also shown the decrease between two steps in one itera-
tion. Finally, in our algorithm, when the change of objective
function is smaller than some predefined threshold, we can
obtain an effective solution (w*, b*) for the problem in the
corresponding label update step.

IV. EXPERIMENT

Running environment: MATLAB 2010 on a PC with an
Intel Core IS processor and 4 GB RAM.

A. How Does the LLP-NPSVM Work?

First, we would like to give a simple example on the toy
data set in Fig. 3, which is generated by two 2-variate normal

distributions with parameters: 1) u; = (0,0), o1 = |:(1) g]

and 2) upr = (3,0), op = [(1) g , respectively. There are 100

points in each class. Particularly, The “o” denotes the positive
class and the “{)” denotes the negative class. There are ten bags
in total, and points in different bags are marked in different
colors. This experiment is aimed to intuitively illustrate how
LLP-NPSVM works. In order to fully present the behavior
of iterative process, we deliberately choose a relative “bad”
initiation for y. The results are displayed in Fig. 4 stepwise.
As is seen in Fig. 4, the red and cyan lines are two
hyper-planes obtained by the LLP-NPSVM stepwise. In the
meantime, red and cyan shadows indicate the prediction results
of corresponding points in each step. From Fig. 4, we can tell
that our algorithm only takes six steps to achieve stable result,
that is, all samples are correctly classified. Furthermore, if we
replace the deliberately bad initiation y with a random selec-
tion, this process can be stabilized within three iterations on
average. From the change of the samples’ shadows, we can
easily perceive the convergence process of the algorithm. That
is to say, those shadows with the same color are aggregated
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Fig. 6.

LLP-NPSVM: the change of the average proportion error with the increase of the number of iterations in the eight data sets. The different colors

denote the results of different sizes of bags. (a) German-bank. (b) Breast-cancer. (c) Car. (d) Haberman. (e) Heart-statlog. (f) Ionosphere. (g) Letter. (h) Vowel.

TABLE I
SELECTED UCI DATA SETS

Dataset Size  Attributes  Classes
german-bank | 1000 20

breast-cancer | 277 10 2

car 1594 6 4 (1,2)
haberman 306 3 2
heart-statlog | 270 13 2
ionosphere 351 34 2

letter 1555 16 26 (a,b)
vowel 180 10 11 (1,2)

These data sets have been reorganized, where (-, -) denotes the selected
classes in the multi-class classification. More details can be found in
https://github.com/qizhiquan/LLP-NPSVM.

continuously and smoothly. In the last figure, this method can
clearly attain the optimal solution, that is, all positive points
are covered by the shadows with red color, meanwhile, all the
negative points are covered by the shadows with cyan color.

B. UCI Datasets for Binary-Class Problem

In this section, the proposed algorithm is applied to
UCI repository data sets! to evaluate its effectiveness,
compared to InvCal [26], conv-xSVM [27], and alter-
xSVM [27]. The codes of these methods are available in
https://github.com/felixyu/pSVM. Meanwhile, our code can be
found in https://github.com/qizhiquan/LLP-NPSVM. Table I
gives overall description of the selected UCI data sets.

Our experiment only accounts for binary classification situ-
ation. For multiclass scenario, 1-versus-1 strategy is performed
based on binary classification. In bag setting, a random selec-
tion is applied to the original data set, with varied sizes ranged
in 10, 20, 30, 40, 50, and 60. Then, 80% bags are used for
training, and the rest for test. The average classification accura-
cies with standard deviations can be obtained by repeating the
above process five times. All the parameters are tuned by the

1 http://archive.ics.uci.edu/ml/
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Fig. 7. Change of both the average distance and the average proportion
before and after the switch strategy in LLP-NPSVM, the broken lines before
without [J denote the results before swapping models, and the broken lines
with OJ denote the results after swapping models. (a) Change of the average
distance in the breast-cancer data set. (b) Change of the average proportion
in the breast-cancer data set.

fivefold cross validation on the training subsets. Also, the error
rates of training data are evaluated by the measure of bag-level
error: Err = Zf: 1 IPi = pill, where p; and p; are the predicted
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TABLE 1T
FIVEFOLD CROSS VALIDATION RESULTS FOR BINARY CLASSIFICATION WITH LINEAR KERNEL

Dataset Method 10 20 30 40 50 60
InvCal 0.69 = 0.02 058 +£0.01 0.65 £+ 0.01 0.64 = 0.01 0.54 £ 0.02  0.63 £ 0.01
convxcSVM 0.57 £0.01 050 £0.00 0504+ 0.02 0.57 & 0.01 0.51 £ 0.01 0.60 £ 0.01
german-bank alter-««SVM 0.60 + 0.01 0.54 +£0.02 0.62 +£0.01 0.62£0.02 057 £0.00 0.53 +0.01
LLP-NPSVM | 0.71+£ 0.01 0.62 £ 0.01 0.62 £ 0.01 | 0.65 £ 0.01 0.52 +£ 0.03 0.51 £+ 0.04
InvCal 0.62 £ 001 059 £0.00 049 +0.02 055+0.02 058 £ 0.00 0.54 £ 0.01
convecSVM 0.58 £ 0.01 0.57 £0.01 0.55 4001 0.57 &= 0.01 0.54 = 0.01 0.52 = 0.01
breast-cancer | alter-cSVM 0.65 £ 001 059 £0.04 062+0.01 0534002 049 +0.02 046 =+ 0.02
LLP-NPSVM | 0.67 & 0.03 0.61 £ 0.01 0.61 & 0.02 0.58 &£ 0.02 0.52 £ 0.03 0.51 £ 0.02
InvCal 098 +£0.02 098 +£0.01 095+ 001 0.93 £ 0.01 0.90 = 0.00 0.89 + 0.01
convcSVM 098 £ 001 094 +0.16 093 +£0.11 093 +£0.24 091 +0.04 0.90 £+ 0.01
car alter-««SVM 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
LLP-NPSVM | 1.00 &= 0.00 1.00 &= 0.00 1.00 == 0.00 1.00 = 0.00 1.00 £ 0.00 1.00 £ 0.00
InvCal 0.75 £ 0.04 0.66 £0.05 071 £0.03 0.62 £ 0.01 0.82 £ 0.01 0.82 £+ 0.01
convexcSVM 0.74 £ 001 0.74 £0.01 0.67 &= 0.01 0.62 £ 0.01 0.61 = 0.01 0.54 £+ 0.02
haberman alter-.«SVM 0.79 £ 0.02 0.82 & 0.01 0.74 &= 0.03 0.79 £ 0.01 0.71 £ 0.03 0.66 £ 0.01
LLP-NPSVM | 0.84 & 0.00 0.81 = 0.00 [ 0.76 & 0.02 0.75 £ 0.02 0.72 £ 0.02 0.61 &+ 0.02
InvCal 0.70 £ 0.00 0.69 £ 0.01 0.68 & 0.01 0.64 £ 0.01 0.68 = 0.01 0.66 £ 0.00
convecSVM 0.65 +£ 0.01 0.60 &+ 0.03 0.60 & 0.01 0.59 £ 0.01 0.54 + 0.01 0.56 + 0.01
heart-statlog alter-«SVM 0.76 £ 0.00 0.75 £ 0.01 0.68 £ 0.02 = 0.76 £ 0.01 0.68 + 0.02 0.68 £+ 0.01
LLP-NPSVM | 0.75 & 0.01  0.74 £+ 0.01 [ 0.71 & 0.01 0.72 £ 0.01 [ 0.71 £ 0.02  0.70 £ 0.02
InvCal 0.80 £ 0.00 0.74 £0.00 0.72 £0.00 0.74 £ 0.01 0.64 = 0.01 0.64 £ 0.00
convecSVM 0.78 £0.01 0.75 £0.02 0.74 &= 0.01 0.68 & 0.01 0.65 = 0.01  0.71 £ 0.01
ionosphere alter-««SVM 0.77 £ 0.00 0.75 +£0.01 0.75 &£ 0.01 0.73 £ 0.01 0.73 = 0.01 0.67 = 0.01
LLP-NPSVM [ 0.75 &£ 0.01 0.76 & 0.01  0.74 £ 0.01 0.72 +£ 0.01 = 0.74 £ 0.02 0.65 + 0.02
InvCal 094 +£0.00 091 £0.01 093 +0.01 095+ 0.01 0.89 + 0.01 0.91 £ 0.00
convecSVM 0.89 £0.01 087 £0.01 0.85+0.01 0.85 % 0.01 0.87 = 0.01 0.81 = 0.01
letter alter-.«SVM 098 £ 0.00 094 +0.02 0.93 +0.01 0.93 £+ 0.01 0.89 & 0.02 0.76 £ 0.03
LLP-NPSVM | 0.99 &+ 0.01 0.99 £ 0.01 0.99 &+ 0.01 0.97 £ 0.01 0.96 + 0.02 0.96 £+ 0.01
InvCal 071 £0.00 057 £0.01 052+£0.01 053+£0.00 051 =£001 051 =£0.00
convecSVM 0.68 = 0.01 0.67 +£0.01 0.61 &=0.01 0.58 4 0.01 0.54 = 0.01 0.52 + 0.01
vowel alter-««SVM 0.67 £ 0.01 0.63 £0.01 059 4+ 0.01 0.59 £ 0.01 0.55 £ 0.01 0.56 £+ 0.01
LLP-NPSVM | 0.74 + 0.01 0.68 £+ 0.02 0.66 + 0.02 0.63 £ 0.02 0.62 = 0.02 0.60 & 0.01
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The LLP-NPSVM’s results are marked in grape when it outperforms all the other methods (InvCal, alter-«SVM and conv-«SVM).

Otherwise, the best results are marked in pale green.

and ground-truth proportions for the ith validation bag [27],
respectively. The parameter settings are shown as follows.

InvCal: » € [0.1,1,10], C, € [0.1,1,10], ¢ €

[0,0.01,0.1].

alter-«SVM: C € [0.1, 1, 10], C,, € [1, 10, 100].

conv-SVM: C € [0.1, 1, 10], € € [0, 0.01, 0.1].

LLP-NPSVM: C € [0.01, 0.1, 1], € € [0.001, 0.01, 0.1].

Besides, in label update with RBF kernel: y is unified to
[0.01,0.1, 1].

Fig. 5 manifestly demonstrates LLP-NPSVM’s the change
of average distances from the samples to hyper-planes in
the eight data sets. Obviously, almost all average distances
under the different sizes of bags are monotonously decreas-
ing with the increase of iteration number, which intuitively
reveals the convergence of the LLP-NPSVM. In addition, it
can be also observed that most of the average errors attain
stable within 5 iterations, which fully supports the conclu-
sion that our algorithm has a character of fast convergence.
Synchronously, Fig. 6 displays the change of the average pro-
portion error in each iteration. Compared with Fig. 5, we do
not obtain an approximately convergent result similar to that
of the average distances. Especially, the average proportion
errors cannot achieve a strict decline in certain sizes of bags
(see the yellow line in the bag’s size of 50 in “letter” data set
for example), because the goal of LLP-NPSVM is to minimize
the average distance instead of the average proportion error.
Although we expect average proportion error declines during

the iterative process in the algorithm, there is no rigorous
requirement for monotonously dropping. Nevertheless, from
the result of Fig. 5, most average proportion errors decline
along with the increase of iteration number, which satisfies
the demand of our implicity expectation in LLP and is com-
mitted to be an excellent result. Combining Figs. 5 and 6,
in major situation, both the average distances and aver-
age proportion errors are simultaneously decreasing within
few iterations, which bears a satisfactory convergence for
LLP-NPSVM.

On the other hand, Fig. 7 captures the results before and
after the switch strategy (marked in Algorithm 1) on “breast-
cancer” data set. This experiment is supposed to demonstrate
the effectiveness of this swapping trick in LLP-NPSVM.
Particularly, the lines without “[]” denote the results before
the swapping procedure. Meanwhile, the lines marked with
O] denote the results after the swapping procedure. Based on
Fig. 7, we can tell that both the average distances and average
proportion errors are provoked a further decline in most cases.
In other words, the swapping tactics can alleviate the unwill-
ing attraction to local optima and obtain a better solution for
LLP-NPSVM somehow.

Additionally, Tables II and III display the fivefold cross
validation results of InvCal, conv-«SVM, alter-««SVM, and
LLP-NPSVM for binary classification problems. First, in
Table II, LLP-NPSVM overwhelmingly wins under lin-
ear kernel, i.e., 35 best results out of total 48 results.
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TABLE III
FIVEFOLD CROSS VALIDATION RESULTS FOR BINARY CLASSIFICATION WITH RBF KERNEL

Dataset Method 10 20 30 40 50 60
InvCal 0.74 £ 0.01 0.74 &£ 0.01 0.70 £0.00 0.70 £ 0.01 0.60 £ 0.01 0.60 = 0.01
convxcSVM 0.74 £ 0.02 0.66 £ 0.00 0.66 £0.01 0.63 £0.01 0.69 & 0.00 0.65 & 0.01
german-bank alter-.«SVM 0.71 =£0.02 0.71 £0.02 0.69 £ 0.01 0.68 £0.00 0.65+ 0.01 0.54 £+ 0.02
LLP-NPSVM | 0.74 + 0.02 1 0.75 £ 0.01 0.78 £ 0.01 0.75 £ 0.01 0.79 & 0.00 0.62 & 0.02
InvCal 0.61 £ 0.01 0.55+£0.01 0.50+£001 053+£001 055£0.01 0.53=+0.01
convcSVM 0.64 = 0.01 0.61 & 0.00 0.56 £0.02 0.54 £0.02 0.56 £ 0.01 0.61 £+ 0.00
breast-cancer | alter-««SVM 0.65 £ 0.02 0.64 £ 0.01 0.61 £0.01 058 £0.02 047 +0.01 0.62 £+ 0.01
LLP-NPSVM | 0.69 + 0.01 0.67 &= 0.01 0.61 & 0.00 0.55 £+ 0.00 0.53 + 0.02 | 0.63 £ 0.02
InvCal 098 £ 0.02 096 £0.02 093 £0.01 098 £0.01 0.77 £0.01 0.88 &+ 0.01
convecSVM 098 +£0.02 095+001 094 +£0.00 093 +0.01 0924+ 0.01 091 4+ 0.02
car alter-.«SVM 1.00 = 0.00 1.00 &= 0.00 1.00 & 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
LLP-NPSVM | 1.00 &= 0.00 1.00 &=0.00 1.00 & 0.00 1.00 = 0.00 1.00 & 0.00 1.00 = 0.00
InvCal 0.86 £ 0.01 0.75 £0.02 0.69 £0.01 0.64 £0.01 0.604+ 0.01 0.64 £+ 0.01
convxcSVM 0.85 +£0.02 0.73 £0.02 0.66 £ 001 0.69+0.01 060=+0.01 0.61=+0.01
haberman alter-««SVM 0.88 & 0.00 0.78 &= 0.01 0.76 £ 0.02 0.74 £ 0.00 0.62 + 0.01 0.61 £ 0.02
LLP-NPSVM | 0.89 + 0.01 0.75 £0.01 0.77 +£0.01 0.76 &£ 0.01 0.66 & 0.01 0.74 £ 0.01
InvCal 0.76 £ 0.02 0.71 £ 0.01 0.70 £ 0.00 0.62 £0.01 0.60 &£ 0.02 0.60 & 0.01
convcSVM 0.76 &= 0.01 0.72 &£ 0.01 0.68 £0.02 0.71 £0.01 0.64 £ 0.01 0.62 + 0.01
heart-statlog alter-««SVM 0.74 +£0.02 0.70 £0.02 0.70 £ 0.01 0.68 £0.01 0.63 & 0.01 0.65 £ 0.01
LLP-NPSVM | 0.79 + 0.01 0.76 = 0.01 0.71 & 0.00 0.79 = 0.01 0.72 &+ 0.01 0.71 £ 0.02
InvCal 0.79 £ 0.02 0.75 £0.01 0.61 £0.01 0.59 £0.02 0.61 £0.00 0.50 + 0.01
convecSVM 0.76 +£ 0.01 0.76 £ 0.01 0.67 £0.01 0.66 £0.01 0.64 & 0.01 0.64 £+ 0.01
ionosphere alter-.«SVM 0.78 £ 0.02 0.76 & 0.02 0.68 £ 0.01 0.67 £0.01 0.64 £ 0.00 0.61 £+ 0.02
LLP-NPSVM | 0.81 &£0.01 0.77 £0.00 0.77 £ 0.01 0.76 & 0.00 0.76 & 0.01 0.75 &+ 0.01
InvCal 0.87 = 0.02 0.84 = 0.01 0.63 £0.01 0.72 £0.01 0.64 £ 0.01 0.64 £+ 0.00
convxcSVM 044 +£0.01 0.74 £001 055 +£0.02 045 +£0.01 057 £0.01 040 =+ 0.01
letter alter-.«SVM 0.95 £ 0.01 094 +£001 091 £001 093 +0.02 090+ 0.02 094 + 0.01
LLP-NPSVM | 0.99 + 0.01 0.99 = 0.01 098 +0.02 0.97 £ 0.01 0.96 + 0.02 0.95 + 0.01
InvCal 0.74 £ 0.01 0.73 £ 001 0.72 £0.02 0.66 £0.01 0.63 0.0 0.61 = 0.02
convxcSVM 0.74 £ 0.02 0.72 £0.01 0.70 £0.01 0.64 £0.01 0.61 £0.01 0.59 + 0.01
vowel alter-««SVM 0.75 £ 0.00 0.72 £0.02 0.68 £0.00 0.72 £0.01 0.68 £ 0.02 0.62 £ 0.01
LLP-NPSVM | 0.76 & 0.01 0.74 &£ 0.01 0.71 & 0.01 @ 0.74 &£ 0.01 0.71 & 0.01 0.64 £ 0.02

The LLP-NPSVM’s results are marked in grape when it outperforms all the other methods (InvCal, alter-ocSVM and conv-xSVM).
Otherwise, the best results are marked in pale green.

TABLE IV
WILCOXON SIGNED RANKS TEST RESULTS FOR BINARY CLASSIFICATION
Linear Kernel RBF Kernel
R* R~ p-value | R¥ R~ p-value
LLP-NPSVM VS. TnvCal 952 224 0.00018 | 1070 106  0.00000
LLP-NPSVM VS. alter-«SVM | 1069.5 106.5 0.00000 | 1107 69 0.00000
LLP-NPSVM VS. conv-xcSVM | 678 498 0.00129 | 831 345  0.00000
TABLE V TABLE VII
SOME EXAMPLES OF THE ATTRIBUTES MULTICLASS UCI DATASETS
Name Description and Values Dataset Size Attributes  Classes
Age Age at the contact date (Numeric >18) acoustic 788273 30 3
Job Unemployed, Management, Housemai_d, Emrepreneu_r, Student, combined 78823 100 3
Blue-collar, Self-employed, Retired... (Categorical) connect-4 67557 126 3
Marital Status Married, Single, Divorced, Widowed, Separated (Nominal) covtype 581012 34 7
Sex

Male or Female (Nominal)
Secondary, Primary, Tertiary (Categorical)
Yes or No (Nominal)
in euro currency (Numeric)

Yes or No (Nominal)

Yes or No (Nominal)

Yes or No (Nominal)

Education
Credit in default?
Annual Balance
Housing Load
Debt card?
Loans in delay?

dominates to yield better results with 0.7292 empirical prob-
ability. Especially on the letter and the “vowel” data sets,

TABLE VI
RESULTS ON THE CASE STUDY: PRIVACY-PRESERVING DATA MINING
Method Job Marital Status Education
InvCal 0.79 + 0.01 0.74 + 0.03 0.69 + 0.02
convxcSVM 0.81 + 0.02 0.76 + 0.03 0.67 + 0.01
alter-.«SVM 0.82 + 0.02 0.77 + 0.05 0.72 + 0.01
LLP-NPSVM | 0.83+ 0.01 0.79 4+ 0.01 0.74 + 0.03
In other words, based on our experiments, LLP-NPSVM

LLP-NPSVM outperforms all the other methods. On the “car”
data set, both the accuracies of LLP-NPSVM and alter-««SVM
reach 100% at the same time. For InvCal algorithm, in the
case of bag size 60, it obtains a better performance. Besides,
alter-o«SVM is sightly better than conv-«SVM, and is supe-
rior to other methods. This result also indicates a promising
performance of maximum margin method. However, when
increasing the bag size, accuracies of all methods decrease in
varying degrees, which manifests the bigger bag size leads to
bigger challenge. Second, according to Table III, when it
comes to RBF kernel situation, unlike it is shown in Table II,
InvCal also offers a comparable performance with the bag size
of 10 on “German-bank” data set. In addition, conv-xSVM is
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TABLE VIII
FIVEFOLD CROSS VALIDATION RESULTS FOR MULTICLASS CLASSIFICATION WITH RBF KERNEL

Dataset Method 2 4 8 16 32 64
InvCal 0.74 +0.02 0.71 £ 0.08 0.66 = 0.01 0.13 £0.01 048 £+ 0.23 0.47 + 0.04
conv-«cSVM 0.54 £ 0.09 046 +£0.08 0.31 =0.05 0.28 £0.07 044 £0.06 0.36 £ 0.08

acoustic alter-««SVM 0.68+ 0.04 0.67 £ 0.01 0.64 £0.04 0.65 £ 0.03 0.44 + 0.03 0.39 £+ 0.03
LLP-NPSVM | 0.81 £ 0.04 0.74 £ 0.02 0.67 & 0.01 0.55 £+ 0.02 | 0.49 &+ 0.03 0.45 + 0.02
InvCal 0.78 £ 0.02 0.76 £ 0.02 0.73 £0.02 0.75 £ 0.07 0.63 £ 0.05 0.51 + 0.12
conv-<SVM 0.56 £ 0.03 0.63 £0.10 047+£0.09 044 +0.06 043 +£0.04 042+ 0.03

combined alter-«SVM 0.75 £ 0.06 0.77 £ 0.04 0.69 = 0.08 0.51 £ 0.01 046 + 0.02 0.44 + 0.09
LLP-NPSVM | 0.77 £ 0.02 0.75 &£ 0.02 [ 0.74 & 0.01 0.73 £ 0.02 | 0.68 &+ 0.02 0.59 + 0.03
InvCal 0.67 = 0.06 0.60 = 0.05 044 =0.05 038 £0.06 035+ 0.07 0.35 & 0.06
conv-cSVM 0.75 £ 0.04 0.71 £ 0.06 0.63+ 0.06 0.63 £ 0.06 0.61 £+ 0.08 0.43 + 0.07

connect-4 alter-.«SVM 0.78 = 0.09 045 4+ 0.04 0.64 £ 0.09 0.66 £0.09 0.59 +£0.02 0.55 + 0.07
LLP-NPSVM | 0.81 &= 0.04 0.74 &£ 0.06 0.68 & 0.06 0.65 & 0.06 | 0.63 £ 0.01 0.56 + 0.02
InvCal 091 £ 005 0.87 £0.09 0.72 +£0.03 0.61 £0.03 049 +£0.08 0.29 + 0.09
conv-««SVM 0.76 = 0.04 0.73 4+ 0.05 0.66+ 0.08 0.54 = 0.06 0.51 &= 0.08 0.32 £ 0.01

covtype alter-««SVM 092 + 0.12 0.86 = 0.04 0.78 &+ 0.07 0.64 = 0.09 0.67 £ 0.01 0.41 + 0.04
LLP-NPSVM | 0.89 + 0.07 ' 0.88 = 0.03 0.81 + 0.04 0.72 & 0.04 0.66 + 0.02 ' 0.43 &£ 0.07

The LLP-NPSVM’s results are marked in grape when it outperforms all the other methods (InvCal, alter-«SVM and conv-<SVM).

Otherwise, the best results are marked in pale green.

TABLE IX
WILCOXON SIGNED RANKS TEST RESULTS FOR
MULTICLASS CLASSIFICATION

RBF Kernel
Rt R~ p-value
LLP-NPSVM VS. InvCal 269 31 0.00066
LLP-NPSVM VS. alter-«SVM | 300 O 0.00002
LLP-NPSVM VS. conv-cSVM | 262 38 0.00140

able to attain better results in some case as well (see the first
column in vowel data set). In spite of this, these two meth-
ods mentioned above cannot yield appropriately promising
results compared to alter-««SVM in most cases. Nevertheless,
LLP-NPSVM is prone to acquire more competitive results than
alter-«SVM in all data sets. Wilcoxon signed ranks test results
for binary classification are shown in Table IV. As we can
see, the accuracies of LLP-NPSVM is significantly superior
to InvCal, alter-«SVM, and conv-«SVM in binary classifica-
tion problems. That is to say, besides similarly benefiting from
maximum margin principle, LLP-NPSVM shows an over-
whelming advantage thanks to the preservation of geometric
distribution.

C. UCI Datasets for Multiclass Problem

In this section, the performance of LLP-NPSVM in deal-
ing with multiclass classification problem will be evaluated.
In detail, Table VII describes the multiclass datasets. Here,
we apply I-versus-rest strategy for all methods. We randomly
sample 3000 points from each dataset for the training, and
600 points as the test data. Also, bags are randomly assem-
bled from the selected data set, whose sizes are separately set
to 2, 4, 8, 16, 32, and 64. Each experiment is repeated six
times. Table VIII gives the final results.

In the total 24 experiments, our method wins 16 times,
and is also the final winner based on overall evaluation.
Besides, the alter-«SVM obtains 11 winners; InvCal also
obtains 11 winners; the conv-cSVM performs the worst: only
wins two times. In brief, these results demonstrate that InvCal
achieves increasingly good performance with the increase of

samples and classes. Wilcoxon signed ranks test results for
multiclass classification are shown in Table IX. We can also
learn that LLP-NPSVM has advantage in solving multiclass
LLP problems.

D. Privacy-Preserving Data Mining Problem

In this section, a more challenging data set “privacy-
preserving data mining” is used to evaluate and reveal the
power of all the methods mentioned above in handling LLP
problem. In this special case, our task is to predict whether the
customer is willing to subscribe a term deposit according to
the bank marketing data [44]. Explicitly, this data set contains
41 188 instances/records (individual persons) described by 20
attributes (including age, type of job, marital status, education,
etc.). Table V shows some attributes of these customers. In
common sense, each instance corresponds to a certain label
in {1, —1}, which indicates the status of its term deposit
subscribing. However, these label information are so sensi-
tive due to the purpose of privacy protection that there is no
visible instance-level label. As a compromise, let us assume
that only the label proportions on different groups of instances
are available in the training stage. These bags are grouped in
three independent attributes: “job,” “marital status,” and “edu-
cation.” Table VI displays the final results. In practise, 80%
of the instances are selected for training, and the rest for test-
ing. Here, we adopt the bag error to evaluate these methods’
performance. LLP-NPSVM gains the best performance in dif-
ferent partitioned bags, which demonstrates our method has a
strong competitiveness in this alternative challenging situation
under different privacy-preserving policies.

V. CONCLUSION

In this paper, we propose an EM-type algorithm for LLP
problem. In our mechanism, label assignment and label update
can be viewed as E-step and M-step, respectively, where
maximum likelihood estimation in EM algorithm is coordi-
nate to NPSVM in our method. The posterior probability
of latent variable corresponds to distance in the clustering.
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Particularly, we adopt k-plane clustering method to cope with
intricate combinatorial optimization puzzle commonly encoun-
tering in weak label classification problems. To abate the
influence of local optima, annealing loop is equipped. On
one hand, with a substantial analysis on finite termination
and monotonic decrease of objective function, we explore the
stability of proposed method. On the other hand, meticulous
and abundant experiments strongly verify and confirm those
theoretical judgments. More importantly, it completely demon-
strates the outstanding efficiency of LLP-NPSVM. In addition
to kernel-based k-plane clustering, the outlook of the pro-
posed method can be converted into metric learning regime or
manifold-based clustering, for example adding Laplacian-like
regularization term. In this way, structural information is fully
revealed to offset the information loss with respect to weak
label. To defeat the instability caused by label assignment and
outliers, alternative convex loss function, for example pin-ball
loss, can be employed to enhance the robustness.
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