ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I1I-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

MODERN METHODS OF BUNDLE ADJUSTMENT ON THE GPU

R. Hinsch® I. Drude, O. Hellwich

Dept. of Computer Vision and Remote Sensing, Technische Universitéit Berlin, Germany (r.haensch, olaf.hellwich) @tu-berlin.de

KEY WORDS: Bundle adjustment, structure from motion, optimization, GPU computing

ABSTRACT:

The task to compute 3D reconstructions from large amounts of data has become an active field of research within the last years.
Based on an initial estimate provided by structure from motion, bundle adjustment seeks to find a solution that is optimal for all
cameras and 3D points. The corresponding nonlinear optimization problem is usually solved by the Levenberg-Marquardt algorithm
combined with conjugate gradient descent. While many adaptations and extensions to the classical bundle adjustment approach have
been proposed, only few works consider the acceleration potentials of GPU systems. This paper elaborates the possibilities of time-
and space savings when fitting the implementation strategy to the terms and requirements of realizing a bundler on heterogeneous CPU-
GPU systems. Instead of focusing on the standard approach of Levenberg-Marquardt optimization alone, nonlinear conjugate gradient
descent and alternating resection-intersection are studied as two alternatives. The experiments show that in particular alternating
resection-intersection reaches low error rates very fast, but converges to larger error rates than Levenberg-Marquardt. PBA, as one of
the current state-of-the-art bundlers, converges slower in 50% of the test cases and needs 1.5-2 times more memory than the Levenberg-

Marquardt implementation.

1. INTRODUCTION

In 1958 Duane C. Brown described a method to solve large min-
imization problems on the basis of least squares (Brown, 1958).
This is the first known method for bundle adjustment (BA) and
was used to minimize the projection error after estimating point
coordinates and camera positions from aerial images. Already
shortly after that, it was adapted and applied to close-range pho-
togrammetry. Today it is one of the essential modules in virtually
every structure from motion (SfM) pipeline.

StM aims to recover the position and pose of the cameras as well
as the 3D information of sparse scene points from a given set
of images. The estimated parameters are prone to inaccuracies
caused by wrong correspondences, critical camera configurations
(e.g. small baselines), measurement noise, and calibration errors.
Furthermore, the optimization is carried out for certain problem
subsets (either subset of images (Agarwal et al., 2011) or subset
of parameters (Moulon et al., 2013, Wilson and Snavely, 2014)).
This leads to solutions that are optimal only for the correspond-
ing subtasks instead of being optimal for the whole task. BA
aims to minimize these errors efficiently by performing a global
optimization process that considers all cameras and points.

This optimization process implies the formation and solving of
equation systems, which becomes particularly computationally
expensive for modern datasets involving hundreds of cameras.
Therefore, BA is often seen as (one of) the bottlenecks of corre-
sponding reconstruction pipelines.

Over the last years many approaches have been proposed that aim
to optimize the efficiency of BA, either on an algorithmic level or
by usage of multi-core systems. This paper investigates several
methods of BA and discusses theoretical as well as practical ap-
proaches to increase accuracy and speed. The latter is achieved
by numerical methods and by a GPU based implementation.

The major contributions of this work are threefold: 1) A com-
parative summary of several state-of-the-art methods for BA, in-

*Corresponding author

cluding a discussion on their mathematical foundations, numer-
ical properties, as well as optimizations potentials. 2) An eval-
uation of their performance with respect to achieved accuracy
and speed in one common framework. 3) An open-source im-
plementation of three selected methods for the GPU (available
at (Hansch, 2016)). Each method is optimized with respect to
the special requirements of GPU computing under the constraints
that the final reconstruction error does not significantly increase
and convergence stays guaranteed.

To emphasize the inherent differences of the methods as well as
the achieved gain in performance, this work focusses on the use
case of 3D reconstructions of very large datasets. The following
Section 2 briefly states the problem definition of BA and explains
the theoretical basis of three state-of-the-art methods to solve the
implied system of equations. Section 3 elaborates both, standard
as well as modern optimization approaches of subtasks within
BA, and shortly describes available implementations. While Sec-
tion 2.1 describes mathematical design choices for each of the
methods implemented in this work, Section 4 explains details re-
garding their implementation on GPUs and Section 4.4 discusses
corresponding optimization approaches. Section 5 provides the
experimental comparison of the different implementations and
discusses their individual shortcomings. The last section sum-
marizes the findings of this work and provides an outlook.

2. BUNDLE ADJUSTMENT

The projection of a 3D scene point X € R? to a 2D image point
z € R? (both in homogeneous coordinates) is modelled as the
perspective projection in Equation 1.

a::PX:K[I|0][]§ HX)

The calibration matrix K € R3®? describes internal camera pa-
rameters such as principle point and focal length, while R € R33
and ¢t € R® model the rotation and translation necessary to trans-
form points from the world coordinate system to the camera co-
ordinate system.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-43-2016 43

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I1I-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

In the context of the paper, bundle adjustment means to optimize
all m cameras (i.e. P*,i = 1,...,m) as well as all n structure
points (i.e. X j,J = 1,...,n) simultaneously starting from an
initial estimate given by SfM. This task is modelled as a least
squares minimization of a cost function with nonlinearities in the
parameterization (the parameter vector 6 contains structure and
camera estimates, while (6) describes the corresponding pro-
jection of 3D points in the image of each camera).

&%(0)

m A ovbra
min Y “wyd(a), P'X;) 2
PLXG st =

=:£(0)

Modelling the reprojection error as the squared Euclidean dis-
tance d between image point x; and projected point 552 (in Eu-
clidean coordinates) assumes Gaussian measurement noise. Usu-
ally, the set of reprojections is not outlier free (i.e. due to wrong
correspondences) which are often prefiltered. To cope with re-

maining outliers either the measurements are multiplied by a weight

w;; which is optimized as well, or more robust cost functions are
used (see e.g. (Triggs et al., 2000)).

2.1 NLS Optimization

There are many methods to solve Nonlinear Least Squares (NLS)
problems such as Equation 2. This section describes three exam-
ples which are often applied for BA. All of them have in common,
that they iteratively search for a solution starting from an initial
estimate. In the case of BA, this initialization is provided by SfM.

Depending on how fast the sequence of solutions approaches the
optimum, the methods are divided into two groups (Triggs et al.,
2000). If each iteration (at least potentially) roughly doubles the
number of significant digits, the convergence rate is asymptot-
ically quadratic. Such methods are called second order meth-
ods. First order methods only achieve linear (asymptotic) con-
vergence. They need more iterations, but usually each iteration is
significantly less computationally expensive.

A comparison between first and second order methods can be
rarely found within the literature and is completely missing for
large problems solved on GPUs. Additionally to the Levenberg-

Marquardt algorithm (LMA, Section 2.1.2) as second order method,

this work implements two first order methods, namely Resection-
Intersection (RI, Section 2.1.3), and Nonlinear Conjugate Gradi-
ents (NCG, Section 2.1.1).

2.1.1 Nonlinear Conjugate Gradients Gradient descent meth-
ods search the minimum of a given function f(#) by starting from
an initial value 6y and iteratively updating 6; by Equation 3 using
the negative gradient g; = V f(6;) of f as search direction.

0i+1 =0; — a;gq 3)

Convergence is guaranteed as long as o; > 0 is not too large
and f is convex. There are three principle ways to define «; for
nonlinear functions:

1. Constant learning rate o; = 7: Convergence is not guaran-
teed.

2. Exact line search: Based on the current search direction, the
optimum is found by solving min f(6; — ag;) (also called

steepest descent).

3. Inexact line search: The optimal value along the current
search direction is approximated by setting « to a high ini-
tial value and decrease it iteratively by a1 = T, where
T E (0,].) until f(ek) < f(@kfl)

Conjugate gradients (CG) are proposed in (Hestenes and Stiefel,
1952) for linear equation systems with positive definite system
matrix and generalized in (Fletcher and Reeves, 1964). CG ap-
proximate the solution of gradient descent by Equation 4. The
term sy, is a direction conjugate to the directions of the previous
iterations and is calculated by Equation 5. The weighting factor
Bk is defined by Equation 6.

Or11 = O + agse 4

Sk+1 = Brsk — Vo (k) (5)
NG Ay,

K ©

The difference to gradient descent is that the line search is not
applied along the negative gradient, but along the vector s, which
is conjugate to the vector si—1 of the previous iteration (where
so = Vo f(0o)). The vector sy, is conjugate to all previous search
directions and points towards the minimum within the subspace
defined by span{so, ..., Sk—1}.

There are many other approaches to determine /3 for non-quadratic
functions, which promise a better convergence rate (e.g. (Hestenes
and Stiefel, 1952, Polak and Ribiere, 1969, Dai and Yuan, 1999)).
Each of these possibilities requires an exact line search for a
guaranteed convergence. If inexact line search is used, it is not
sufficient to ensure f(6x) < f(6r—1) during backtracking, but
stricter conditions have to be fulfilled. The Wolfe condition (Wolfe,
1969) in Equation 7 is commonly used, where 0 < ¢ < 1.

FOk + arsk) — f(Ok) < c-a-si Vf(0k) @)

Given an optimal learning rate (and infinite precision), the solu-
tion for a quadratic function is found after at most n iterations,
where n is the number of parameters of f (i.e. number of di-
mensions). The practical convergence rate depends mainly on
the method (and its accuracy) to calculate o and 5. After n iter-
ations, the search directions are not conjugated anymore and the
search direction is reset to —Vo f(65).

2.1.2 Levenberg-Marquardt Algorithm The Levenberg-Mar-
quardt algorithm (Levenberg, 1944, Marquardt, 1963) is often
used to solve NLS problems, since (for convex functions) conver-
gence is guaranteed and asymptotically quadratic. It is an exten-
sion of the classical Gauss-Newton approach. A Newton method
solves the problem of nonlinearity by a local quadratic Taylor ap-
proximation given in Equation 8, where H is the Hessian matrix.

F(0+60) = £(0) + 750 + %59TH60 @®)

Instead of performing the complicated search for the minimum of
the nonlinear error function, only the global optimum of its local
Taylor approximation at an initial estimate 6 has to be found. The
minimum at 6 4 56 serves as new starting point for the next itera-
tion. The so called Newton step 56 is estimated as 6§ = —H "' g.
In the case of BA the gradient g is given by Equation 9, where
e = x — &, J is the Jacobian, and W the weighting matrix.

_df g
g= 0= J We)
d’f d*f:(6)
H=%05 = JTWJ+ E (e"W); 0 (10)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-43-2016 44

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I1I-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

If the error e is small or the model close to linear (i.e. dzf;f) =~ 0)

then H ~ JTW J, which leads to the normal equation (Eq. 11).

1)

HéO = —g

An approach exploiting this simplification is called Gauss-Newton
method. Without a controlled learning step, convergence is not
guaranteed.

The Levenberg-Marquardt algorithm is a standard Gauss-Newton
method combined with a controlled learning rate by extending
Equation 11 with a damping factor A\, where either D = I (ad-
ditive extension according to Levenberg) or D = diag(J” W J)
(multiplicative extension according to Marquardt).
(H + AD)30 = —g (12)
LMA uses a simple heuristic to control A: It is increased if an
iteration did not reduce the error. Small values of A result in
Gauss-Newton steps, while large values lead to steps in direction
of the negative gradient. Since Gauss-Newton has a quadratic
convergence close to local minima, X is kept small in this case.

2.1.3 Resection-Intersection A completely different approach
is to divide the problem in multiple, easier subproblems and to al-
ternate between solving each of them. One of the most commonly
used methods in the context of BA is Resection-Intersection (also
called interleaved Bundle Adjustment, (Bartoli, 2002, Liu et al.,
2008, Lakemond et al., 2013)). The approach is divided into two
steps: During the first resection phase, the structure information
is kept constant and the problem is solved for all cameras inde-
pendently for example using the Levenberg-Marquardt algorithm.
In the subsequent intersection phase the cameras are kept constant
and the problem is solved with respect to the structure.

3. RELATED WORK
3.1 Solving the (augmented) normal equation

BA methods that are based on solving the normal equation (Equa-
tion 11), are often superior in performance and dominate practical
implementations (e.g. (Triggs et al., 2000)). While a discussion
of all possibilities to solve a given equation system is clearly be-
yond the scope of this paper, this subsection discusses the few
methods that are especially suited for BA.

Already D.C. Brown described within the first BA algorithm, that
not the complete system is solved, but only a part of it, while the
remaining equations are solved by back substitution. The used
approach is usually called Schur complement trick.

A square matrix M € RITP9"? can be decomposed as given in
Equation 13, where A € R”'? is invertible and D € R?9.

v (2 0)
(b D)8)57

The matrix S = D — C A™' B is called Schur complement of A.

13)

Given an equation system Mx = b, where « = (1, 22)” and
b= (bl,bg)T, with z1,b1 € RP, z2,b2 € RY, 22 can be com-
puted from Sxa = by — C' A~ b;. Through back substitution 1
can be computed from Ax1 = by — Bxa. For p < ¢ these two
equation systems are much more efficient to solve than the origi-
nal system.

If applied to BA (ie. M = H,x = 60, b = —g, A is the
structure block, D the camera block), the equation system of x2
is the so called Reduced Camera System (RCS).

After the Schur complement, there are two equation systems to be
solved. The approach of multiplying with the inverse to solve the
equation system is virtually never used in practical applications,
due to its lack of numerical robustness. An LU decomposition
(equivalent to Gaussian elimination) is more robust, but doesn’t
exploit the symmetry of the system matrix.

The equation of the back substitution of the Schur complement
has a block diagonal form and can be solved blockwise. Each
block is positive definite, symmetric, and dense if the matrix was
augmented with A. That is why usually the Cholesky decomposi-
tion M = LLT (L is a lower triangular matrix) is used, which is
nearly twice as fast as the LU decomposition (see (Triggs et al.,
2000, Agarwal et al., 2010, Konolige and Garage, 2010, Jeong et
al., 2012)). The system Mz = b with M = LL” is solved by
forward substitution, i.e. solving Ly = b for y, and backward
substitution, i.e. solving LTz = y for x.

The system matrix of the RCS is symmetric and positive definite,
but often not dense, which offers (additionally to the standard
way of a Cholesky decomposition) the possibility to use a sparse
Cholesky decomposition that exploits the sparsity.

In the case of very large equation systems (hundreds of cameras,
thousand points) exact solutions of the normal equation are com-
putationally expensive. In (Triggs et al., 2000) linear CG is rec-
ommended to derive an approximate solution. It can be applied
to solve the whole normal equation as well as to solve the RCS,
as long as the system matrix is symmetric and positive definite.

3.2 Conditioning

The condition number x of a normal matrix is defined as the ra-
tio of the largest and smallest eigenvalue. BA in general has a
bad conditioned cost function (i.e. Hessian matrix). A bad con-
dition leads to elongated ridges around minima, which is espe-
cially problematic for first order approaches. The gradient de-
scent methods for example would approach the minimum in a
strong zig-zag pattern, which leads to a slow convergence. A so-
lution is to combine the search directions of the current and last
iteration (Barzilai and Borwein, 1988). Even for CG methods, a
badly conditioned problem leads to slower convergence since the
computation of the new search direction requires a high accuracy
which suffers the more, the worse the conditioning is. The con-
vergence rate of direct methods (such as Gauss-Newton) does not
depend on the conditioning. However, a bad condition can lead
to numerical instabilities due to rounding errors.

Preconditioning is often used to ease these problems. An equa-
tion system Az = b with a badly conditioned matrix A is trans-
formed into a system M ! Az = M~'b with equal minimum,
but (M1 A) < K(A).

The choice of a preconditioner that is fast to compute and reduces
the condition number sufficiently is a very active field of research,
especially for specialized problems such as BA.

Non-block-based CG methods often use the Jacobian conditioner
(Equation 14) as well as the Symmetric Successive Over Relax-
ation conditioner (Equation 15) (Saad, 2003), where H = D +
L+ LT (D is a diagonal matrix and L an lower triangular matrix)
and 0 < w < 2.

MSJaC = diag(H)

D - D -
MSSOR - (Z + L) ﬁD (; +)

(14)

15)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-43-2016 45

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I1I-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

The entries of the Hessian matrix of BA (Equation 16) are rather
blocks than scalar values, which is why block-based conditioners

are usually used.
u w
m=(e V) (16)

One common choice is the Block-Jacobian conditioner (Wu et
al., 2011, Byrod and Astrém, 2010, Agarwal et al., 2010), which
is easy to invert since the blocks U and V' are block diagonal
(Triggs et al., 2000).

MBjac = ([({ 8') (17)

The work of (Agarwal et al., 2010) uses M g jqc = blockdiag(S)
or M jac = U forthe RCS, where S is the Schur complement of
U. In (Jeong et al., 2012) it is shown, that blockwise conditioners
are superior to their scalar alternatives.

In (Agarwal et al., 2010) a conditioner is proposed that is based
on the submatrices Jc and Jp of the Jacobian describing cam-
era and point constraints, respectively. The QR decomposition
(Joyp = Q(Jeyp)R(Jc/p)) of these matrices leads to two up-
per triangular matrices that are used as block diagonal elements:

Man= (G L5 (18)

The inverse is easy to compute since the blocks of the diagonal
are block diagonal (Byrdd and Astrom, 2010).

3.3 Other optimizations

Many BA methods use floating points with double precision to
reduce the risk of rounding errors. Implementations on the GPU
are often based on single precision (Wu et al., 2011), because
double precision needs twice the amount of memory and is slower
(Itu et al., 2011). To avoid rounding errors for bad conditioned
systems, (Liu et al., 2012) proposes to use double precision for
numerically critical operations like matrix inversion or Cholesky
decomposition.

The benefits of blockwise processing during conditioning apply
to general operations as well. Based on the block structure of
the Jacobian matrix, (Wu et al., 2011, Jeong et al., 2012) use the
block-compressed row format, which not only saves memory but
also increases the speed if matrix vector operations are executed
blockwise.

The Hessian and Schur complement matrices are often not needed
explicitly. The linear CG method for example only needs the vec-
tor J7 (Jp) instead of the whole matrix J* .J. Using this relation
leads to the Conjugate Gradient Least Squares method described
for example in (Agarwal et al., 2010), which additionally shows
that a similar method is possible for the Schur complement.

3.4 Available Implementations

There are three commonly used implementations for BA. All three
are based on LMA, but exploit the sparseness of the Hessian ma-
trix in different ways.

The C/C++ project Sparse Bundle Adjustment (SBA) introduced
in (Lourakis and Argyros, 2004) solves the RCS under usage of
the Library LAPACK (Linear Algebra PACKage). The disadvan-
tage is, that LAPACK does not support solving sparse equation
systems.

The C++ implementation of Simple Sparse Bundle Adjustment
(SSBA) (available at (Zach, 2011)) uses the Library CHOLMOD,
which does respect the sparseness of the RCS. A direct com-
parison of SBA and SSBA is missing. Theoretically, the latter
should be superior to the first, though. The work of (Konolige and
Garage, 2010) implements a BA solution very similar to SSBA,
which is indeed significantly faster than SBA.

The C++/Cuda program Parallel Bundle Adjustment (PBA) for
multi-core architectures (CPU and GPU) introduced in (Wu et
al., 2011) solves the RCS by conjugate gradients with precondi-
tioner. The work of (Wu et al., 2011) compares PBA to several
other BA approaches on very large datasets (more than 100,000
measurements) and shows a 2-3 magnitudes faster convergence
rate than algorithms similar to SSBA.

4. IMPLEMENTATION

This section covers implementational details of the three methods
described in Section 2.

4.1 Nonlinear Conjugate Gradients

NCG does not need a complete linearization but only the gradient
g at the beginning of each iteration. This work additionally com-
putes a blockwise Jacobian conditioner. The diagonal blocks of
the Hessian matrix are directly calculated from the status vector
instead of computing and saving the Jacobian matrix. The con-
ditioning M ~'g = z is applied by solving the linear equation
system Mz = g with a Cholesky factorization, which is more
stable and efficient than inverting M. Since the block diagonals
of M are in general not positive definite, the diagonal is extended
with a constant damping factor \.

A line search based on backtracking is conducted along the search
directions. Convergence is ensured by the Wolfe constraint. The
convergence of this method largely depends on this line search
and especially on the parameters of the Wolfe constraints.

The line search ends if a) the Wolfe constraint (Equation 7) is
fulfilled (« gets accepted), or b) the search area along the line
defined by « is too small (« is only accepted if error is reduced),
or ¢) numerical problems occur (« is rejected).

The whole optimization ends if the maximal number of iterations
is reached, the projection error is below a threshold, or no error
reduction was achieved with the last ten iterations.

4.2 Levenberg-Marquardt Algorithm

The LMA implementation of this work follows largely the stan-
dard algorithm. At the beginning of each LMA iteration a com-
plete linearization is carried out. The Jacobian matrix, the gradi-
ent, as well as the conditioning matrix are calculated on the GPU
and saved. Two different solutions are implemented: LMAH
solves the complete extended normal equation (Equation 12) by
conjugate gradients. LMAS computes the RCS from the Hessian
matrix and the gradient which is solved by conjugate gradients.

The Hessian matrix (or the Schur complement matrix) is calcu-
lated implicitly as described in (Agarwal et al., 2010). The dis-
advantage of this approach is that it has to be recalculated at each
CG iteration, which has an negative influence on the iteration du-
ration (especially in the case of the Schur complement).

At the beginning of each LMA iteration, the conditioning matrix
is computed, inverted, and saved to memory (in case of LMAS

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-43-2016 46

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I1I-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

only the part regarding the camera parameters). Within a CG
iteration the conditioning is applied. Contrary to nonlinear CG,
the conditioning matrix does not change during a LMA iteration.

When the complete update vector is computed, X is increased if
no reduction of the error was achieved. Otherwise, the update
vector is applied by 6:11 = 0; + 6, a linearization at the new
position is computed, and A is decreased. The adaption of \ fol-
lows (Lourakis and Argyros, 2004) and is based on the gain ratio,
i.e. a comparison of the predicted and actual error, which pre-
vents a too strong decrease of \.

The CG iterations are stopped when the maximal number of iter-
ations is reached, if the ratio of the initial and current remaining
error is below a threshold, or the current error is ten times larger
than the initial error. The outer iterations terminate if the maxi-
mal number of iterations is reached, the projection error is below
a certain threshold, no error reduction took place within the last
ten iterations, or A reached its maximal value.

4.3 Resection-Intersection

In a first step an initial blockwise linearization is computed by
building the extended normal Equation 12 for single cameras and
points. The corresponding equations are solved either only for
cameras or only for points depending on whether the iteration
number is even or odd. A simple Cholesky decomposition with
forward and subsequent backward substitution is used to solve
the equation systems.

The diagonal elements are damped by a multiplicative extension
JTJ + Adiag(JTJ) to solve systems with partially indefinite
matrices. The damping factor) is reinitialized after each com-
plete outer iteration. During the LM A optimization A is increased
(decreased) if the error reduction was unsuccessful (successful).

The inner loop is left if either the maximum number of total or
successful inner iterations is reached, or the error could not be
reduced by a sufficiently large margin.

The outer loop ends if the maximal number of iterations is reached,
the projection error is below a predefined threshold, the error
was not reduced in ten subsequent iterations, or the parameter
A reached its maximal value.

4.4 Optimization strategies

The individual time performance of the vanilla implementation
of all three methods is shown at the top of Figure 1, where the
GPU usage is shown in grey under the time axes.

The first row shows three iterations of NCG of different length.
The green and purple blocks compute the gradients and condi-
tioning matrix, which is applied in the dark violet block. The
dark red (calculating the error vector) and brown (summing the
error vector) blocks show the line search and how different its
computational complexity can be. Since more than 60% of the
time is spent on line search (as the lower half of Figure 1 shows),
the focus of further optimizations has to be on this part of the
computation.

The timeline of LMA (LMAH is used here as example) in the sec-
ond row shows three iterations. The linearization is carried out in
the beginning (brown for cameras, green for points). Inverting
the conditioning matrix is shown in blue. The normal equation is
solved by CG. The violet blocks, representing the matrix-vector
multiplication J7'(.J6)), indicate that many iterations were nec-
essary to achieve a sufficient reduction of the remaining error.

NCG

LMA

RI

W Other kerels CPU + transfer
W Linearization pts

Q
O m Cholesky
P4 uSaxpy = Vector product

m Linearization cams m Cost function

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

<
=
-
® Matvec: v

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

— Other kemels CPU + transfer
o Saxpy Vector product
B Cholesky Cost function

u Linearization pts M Linearization cams

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

' Other kemels 1 CpU + transfer

m Costfunction mLinearization pts
W MatVec: M’y mVector product
= saxpy mLinearization cams

Figure 1. Time of individual processing functions of the three
implemented algorithms.

The first two LMA iterations need five CG iterations (i.e. the
defined minimum), while the last needs considerably more. The
lower part of Figure 1 shows that the computation of the matrix-
vector product needs the major part of the processing time de-
spite the rather small number of CG iterations (5-20). The focus
is therefore on optimizing the CG approach.

The third row shows nine iterations of RI. Contrary to NCG, the
iterations have constant length, where iterations optimizing the
cameras take a bit longer since the linearization in this case is
computationally more complex. Interestingly, solving an equa-
tion takes less time than its creation (shown in violet for points,
for cameras not visible due to too short length). This is also
shown at the lower half of Figure 1 where 65% of the whole pro-
cessing time is spent on creating the normal equations and 15%
more to compute the error.

There are two principle ways to reduce the runtime of the three
implemented methods: A) Reduction of the number of iterations
mainly based on numerical approaches and B) Reduction of the
iteration duration mainly based on efficient programming on the
GPU.

4.4.1 Reduction of iterations In the case of RI, preliminary
tests showed that it is beneficial to keep the amount of inner iter-
ations at a minimum. The number of outer iterations is increased
due to a less accurate solution, but the total amount of iterations
decreases.

In the case of NCG the number of inner and outer iterations can be
differentiated as well. The number of outer iterations is decreased
by checking the search direction for its potential to reduce the
error (as described in Section 2.1.1). Another common approach
is the preconditioning of the system for which the block-Jacobian
matrix is selected (see Section 3.2).

The reduction of the number of inner iterations basically means to
reduce the number of steps during line search. This could be eas-
ily achieved by different parameter settings, e.g. by a larger step
width. However, this increases the risk to miss the searched min-
imum. A less strict stopping criterion would end the line search
faster, but would uncontrollably increase the amount of outer
iterations. This work uses an approach based on the Newton-
Raphson method (as described in (Shewchuk, 1994)) which adap-
tively changes the initial value of « according to Equation 19.

g0

T 0T A9 (19)

(%

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-43-2016 47

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I1I-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

Tests showed that most of the line searches were finished after
one iteration. There was neither an increase in the number of
outer iterations nor a decrease of the accuracy after convergence.

Since LMA can be seen as one of the standard approaches for op-
timization of nonlinear equation systems, the literature provides
many ideas for improvement of which Section 3.1 names a few.
The implementation of this work uses an intelligent manipulation
of the damping factor \ as described in Section 4.2 to reduce the
number of unsuccessful outer (LMA) iterations.

4.4.2 Reduction of iteration duration This section describes
how the algorithms presented in Section 2.1 are implemented for
execution on the GPU. Since presenting the whole implementa-
tion is beyond the scope of this paper, only the most important
design decisions are emphasized. The focus lies especially on
reducing the time spent during each iteration.

Each nonzero submatrix of the Jacobian matrix representing a
camera and/or point block is handled by one thread to exploit the
sparse nature of the Jacobian matrix on the one hand and to use
blockwise computations as described in Section 3.3.

The follwing list names the most important kernel functions and
how they are parallelized:

e JT(Jp) - Multiplication : per measurement (blockwise)
e J, g, M - Linearization: per measurement (blockwise)

e f(0) - Cost function at 6 : per measurement (scalar)

e M- Inversion: per camera/point (blockwise)

e Mz = b-Solving SLE (Cholesky): per camera/point (block-
wise)

e M~y - Multiplication: per camera/point (blockwise)
o ap + U - SAXPY-operation: per single value (scalar)

e pT v - vector product: per single value (scalar)

One reason to cause a suboptimal GPU usage (i.e. less paral-
lel computations as theoretically possible) is that threads use too
many registers. Especially the kernels to compute the Jacobian
matrix, M ', and Mz = b need many registers. There are three
principle ways to cope with this problem. 1) Start only as many
threads as the number of available registers allows. Depending
on the given GPU architecture, this can lead to a considerable
decrease in efficiency. 2) Ensure an efficiency of 100% by swap-
ping registers to slower memory (register spilling). Depending
on the number of swapped registers this is the L1-cache or even
the global memory. Especially the usage of the global memory
should be avoided, since it is significantly slower and the paral-
lel execution might be decreased by blocking DRAM accesses.
3) Alternatively, multiple threads could handle one block using
the shared memory which decreases the amount of used registers.

The first option neither uses the L1 cache nor the shared memory
and is the most inefficient one. The third option is complex to
be realized and an inefficient access to the shared memory might
even have the opposite effect due to access conflicts. This work
uses the second option, since all threads are independent of each
other. At no point data needs to be shared between threads and
the L1 cache (i.e. shared memory) can be completely used for
register spilling. There is one single exception where inter-thread
communication is necessary: During the computation of the vec-
tor product all values need to be summed up in the last step. This
is done via parallel reduction (Harris, 2007).

All threads respect the common memory hierarchy of GPUs. Reg-
isters are prefered over other memory types and tried to be used as
much as possible without decreasing the maximal number of par-
allel executed threads too much. Nevertheless, especially larger
kernels are designed to use as many registers as possible to avoid
slow memory access. Despite an occupancy which is sometimes
as low as 60-80% of the theoretical possible occupancy, the com-
putational speed is increased due to higher IPC (see also (Volkov,
2010)). L1 cache and shared memory are prefered over global
memory and used even if it is not necessary to share data between
threads of one GPU block.

The implementations do not use any complex data structures but
are solely based on floats. The data is structured such that data ac-
cess is coalesced. The blocks of the Jacobian matrix for example
are ordered in an array as shown below:

valC = [CamBlock#10],...,CamBlock#N [0],
CamBlock#1[1],...,CamBlock#N (1], ...]
valP = [PointBlock#1]0],..., PointBlock#M [0],

PointBlock#1[1], ..., Point Block#M [1],...]

Since each block is handled within one thread, all parallel access
attempts to the first value of the block are coalescing.

To prevent thread divergence no branches based on thread IDs are
performed.

Despite the existence of sophisticated CUDA libraries for matrix-
vector operations, they are not used in this work. One example is
cuBLAS, a library for vector and matrix operations. Its functions
are optimized for large and dense matrices, while most tasks in
BA involve sparse matrices. The application to dense subprob-
lems would be possible, but the parallelization is optimized for
large systems where threads are applied for whole rows/columns
instead of small submatrices. Another example is cuSPARSE, a
library for multiplication of sparse matrices which even supports
a blockwise compressed row format. However, the blocks have
to be quadratic, which is not the case for the Jacobian matrix.
Furthermore, the library does not provide an option for implicit
matrix inversion, which requires explicit computation of matrix
inverses.

5. EXPERIMENTS AND RESULTS

5.1 Data and Test System

The following experiments are based on six different, publicly
available datasets (Agarwal et al., 2010, Wu et al., 2011). The
five datasets of Trafalgar, Dubrovnik-S, Venice-S, Rome-F, and
Dubrovnik-F are based on touristic shots from a public image
database. The reconstruction was carried out by an incremental
StM pipeline (Agarwal et al., 2011), which automatically defines
a skeletal graph representing images that are sufficient to describe
the major part of the 3D scene. A first reconstruction is based on
this subset of the images and denoted with the suffix S, while the
remaining images are attached subsequently and marked by the
suffix F. Intermediate results are not further optimized.

An additional dataset is provided in (Agarwal et al., 2010), which
is based on images taken with a ladybug camera mounted on a
moving car. Due to the camera movement, images close to each
other within the sequence have a high overlap, while images fur-
ther away do not share any content. The camera-point and point-
camera blocks of the Hessian matrix are rather sparse and form a
matrix close to a tridiagonal form.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-43-2016 48

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I1I-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

Table 1 summarizes the used datasets with respect to number of
cameras, 2D and 3D points, as well as initial mean squared er-
ror of the backprojection. Properties regarding the connectivity
between the cameras are discussed in (Agarwal et al., 2010).

All tests are run on a Geforce GTX 670 (Kepler architecture)
GPU with a compute capability 3.0 and two GByte of (Off-Chip)
GDDRS5 memory.

Name #Cam. | #3D Points | #2D Points | MSE |
Trafalgar-S | 257 65,132 225911 [217.45
Dubrovnik-S | 356 | 226,730 [1.255.268 | 168.26
Ladybug 1723 | 156,502 678,718 [272.79
Venice-S 1778 | 993,923 [5,001,946 | 102.52
Rome-F 1936 | 649,673 | 5213,733 | 70.36
Dubrovnik-F | 4585 | 1,324,582 [9,125,125 | 132.16

Table 1. Used datasets
5.2 RIvs. NCG vs. LMA

The three implementations of Resection-Intersection (RI), Non-

linear Conjugate Gradient (NCG) and Levenberg-Marquardt (LMA)

are applied to all datasets, the latter in its two variations denoted
as LMAH (solving the whole equation system based on the im-
plicit calculation of the Hessian matrix) and LMAS (solving the
RCS based on the implicit calculation of the Schur complement
matrix).

The optimization is carried out once only for camera pose and 3D
points (denoted by “m”) and once additionally for focal length
and two parameters for radial distortion (denoted by “fr”). Fig-
ure 2 shows the progress of the projection errors over time. The
left side shows the results for the metric, the right side for the
focal-radial case. The difference between the two optimization
problems is quite obvious. The corresponding reference files pro-
vide the same distortion parameters for all images despite the fact
that the images were acquired with many different cameras. Thus
an optimization of focal length and radial distortion is beneficial.
On the other hand, does the optimization problem obtain more
degrees of freedom which allow a closer fit to the data. This does
not necessarily mean a better (in the sense of being closer to re-
ality) reconstruction. An exception from this general trend is the
ladybug dataset, which was acquired by a single moving camera.
Modelling this data as many individual cameras with unshared
parameters does not significantly decrease the projection error.

The two LMA variants are clearly superior to the first order meth-
ods RI and NCG. LMAS is reaching the smallest error after con-
vergence due to the better conditioning of the Schur-complement
matrix (Wuetal.,2011). LMAH generally converges faster thanks
to a shorter duration of a single iteration. This is surprising in the
sense, that the Schur complement is supposed to speed up the
process of solving the equation system. The reason is that the im-
plicit calculation of the Schur complement matrix has to be done
in each CG iteration instead of calculating it once, keeping it in
memory, and reusing it in each iteration. But this would con-
sume considerably more memory, since the resulting Schur com-
plement matrix is significantly less sparse than the corresponding
Hessian matrix. The first order methods descend faster than LMA
in the initial iterations. Especially RI is successful in this sense,
while NCG has problems to find good initial values for the line
search, which has a strong influence on convergence speed and
value.

PBA (see Section 3) was tested on the same datasets with two
variations to solve the normal equation. The implementations of
LMA are similar to PBA. For example is the normal equation

=Rl = NCG LMAH =——LMAS LMAH-pba LMAS-pba

Figure 2. Projection error over time for six datasets (from top
to bottom: Trafalgar, Dubrovnik-S, Ladybug, Venice-S, Rome-F,
Dubrovnik-F) optimized for camera pose and structure (left) and
additionally focal length and radial distortion (right)

solved by CG (with block-Jacobian conditioning) and the Hes-
sian or Schur complement matrix is calculated implicitly in both
cases. Differences are the computation of dot(p, J* Jp), which
PBA calculates as dot(Jp, Jp) (Byrod and Astrom, 2010) and
a different parametrization of the Jacobian with respect to rota-
tions. Since PBA does not allow an optimization of the same ra-
dial distortion parameters, it is only applied in the “metric” case
(left column of Figure 2). No configuration of PBA was able to
optimize the Venice-S dataset. It terminated after six iterations
without any error reduction. LMAH converges faster and to a
smaller error than PBA for the Trafalgar-S and Ladybug datasets,
for the latter by a significant margin. PBA converges faster than
the LMA implementations but to the same error for Rome-F. For
the Dubrovnik-F dataset PBA is faster and converges to a slightly
lower error.

[Data [RI NCG LMAH LMAS [PBA |
waf | 14/14 [1717 35/40 34/39 53
dubs | 47/47 | 55/55 | 150/177 | 148/175 | 276
lady | 29/29 | 35/35 88/104 86/101 156
ven | 185/185 | 219/219 | 652/712 | 641/701 | 1021
rome | 167/167 | 190/190 | 571/690 | 563/682 | 1096
dubf | 303/303 | 349/349 | 1016/1241 | 1007/1216 | 1935

Table 2. Memory consumption of the four implemented methods
and PBA in MByte (m/fr)

Table 2 shows the memory consumption of the four implemented
methods as well as PBA. The two first order methods do not
save the Jacobian matrix and need much less memory. LMAH

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-43-2016 49

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I1I-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

needs larger parameter vectors since the whole equation system
is solved. LMAS does need more space to temporarily save the
Schur complement matrix, but this overhead is neglectable com-
pared to the number of cameras. NCG does need more memory
than RI due to the used precondition matrix. PBA needs 1.5-2
times as much memory as LMAH, since it saves data in a 128-
bit format. This allows to load four floats at once, but causes the
allocation of unneeded memory as well. Furthermore, does PBA
save the rotation matrix for each camera instead of the reduced
rotation vector and the large vector Jp.

6. CONCLUSION AND FUTURE WORK

Within this work three methods to solve the optimization task
of bundle adjustment are discussed, namely the commonly used
second order method based on Levenberg-Marquardt in two vari-
ations, as well as the two first order methods nonlinear conjugate
gradients and alternating resection-intersection. Besides a brief
description of their mathematical foundations, special emphasis
was put on their numerical properties as well as optimizations
potentials.

An open-source implementation of the three selected algorithms
for GPUs (available at (Hénsch, 2016)) is used to perform an eval-
uation of achieved accuracy and speed. In particular the compar-
ison between first and second order methods is missing in the lit-
erature, especially in the case of BA from large datasets. The pro-
vided implementations show similar behaviour in terms of speed
as state-of-the-art bundler PBA, but allow larger freedom with re-
spect to the parametrization and need significantly less memory.

The experiments showed that first order methods reach low error
rates very fast, but converge to larger error rates than second order
methods.

REFERENCES

Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B.,
Seitz, S. M. and Szeliski, R., 2011. Building rome in a day. Com-
munications of the ACM 54(10), pp. 105-112.

Agarwal, S., Snavely, N., Seitz, S. M. and Szeliski, R., 2010.
Bundle adjustment in the large. In: ECCV’10 Part II, Springer,
pp. 29-42.

Bartoli, A., 2002. A unified framework for quasi-linear bundle
adjustment. In: ICPR’02, Vol. 2, IEEE, pp. 560-563.

Barzilai, J. and Borwein, J., 1988. Two-point step size gradient
methods. IMA Journal of Numerical Analysis 8(1), pp. 141-148.

Brown, D. C., 1958. A solution to the general problem of multiple
station analytical stereo triangulation. Technical Report 43, RCA
Data reduction.

Byrod, M. and Astrom, K., 2010. Conjugate gradient bundle ad-
justment. In: ECCV’10, Part I, Springer, pp. 114-127.

Dai, Y.-H. and Yuan, Y., 1999. A nonlinear conjugate gradient
method with a strong global convergence property. SIAM Journal
on Optimization 10(1), pp. 177-182.

Fletcher, R. and Reeves, C. M., 1964. Function minimization by
conjugate gradients. The Computer Journal 7(2), pp. 149-154.

Hinsch, R., 2016. Project website.
gpu-ba.html.

http://rhaensch.de/

Harris, M., 2007. Optimizing parallel reduction in cuda. NVIDIA
Developer Technology.

Hestenes, M. R. and Stiefel, E., 1952. Methods of conjugate
gradients for solving linear systems. Journal of Research of the
National Bureau of Standards 49, pp. 409—436.

Itu, L., Suciu, C., Moldoveanu, F. and Postelnicu, A., 2011. Com-
parison of single and double floating point precision performance
for tesla architecture gpus. Bulletin of the Transilvania University
of Brasov, Series I: Engineering Sciences 4(2), pp. 131-138.

Jeong, Y., Nister, D., Steedly, D., Szeliski, R. and Kweon, I.-
S., 2012. Pushing the envelope of modern methods for bundle
adjustment. /EEE Transactions on Pattern Analysis and Machine
Intelligence 34(8), pp. 1605-1617.

Konolige, K. and Garage, W., 2010. Sparse sparse bundle adjust-
ment. In: BMVC’10, BMVA Press, pp. 102.1-102.11.

Lakemond, R., Fookes, C. and Sridharan, S., 2013. Resection-
intersection bundle adjustment revisited. ISRN Machine Vision
2013, pp. 1-8.

Levenberg, K., 1944. A method for the solution of certain prob-
lems in least squares. Quarterly of Applied Mathematics 2,
pp- 164-168.

Liu, S., Sun, J. and Dang, J., 2008. A linear resection-intersection
bundle adjustment method. Information Technology Journal 7(1),
pp. 220-223.

Liu, X., Gao, W. and Hu, Z.-Y., 2012. Hybrid parallel bundle ad-
justment for 3d scene reconstruction with massive points. Journal
of Computer Science and Technology 27(6), pp. 1269-1280.

Lourakis, M. and Argyros, A., 2004. The design and implemen-
tation of a generic sparse bundle adjustment software package
based on the levenberg-marquardt algorithm. Technical Report
340, Institute of Computer Science-FORTH, Heraklion, Greece.

Marquardt, D. W., 1963. An algorithm for least-squares estima-
tion of nonlinear parameters. SIAM Journal on Applied Mathe-
matics 11(2), pp. 431-441.

Moulon, P., Monasse, P. and Marlet, R., 2013. Global fusion of
relative motions for robust, accurate and scalable structure from
motion. In: /ICCV’13, IEEE, pp. 3248-3255.

Polak, E. and Ribiere, G., 1969. Note sur la convergence de
méthodes de directions conjuguées. ESAIM: Mathematical Mod-
elling and Numerical Analysis-Modélisation Mathématique et
Analyse Numérique 3(R1), pp. 35-43.

Saad, Y., 2003. Iterative methods for sparse linear systems. So-
ciety for Industrial and Applied Mathematics.

Shewchuk, J. R., 1994. An introduction to the conjugate gradient
method without the agonizing pain. Technical report, Carnegie-
Mellon University. Department of Computer Science.

Triggs, B., McLauchlan, P. F,, Hartley, R. I. and Fitzgibbon,
A. W, 2000. Bundle adjustment — a modern synthesis. In: Inter-
national Workshop on Vision Algorithms, Springer, pp. 298-372.

Volkov, V., 2010. Better performance at lower occupancy. In:
GPU Technology Conference.

Wilson, K. and Snavely, N., 2014. Robust global translations with
ldsfm. In: ECCV’14, Springer, pp. 61-75.

Wolfe, P., 1969. Convergence conditions for ascent methods.
SIAM Review 11(2), pp. 226-235.

Wu, C., Agarwal, S., Curless, B. and Seitz, S. M., 2011. Multi-
core bundle adjustment. In: CVPR’11, IEEE Computer Society,
pp. 3057-3064.

Zach, C., 2011. Simple sparse bundle adjustment.
https://github.com/royshil/SfM-Toy-Library/tree/
master/3rdparty/SSBA-3.0.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-43-2016 50

