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ABSTRACT:

Traditionally, forest tree crowns are extracted using airborne or spaceborne hyper-/multi-spectral remotely sensed images or pan-
sharpened images. However, these medium/low spatial resolution images suffer from the mixed pixel problem, and the cost to collect
very high resolution image collection is high. Moreover, existing feature extraction techniques cannot extract local patterns from
medium/low resolution images. Therefore, super-resolution mapping (SRM) techniques, which generate land-cover maps with finer
spatial resolution than the original remotely sensed image, can be beneficial for the extraction of forest trees. The SRM methods can
improve the quality of information extraction by combining spectral information and spatial context into image classification prob-
lems. In this paper we have improved an adaptive Markov random field approach for super-resolution mapping (MRF-SRM) based
on spatially adaptive MRF-SPM to overcome the limitation of equal covariance matrices assumption for all classes. We applied the
developed method for mangrove tree identification from multispectral image recorded by QuickBird satellite, where we generated a
super-resolution map with the panchromatic image spatial resolution of 0.6 m. Moreover, the performance of the proposed technique is
evaluated by employing the simulated image with different covariance matrices for each class. Our experimental results have demon-
strated that the new adaptive MRF-SRM method has increased the overall accuracy by 5.1% and the termination conditions of this
method were satisfied three times faster when compared to the state-of-the-art methods.

1. INTRODUCTION

Deforestation or removal of forests or trees stands has adverse
impacts on the water cycle, ecosystem services, biodiversity, and
global biogeochemical cycles, leading to droughts, increased
carbon emissions, with consequent impact on climate change
[Bagley et al., 2014, Jepma C.J., 2014, Mas et al., 2004]. For
instance, deforestation for agricultural purposes in the Brazilian
Amazon was an important source of increased annual carbon flux
over the period 1989-1998 [Houghton et al., 2000]. Thus, de-
forestation and forest degradation in the Brazilian Amazon have
been observed using remotely sensed data.

Existing deforestation maps in Brazil were generated from medi-
um or low resolution satellite images and do not contains local
scale information [Li et al., 2013]. For example, Brazilian Space
Agency (INPE) produced the deforestation map for the period of
1988 and 1998 by visual interpretation using Landsat thematic
mapper data as well as classification of Landsat multi-spectral
scanner (MSS) in 1986 [Houghton et al., 2000]. Another limita-
tion with the use of medium and coarse pixel resolution images
is the mixed pixels problem [Li et al., 2013], which do not enable
the application of normal feature extraction techniques to utilize
the hyper- and multi-spectral data for extraction of local scale in-
formation of features as well as individual tree crowns (ITC). This
information plays a dominant role in maintaining biotic diversity
data [Clark et al., 2005], forest management, species identifica-
tion, gap analysis, and volume and biomass estimations [Jing et
al., 2012]. Another example of the limitation of medium spatial
resolution images was demonstrated for many parts of Africa,
where the ITC were not observable within a 30 m resolution
∗Corresponding author.

Landsat TM images [Houghton, 2005]. In order to solve the
mixed pixels problem, soft classification methods can be applied.
However, they cannot determine the spatial patterns of a forest
within each coarse pixel [Li et al., 2013] and it is not possible to
extract the ITC.

The ITC delineation from remote sensing data requires high spa-
tial resolution overlapping photographs/imagery derived from
aerial cameras [Halounov, 2003], videography, multispectral air-
borne or spaceborne sensors [Clark et al., 2005] and elevation
data derived from laser scanning or by GNSS field measure-
ment [Ardila et al., 2011]. Although the extracted ITC from high
resolution data presents more information than medium resolu-
tion image, it does not solve the problem caused by low/ medium
resolution multispectral imagery. Moreover, acquiring high reso-
lution time series data sets for a large area is costly and may be
impossible [Li et al., 2013].

To date various methods have been introduced for ITC delin-
eation, such as image fusion and multisource multi-resolution
classification methods [Lu and Weng, 2007, Solberg et al., 1996,
Lu and Weng, 2005, Zhang, 2010], between-tree shadow identi-
fication [Warner et al., 1998], region grouping [Erikson, 2003],
edge detection [Koch et al., 2006], watershed segmentation [Jing
et al., 2012], 3D modelling [Gong et al., 2002], and multi-scale
segmentation [Jing et al., 2012]. However, they have not pro-
duced a fine resolution ITC map from a coarse resolution image.
It should be noted that the pan-sharpening methods which have
been used to enhance the spatial resolution of multi-spectral im-
ages, can change the spectral information and very often generate
artefacts in the images [Tolpekin et al., 2010]. Moreover, these
methods need both high resolution panchromatic and multispec-
tral data. Thus, ITC delineation and forest spatial patterns extrac-
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tion within coarse pixels are open challenges.

In this paper, we employed super-resolution mapping (SRM)
[Tatem et al., 2002], also called sub-pixel mapping [Verhoeye
and De Wulf, 2002] which is a land cover classification tech-
nique to produce the classified map at a finer spatial resolution
than the original coarse resolution image. The idea of SRM was
introduced by Atkinson [Atkinson, 1997] to achieve sub-pixel
vector boundaries using spatial dependence maximization. In
general, spatial dependence means that the neighboring pixels be-
long, with the high probability, to the same class as observations
further apart [Atkinson, 1991]. Later on, several attempts have
been made to utilize this theory and employ a method to tackle
the SRM issue. Generally, SRM methods can be divided into two
main categories [Li et al., 2012]: 1) methods which are applied as
post-processing algorithms and require soft classification results,
and 2) those which can be categorised as a classification and are
independent of soft classification methods.

The first approach can be divided into methods based on sub-pixel
swapping [Luciani and Chen, 2011,Shen et al., 2009,Thornton et
al., 2006,Yong and Bo, 2014]; multiple endmember spectral mix-
ture analysis [Powell et al., 2007]; geostatistics [Atkinson et al.,
2008, Boucher and Kyriakidis, 2006, Boucher et al., 2008, Qun-
ming et al., 2014]; the broad category of spatial attraction [Liguo
et al., 2011,Mertens et al., 2006,Mertens et al., 2003a,Ling et al.,
2013, Wang et al., 2012]; and those based on utilizing heuristic
methods to improve the SRM accuracy by maximizing the spa-
tial dependence and generating the spatial distribution of land
cover within the mixed pixels [Mertens et al., 2003b,Tatem et al.,
2001, Zhang et al., 2008, Zhong and Zhang, 2013]. In contrast,
the second SRM approaches do not rely on the availability of ac-
curate class boundaries nor a sub-pixel classified map derived by
another method [Kasetkasem et al., 2005].

In this paper, we consider the second category for defining con-
textual SRM, which was proposed by [Kasetkasem et al., 2005],
and employs Markov random field (MRF) because of its suit-
ability to represent the spatial dependence between pixels. This
method was developed based on three main assumptions: the pix-
els of the fine spatial resolution image are pure, SRM satisfies the
MRF properties, and the pixel intensities for each class in the fine
resolution image are normally distributed. In contrast to the first
SRM type, referred to above the results of this method does not
rely on the availability of accurate class boundaries nor a sub-
pixel classified map derived by another method [Kasetkasem et
al., 2005].

In this paper we adopt SRM described in [Tolpekin and Stein,
2009] and the spatially adaptive MRF-SPM proposed in [Li et
al., 2012] both of which have proved to work well on simulated
Gaussian distributed multispectral images. These methods were
developed based on equal covariance matrix between the classes.
The first novelty of this work consists in employing the proposed
method for the ITC mapping in the mangrove forests. The sec-
ond novelty of this work is that it utilizes multispectral QuickBird
images with a resolution of 2.4 m, instead of the synthetic image
used by [Tolpekin and Stein, 2009,Li et al., 2012], to produce the
mangrove forest map at the panchromatic imagery spatial resolu-
tion of 0.6 m. Finally, we have attempted to overcome the limi-
tation of the equal covariance matrix assumption between classes
used by [Tolpekin and Stein, 2009, Li et al., 2012].

The outline of this paper is as follows: Section 2. introduces the
basic of MRF-SRM frame work and explicitly explains the frame
work of improved adaptive MRF-SRM. The data description and
the experimental results are presented and discussed in Section 3.
Finally, conclusions are drawn in Section 4.

2. PROPOSED METHOD

In the development of MRF based SRM framework, we denote
an image by Y = {Yi ∈ RB, i = 1,2, . . . ,m}, where B is a number
of spectral channels, and m = N1×N2 is a number of pixels in
an image. The spatial resolution of image Y is denoted as R;
therefore each pixel Yi represents a square area of size R2 on the
ground. It is assumed that the spectral intensity of each pixel
Yi depends on a corresponding unobserved pixel label in L ={
` j, j = 1,2, . . . ,m

}
[Bouman and Shapiro, 1994], where, each

` j takes its value from a finite set of M thematic classes of interest
Ω = {ω1,ω2, . . . ,ωM}. Although image Y was captured by an
airborne or spaceborne sensor, we assume that this image was
generated by degradation of a not directly observed image (X)
with the same number of spectral bands and spatial resolution
r. We assume that every pixel of X is pure and can be assigned
to a unique class [Tolpekin and Stein, 2009]. It is also assumed
that the spectral intensities of the pixels of X and Y which belong
to the same class, are spatially uncorrelated [Tolpekin and Stein,
2009].

The ratio between the coarse pixel spatial resolution (R) and fine
pixel spatial resolution (r) image is called the scale factor (S =
R/r) and is assumed to be an integer value [Tolpekin and Stein,
2009]. Hence, each coarse pixel of Y consists of S2 pixels of X
and the corresponding positions of fine pixels within Yi can be
indexed by xk|i, where k = 1,2, . . . ,S2. By excluding the partial
overlaps between the coarse and fine pixels, the relationship be-
tween each coarse pixel of Y and its corresponding finer pixels of
X can be established as follows [Li et al., 2012]:

Yi =
1
S2

S2

∑
k=1

xk|i (1)

2.1 MRF-SRM

The aim of SRM is to produce a classified map CSRM at a finer
spatial resolution (r), the same as X , from a coarse resolution im-
age (Y ) [Tolpekin and Stein, 2009]. For this reason we employed
the Bayes’ rule:

p(CSRM |Y ) ∝ p(Y |CSRM) p(CSRM) (2)

where p(CSRM |Y ) is the posterior probability of the classified SR
map, p(Y |CSRM) is the class-conditional probability and p(CSRM)
is the prior probability distribution for the SR map CSRM . The op-
timal classified SR map C∗SRM given the image Y can be generated
by solving the maximization problem for the a posteriori proba-
bility (MAP) decision rule (2):

C∗SRM = argmax
CSRM

{p(CSRM |Y )}= argmax
CSRM

{p(Y |CSRM) p(CSRM)}
(3)

According to the complexity of (3) which involves the optimiza-
tion of a global distribution of the image and due to the equiva-
lence of MRF and Gibbs random field, this optimization can be
resolved by minimizing the sum of local posterior energies, as
proposed in [Tolpekin and Stein, 2009]:

U (CSRM |Y ) = U (Y |CSRM)+U (CSRM) (4)

where U (CSRM |Y ) is the posterior energy function, p(U |CSRM) is
the spectral energy function, and U (CSRM) is the spatial energy
function (prior energy function). The spatial term U (CSRM) is
defined by using the Potts model, which penalizes different class
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labels for neighboring sub-pixels:

U (CSRM) = ∑
k,i

U
(

CSRM

(
ak|i
))

=

∑
k,i

∑
al∈N(ak|i)

q×φ (al)×
(

1−δ
(

CSRM

(
ak|i
)

,CSRM (al)
)) (5)

Here, U
(

CSRM

(
ak|i
))

is the local spatial energy of the sub-pixel

ak|i and CSRM

(
ak|i
)

is the class label of sub-pixel ak|i within a

coarse pixel Yi, and CSRM (al) is the class label of its surround-
ing neighbors. In this equation, δ

(
`i, ` j

)
is the Kronecker delta

function, (δ
(
`i, ` j

)
= 1 if `i = `j and δ

(
`i, ` j

)
= 0 if `i 6= `j), q

controls the overall magnitude of weights and consequently the
contribution of the spatial energies 0≤ q < ∞, and φ (al) denotes

the weight of contribution from sub-pixel al ∈ N
(

ak|i
)

to the
spatial energy term and can be computed as (6):

φ (al) =
1
η

d
(

ak|i,al

)
r

−g

(6)

where d
(

ak|i,al

)
denotes the geometric distance between the

sub-pixel ak|i and its spatial neighbors al [Li et al., 2012,Makido
et al., 2007], η is the normalization constant so that ∑l∈N(ak|i) η (al)
= 1, and the power law index g is usually set as g = 1 [Li et al.,
2012]. The spectral energy term U (Y |CSRM) can be expressed
as:

USpectral (Y |CSRM) = ∑
i,k

U
(
Yi|CSRM

(
ak|i
))

= ∑
i,k

[
1
2
(Yi−µi)

′
Σi
−1 (Yi−µi)+

1
2

ln |Σi|
] (7)

where Yi is the spectral vector of the coarse pixel i, assumed to be
normally distributed with mean µi and covariance Σi. Both µi and
Σi are dependent on the pixel composition and can be computed
using [Tolpekin and Stein, 2009]:

µi =
M

∑
α=1

θαiµα (8)

Σi =
M

∑
α=1

θαiΣα (9)

where θαi is the proportion of the class ωα in the composition

of coarse pixel Yi, such that
M
∑

α=1
θαi = 1, and µα and Σα are the

mean and covariance of the class ωα , which are estimated using
the sufficient number of pure training pixels [Kasetkasem et al.,
2005]. By substituting (5, 7) in (4), we can write (4) as:

U (CSRM |Y ) = U (Y |CSRM)+q∑
k,i

∑
al∈N(ak|i)

φ (al)×
(

1−δ
(

CSRM

(
ak|i
)

,CSRM (al)
)) (10)

In order to normalize U (CSRM |Y ), we multiply (10) by 1/(1+q):

U (CSRM |Y ) ∝
1

1+q
U (Y |CSRM)+

q
1+q ∑

k,i
∑

al∈N(ak|i)
φ (al)×

(
1−δ

(
CSRM

(
ak|i
)

,CSRM (al)
))
(11)

In this step we call q/(1+q) smoothing parameter which is de-
noted as λ ; hence 1/(1+q) can be expressed as 1−λ . As men-
tioned in Equation (3), the optimal SR map C∗SRM depends on
the maximizing the posterior probability which is similar to min-
imization of posterior energy U (CSRM |Y ), not the absolute value
of U (CSRM |Y ) [Tolpekin and Stein, 2009]; thus, equation (11)
can be written as :

U (CSRM |Y ) = (1−λ )U (Y |CSRM)+λ ∑
k,i

∑
al∈N(ak|i)

φ (al)×
(

1−δ
(

CSRM

(
ak|i
)

,CSRM (al)
))

(12)

2.2 Adaptive MRF-SRM

According to Equations (5) and (7) the spatial and spectral en-
ergies which are required to compute posterior energy in Equa-
tion (12) should be computed for each coarse pixel. However,
λ in (12) was a fixed value for the entire image by [Tolpekin and
Stein, 2009]. Thus, by estimating a smoothing parameter for each
coarse pixel using its local contextual information, we can mod-
ify the MRF-SRM model (12) into an adaptive MRF-SRM [Li et
al., 2012]. For this reason, assume that the class label of a given
sub-pixel CSRM

(
ak|i
)

= α is assigned to an incorrect class label

CSRM

(
ak|i
)

= β within a coarse pixel Yi. Therefore, based on
(3) we can infer that:

U
(

CSRM

(
ak|i
)

= α|Yi

)
≥U

(
CSRM

(
ak|i
)

= β |Yi

)
(13)

If this condition is not corrected, then an incorrect class label
will be assigned by the MAP solution to ak|i. Substituting the
corresponding terms in (13) and solving this inequality equation,
we will have changes in the spectral energy ∆U spec

αβ and in the

spatial energy ∆U spat
αβ [Tolpekin and Stein, 2009]; where, ∆U spec

αβ
can be computed using (14) and ∆U spat

αβ using (15) [Tolpekin and
Stein, 2009, Li et al., 2012].

∆U spec
αβ =

1
2

(µβ −µα

S2

)′
Σi
−1
(µβ −µα

S2

)
(14)

where due to equal covariance matrix assumption Σi =
(
1/S2)Σα

[Tolpekin and Stein, 2009] Moreover, they proposed Equation
(15) to compute the change in spatial energy ∆U spat

αβ from class α
to β [Tolpekin and Stein, 2009] .

∆U spat
αβ = q

∣∣∣∣∣∣ ∑
al∈N(ak|i)

φ (al) [δ (β ,CSRM (al))−δ (α,CSRM (al))]

∣∣∣∣∣∣
= qγ
(15)

where parameter γ is related to the prior energy coefficient φ , the
neighbouring window size (W = 2S− 1) and the configuration
of pixel class label CSRM (al) in the N

(
ak|i
)

of a specific im-
age [Tolpekin and Stein, 2009]. Furthermore, γ for each pair of
classes (α and β ) can be estimated as [Tolpekin and Stein, 2009]:

λ ∗ =
1

1+ γ
∆Uspec

αβ

(16)

Because λ ∗ is a fixed value for the entire image, [Li et al., 2012]
employed the proportions of land cover classes within each coarse
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pixel to compute the mean of spectral energy change ∆USpec
i

within each coarse pixel:

∆USpec
i =

∑M−1
α=1 ∑M

β=α+1 θαiθβ i∆USpec
αβ

∑M−1
α=1 ∑M

β=α+1 θαiθβ i
(17)

Then, they modified (16) as:

λ ∗i =
1

1+ γ
∆USpec

i

(18)

Equation (18) computes the smoothing parameter for each coarse
pixel Yi. Hence, this method can be considered as an adaptive
super resolution mapping method. However, it should be noted
that the spectra statistics of classes show that the mean and co-
variance of classes are different; thus, the maximum likelihood
estimation utilizes the likelihood energy (7) to assign a class to a
given pixel based on minimum distance [Richards and Jia, 2006].
However, both methods [Tolpekin and Stein, 2009,Li et al., 2012]
suffer from the assumption of the same class covariance matrix
in Equation (14); thus, they employed the Mahalanobis distance
(14) to estimate the spectral energy change from a correct class to
an incorrect class label ∆U spec

αβ . To overcome this limitation, we
propose Σαβ which is the average of covariance matrix of classes
α and β , instead of using the same covariance matrix for all the
classes:

Σαβ =
Σα +Σβ

2
(19)

By employing (19), Equation (14) can be rewritten as (20).

∆U spec
αβ =

1
2

(µβ −µα

S2

)′
Σαβ

−1
(µβ −µα

S2

)
(20)

By utilizing (20) instead of (14), our adaptive MRF-SRM is not
dependent on the same covariance matrix which assumed by
[Tolpekin and Stein, 2009, Li et al., 2012]. Moreover, it can
be applied on a real image with a different covariance matrix for
each class to produce a SR map.

2.3 Optimization and Estimation

In this work, we employed simulated annealing (SA) as a heuris-
tic optimization technique to iteratively search for a new solution
(see Figure 1). The simulated annealing schedule is based on the
following power-law decay function:

Titer = σTiter−1, (21)

where Titer is the temperature at the iteration number iter, and
σ ∈ (0,1) controls the rate of temperature decrease. In the first
step of this method, an initial SR map should be produced. For
this reason, we employed a constraint linear spectral unmixing
(LSU) method to generate the initial class proportion of each
coarse pixel (Figure 3(d)). Then the scale factor and estimated
fractional abundance (FA j) results for each coarse pixel were uti-
lized to estimate the number of sub-pixels NSP j for each class j
within a coarse pixel Yi:

NSPj = round
(

FA j

1/S

)
, (22)

where round (•) returns the value of the closest integer. Then, we
randomly assign a number NSP j of sub-pixels within a coarse
pixel Yi: to class ` j. We called the generated map as the initial

SR map CInit
SRM

(
ak|i
)

. In the next step, we compute the spectral

energy change ∆U spec
αβ using (20) and the mean of spectral change

∆U spec
i using (17) to estimate the optimal smoothing parameter

λ ∗i for each coarse pixel by (18). Then, λ ∗i was used to compute
the posterior energy (12) of each coarse pixel. Before starting the
iterative steps, some parameters should be defined: the starting
iteration number (iterstart = 1), maximum number of iterations
(itermax), starting temperature T0 = 2, the temperature σ = 0.9.
The SA is performed until it satisfies the termination conditions:
1) iter ≥ itermax; 2) less than 0.1% of the sub-pixels are success-
fully updated during three consecutive iterations.

In order to utilize the SA algorithm, a change in a sub-pixel class
label CSRM

(
ak|i
)

is performed to produce a new solution. Con-
sequently, a new posterior energy (12) is computed. The change
will be accepted if it decreases the energy, and it will be accepted
with a certain probability if it increases the posterior energy. The
iterative procedure continues until the model satisfies one of the
convergences conditions.

Figure 1: Workflow of adaptive super-resolution mapping

3. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed method, two
different datasets were selected.

1) Mangrove forest dataset: This image was recorded by the
QuickBird satellite over the mangrove forest in the south east
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of Iran, which in UTM projection is located between, ULX:
347949.3, ULY: 2786168.1 and LRX: 348126.9 , LRY: 2785990.5
on April 06, 2006. The studying area is located within Govatr
Bay in the delta of Bahookalat River which is a part of Gandoo
Protected Area and Bahoo wetland and demonstrated as position
10 in Figure 2 [Zahed et al., 2010]. The satellite simultaneously
captures panchromatic (Pan) and multispectral (MS) digital im-
agery with spatial resolution of 0.6 and 2.4 m at nadir, respec-
tively. Thus, the scale factor S between MS (Figure 3(a)) and Pan
(Figure 3(b)) images is 4. The Pan sensor captures the surface re-
flectance within a wavelength range of 450 to 900 nm, while the
MS sensor provides four spectral bands; i.e. blue (450-520 nm),
green (520-600 nm), red (630-690 nm), near-IR (760-890 nm).
The selected area comprises 300 by 300 panchromatic pixels and
their corresponding multispectral pixels. In this dataset, we tried
to select a pure studying area with some individual mangrove tree
crowns, in the non-dense mangrove forest. Therefore, we were
able to extract the trees accurately and evaluate the results. The
reference map (Figure 3(c)) was produced using visual interpre-
tation of the panchromatic image and pan sharpening product.

Figure 2: Govatr Bay mangorves forest; adopted from (Zahed et
al., 2010)

2) Simulated image: This dataset is a simulated image which
was used to compare the accuracy of our improved adaptive
MRF-SRM with that of [Li et al., 2013]. In order to generate
this dataset, we employed the reference map of mangrove for-
est dataset comprising 300 by 300 pixels, which contains real
tree boundaries. Then, the trees are categorized into two differ-
ent classes (class 1 and class2) to generate a reference map with
complex class conditions (Figure 5(a)). The third class of this
map is considered as soil. Then, we employed the (Mohn et al.,
1987; Yu and Ekstrm, 2003) methodology as well as the proposed
class mean values and class covariance matrix. The location of
each distribution is presented as an ellipsoid in Figure 4. Then by
utilizing the mean and covariance of the classes, a synthetic im-
age with two bands and three classes was generated by sampling
from the multivariate normal distribution. The generated image is
degraded by scale factor 6 (Figure 5(b & c)) and utilized to apply
adaptive MRF-SPM and our improved adaptive MRF-SRM.

To estimate the efficiency of the proposed spatially adaptive MRF-
SPM [Li et al., 2012] and our improved adaptive MRF-SRM
method, we applied both methods on the both datasets. Then the
overall (OA), average (AA) and class-specific accuracies, as well
as the kappa coefficient (k) are estimated. The resulting generated
SR maps for mangrove forest dataset are presented in Figure 3(d)
and for the simulated image in Figures 5(c) and 5(d). Mangrove
forest dataset contains two classes (mangrove and soils), thus the

(a) (b)

(c) (d)

Figure 3: (a) Three-band colour composite of QuickBird Image.
(b) The panchromatic image of QuickBird Image. (c) Reference
data of the mangrove forest dataset. (d) Generated SR map using
spatially adaptive MRF-SPM method.

results of both spatially adaptive MRF-SPM and our improved
adaptive MRF-SRM are the same.

In order to evaluate the performance of both SRM methods, we
applied five state-of-the-art classification techniques, namely max-
imum likelihood (ML), Mahalanobis distance (MaD), minimum
distance (MiD), spectral angle mapper (SAM), and spectral cor-
relation mapper (SCM) on the original simulated image and the
fused image of MS and Pan for the mangrove forest dataset. All
the classification methods were trained with similar training data
sets (36 pixels per class) and their performance was evaluated
by their corresponding reference maps. The results are reported
in Table I, from which, it can be concluded that the improved
adaptive MRF-SRM compared to the spatially adaptive MRF-
SPM increased the overall accuracy by 5.1 percent. Although
all the pixel based classification methods were applied on the
original simulated image with scale factor 1 instead of scale fac-
tor 6 which was utilized for both spatially adaptive MRF-SPM
and improved adaptive MRF-SRM methods, the OA, AA, and k
of both SR generated maps are higher than SAM, SCM and MiD
classified maps results (Table 1).

We evaluated the statistical significance of the difference between
all the classification results in terms of accuracy by using the Mc-
Nemars test with the 5% significance level for each pair of the
classification maps [Aghighi et al., 2014]. According to the cal-
culated χ2 and z values, the null hypothesis (H0) of no signif-
icant difference between map accuracies is rejected. Thus, the
results of improved adaptive MRF-SRM and spatially adaptive
MRF-SPM are not the same as each other nor the other classified
maps. This means that the use of the proposed improved adaptive
MRF-SRM is beneficial to overcome the mixed pixel problem and
it is suitable to produce a fine resolution ITC map or to extract the
forest spatial patterns within coarse pixels.

As mentioned in Section 1., the image fusion and multisource
multi-resolution classification methods are some of the state-
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Figure 4: Class expectation ±2 standard deviation contours; in
the case of spatial independency between pixels.

Table 1: Classification accuracy in percentage for each class
of the simulated image, where OA, AA, k, SA MRF-SPM, and
IA MRF-SRM represent the overall accuracy, average accuracy,
kappa coefficient, spatially adaptive MRF-SPM, and improved
adaptive MRF-SRM.

SA MRF-SPM IA MRF-SRM ML SAM SCM MiD MaD
OA 89 94.1 96 78 78.5 85.4 95.5
AA 87.4 87.8 93.6 67.5 46.6 81.5 92.6
K 0.81 0.83 0.93 0.62 0.59 0.75 0.93

C 1 88.3 89.7 98.8 56.4 62.4 65.9 97.4
C 2 83.1 84.9 93.9 46.6 37.5 79.1 81.4
C 3 90.9 92.2 95.4 99.3 86.8 99.6 99.2

of-the-art approaches for ITC delineation. Therefore, we ap-
plied different pan-sharpening methods, called subtractive res-
olution merge, HPF resolution merge, Wavelet resolution merge,
and Ehlers resolution merge on mangrove forest dataset pan-
sharpened images. Then, ML, MaD, MiD, SAM, and SCM pixel
based classification methods were employed to classify the gen-
erated pan-sharpened images. In these experiments, the similar
training data sets (36 pixels per class) were utilized to train the
classification methods and their performance evaluated by the
mangrove forest reference maps (Table 2).

From Table 2, it can be seen that the overall accuracy of the gen-
erated mangrove forest using the spatially adaptive MRF-SPM
methods are higher than the overall accuracy of all classification
methods using the pan-sharpened images, except for Subtractive
resolution merge employing spectral angle mapper method. The
calculated χ2 and z values for spatially adaptive MRF-SPM and
each of the other classification methods indicate that the null hy-
pothesis (H0) of no significant difference between map accura-
cies are strongly rejected. Thus, both improved adaptive MRF-
SRM method and spatially adaptive MRF-SPM are suitable to
produce a fine resolution mangrove forest map or to extract the
forest spatial patterns within coarse pixels. However, due to bet-
ter performance of the improved adaptive MRF-SRM than spa-
tially adaptive MRF-SPM for the simulated image with non-equal
covariance matrices, it can be concluded that the proposed im-
proved adaptive MRF-SRM method could be more suitable than
the spatially adaptive MRF-SPM for real images with non-equal
covariance matrix for the classes (Table 1). Moreover, the ter-
mination conditions of the improved adaptive MRF-SRM were
satisfied three times faster when compared to spatially adaptive
MRF-SPM for simulated images.

(a) (b)

(c) (d)

(e)

Figure 5: (a) Reference map of simulated dataset. (b) Simulated
image with 2 bands and scale factor 1. (c) Adaptive MRF-SPM
result. (d) Improved adaptive MRF-SRM result. (e) The real
proportional size of degraded simulated image with scale factor 6
(produced from Figure 5(b)) which is used to generate SR maps
presented in Figures 5(c & d)) .

4. CONCLUSION

In this work, we have investigated the use of the proposed spa-
tially adaptive MRF-SRM to generate finer spatial resolution man-
grove forest maps from a multispectral image with lower spatial
resolution. This method is applied on QuickBird satellite images
over the mangrove forest and its results are compared with 20
different classified maps produced by five different pixel based
classification methods on four different pan-sharpened images.
Experimental results have demonstrated that the accuracy of the
generated mangrove forest maps are mostly better than the results
of other techniques.

According to this reason that the covariance matrices of different
classes are not same, we modified the earlier method and pro-
posed a new method which is called improved adaptive MRF-
SRM to overcome this assumption of equal covariance matrices.
The performance of this method was evaluated using a two band
simulated image with scale factor 6 which contains three differ-
ent classes with very complex shapes. The generated map us-
ing this method is compared with spatially adaptive MRF-SPM
using the same dataset and five state-of-the-art pixel based clas-
sification methods for the original simulated image with a scale
factor 1. Experimental results have demonstrated OA, AA, k of
generated SR map by the improved adaptive MRF-SRM method
are higher than those of spatially adaptive MRF-SPM. Moreover,
McNemar’s test rejects the null hypothesis (H0) of no significant
difference between them which indicates the statistically signifi-
cant difference between them at the 0.05 level.
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Table 2: the classification accuracy in percentage for each class
of the the mangrove forest image, where OA, AA, k, and SA MRF-
SPM denote the overall accuracy, average accuracy, kappa coef-
ficient, and spatially adaptive MRF-SPM.

SA MRF-SPM ML SAM SCM MiD MaD
Subtractive resolution merge

OA 92.7 87 93 89.3 90.9 86.9
AA 92.1 87.2 92.5 89.1 90.3 87.2
K 0.85 0.74 0.86 0.78 0.81 0.74

C 1 87.9 76.1 89.3 62.4 84.8 76
C 2 96.3 98.4 95.7 37.5 95.7 98.4

HPF resolution merge
OA 92.7 83.3 91.7 88.8 91.9 83.3
AA 92.1 85 91.1 0.78 91.3 85
K 0.85 0.67 0.83 88.6 0.83 0.67

C 1 87.9 70.6 87.1 79.3 87.7 70.5
C 2 96.3 99.4 95 97.8 94.9 99.5

Wavelet resolution merge
OA 92.7 79.5 81.2 80.3 81.2 79.4
AA 92.1 79.7 80.3 80 80.4 79.6
K 0.85 0.59 0.61 0.6 0.61 0.59

C 1 87.9 68.8 74.1 70.6 73.8 68.7
C 2 96.3 90.6 86.6 89.3 86.9 90.6

Ehlers resolution merge
OA 92.7 84.1 91.3 91.3 90.9 84
AA 92.1 85.5 90.7 90.7 90.2 85.5
K 0.85 0.69 0.82 0.82 0.8 0.69

C 1 87.9 71.4 89.9 86.9 85.7 71.4
C 2 96.3 99.6 94.5 91.5 94.8 99.6
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