Essayer d'implémenter un modèle de détection d'objet personnalisé avec Tensorflow Lite, à l'aide d'Android Studio. Je suis les conseils fournis ici: Fonctionnement sur mobile avec TensorFlow Lite , mais sans succès. L'exemple de modèle s'exécute correctement et affiche toutes les étiquettes détectées. Néanmoins, lorsque j'essaye avec mon modèle personnalisé, je n'obtiens aucune étiquette . J'ai également essayé avec d'autres modèles (sur Internet mais le résultat est le même). C'est comme si les étiquettes ne sont pas passées en écriture. J'ai copié mon detect.tflite et labelmap.txt , j'ai changé le TF_OD_API_INPUT_SIZE et le TF_OD_API_IS_QUANTIZED dans le DetectorActivity.java mais toujours pas de résultats (classe détectée avec une boîte englobante et un score).
Le Logcat montre ce qui suit:
2020-10-11 18:37:54.315 31681-31681/org.tensorflow.lite.examples.detection E/HAL: PATH3 /odm/lib64/hw/gralloc.qcom.so
2020-10-11 18:37:54.315 31681-31681/org.tensorflow.lite.examples.detection E/HAL: PATH2 /vendor/lib64/hw/gralloc.qcom.so
2020-10-11 18:37:54.315 31681-31681/org.tensorflow.lite.examples.detection E/HAL: PATH1 /system/lib64/hw/gralloc.qcom.so
2020-10-11 18:37:54.315 31681-31681/org.tensorflow.lite.examples.detection E/HAL: PATH3 /odm/lib64/hw/gralloc.msm8953.so
2020-10-11 18:37:54.315 31681-31681/org.tensorflow.lite.examples.detection E/HAL: PATH2 /vendor/lib64/hw/gralloc.msm8953.so
2020-10-11 18:37:54.315 31681-31681/org.tensorflow.lite.examples.detection E/HAL: PATH1 /system/lib64/hw/gralloc.msm8953.so
2020-10-11 18:37:54.859 31681-31681/org.tensorflow.lite.examples.detection E/tensorflow: CameraActivity: Exception!
java.lang.IllegalStateException: This model does not contain associated files, and is not a Zip file.
at org.tensorflow.lite.support.metadata.MetadataExtractor.assertZipFile(MetadataExtractor.java:325)
at org.tensorflow.lite.support.metadata.MetadataExtractor.getAssociatedFile(MetadataExtractor.java:165)
at org.tensorflow.lite.examples.detection.tflite.TFLiteObjectDetectionAPIModel.create(TFLiteObjectDetectionAPIModel.java:118)
at org.tensorflow.lite.examples.detection.DetectorActivity.onPreviewSizeChosen(DetectorActivity.java:96)
at org.tensorflow.lite.examples.detection.CameraActivity.onPreviewFrame(CameraActivity.java:200)
at android.hardware.Camera$EventHandler.handleMessage(Camera.java:1157) at android.os.Handler.dispatchMessage(Handler.java:102) at android.os.Looper.loop(Looper.java:165) at android.app.ActivityThread.main(ActivityThread.java:6375) at java.lang.reflect.Method.invoke(Native Method) at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:912)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:802)
Comment puis-je effectuer la détection? Ai-je besoin d'un fichier supplémentaire (métadonnées) relatif aux étiquettes ou je fais autre chose mal? Le cas ci-dessus est testé avec un appareil Android 7. Merci!
Il s'agit d'un problème avec cette documentation spécifiquement qui n'a pas été mis à jour.
Le problème principal est que l'échantillon a été mis à jour pour utiliser des modèles avec des métadonnées attachées, en particulier avec les étiquettes intégrées en tant qu'actif du modèle.
Lorsque vous ajoutez votre fichier d'étiquettes au modèle, tout devrait fonctionner.
Cela ressemble à une régression là-bas. Pourriez-vous l'essayer avec ce qui suit?
<at your TF example repo>
$ git checkout de42482b453de6f7b6488203b20e7eec61ee722e^
Pour mieux comprendre la solution proposée par Gusthema, je vous fournit le code qui a fonctionné dans mon cas:
pip install tflite-support
from tflite_support import flatbuffers
from tflite_support import metadata as _metadata
from tflite_support import metadata_schema_py_generated as _metadata_fb
# Creates model info.
model_meta = _metadata_fb.ModelMetadataT()
model_meta.name = "MobileNetV1 image classifier"
model_meta.description = ("Identify Unesco Monuments Route"
"image from a set of 18 categories")
model_meta.version = "v1"
model_meta.author = "TensorFlow"
model_meta.license = ("Apache License. Version 2.0 "
"http://www.apache.org/licenses/LICENSE-2.0.")
# Creates input info.
input_meta = _metadata_fb.TensorMetadataT()
# Creates output info.
output_meta = _metadata_fb.TensorMetadataT()
input_meta.name = "image"
input_meta.description = (
"Input image to be classified. The expected image is {0} x {1}, with "
"three channels (red, blue, and green) per pixel. Each value in the "
"tensor is a single byte between 0 and 255.".format(300, 300))
input_meta.content = _metadata_fb.ContentT()
input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()
input_meta.content.contentProperties.colorSpace = (
_metadata_fb.ColorSpaceType.RGB)
input_meta.content.contentPropertiesType = (
_metadata_fb.ContentProperties.ImageProperties)
input_normalization = _metadata_fb.ProcessUnitT()
input_normalization.optionsType = (
_metadata_fb.ProcessUnitOptions.NormalizationOptions)
input_normalization.options = _metadata_fb.NormalizationOptionsT()
input_normalization.options.mean = [127.5]
input_normalization.options.std = [127.5]
input_meta.processUnits = [input_normalization]
input_stats = _metadata_fb.StatsT()
input_stats.max = [255]
input_stats.min = [0]
input_meta.stats = input_stats
# Creates output info.
output_meta = _metadata_fb.TensorMetadataT()
output_meta.name = "probability"
output_meta.description = "Probabilities of the 18 labels respectively."
output_meta.content = _metadata_fb.ContentT()
output_meta.content.content_properties = _metadata_fb.FeaturePropertiesT()
output_meta.content.contentPropertiesType = (
_metadata_fb.ContentProperties.FeatureProperties)
output_stats = _metadata_fb.StatsT()
output_stats.max = [1.0]
output_stats.min = [0.0]
output_meta.stats = output_stats
label_file = _metadata_fb.AssociatedFileT()
label_file.name = os.path.basename('/content/gdrive/My Drive/models/research/deploy/labelmap.txt')
label_file.description = "Labels for objects that the model can recognize."
label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
output_meta.associatedFiles = [label_file]
# Creates subgraph info.
subgraph = _metadata_fb.SubGraphMetadataT()
subgraph.inputTensorMetadata = [input_meta]
subgraph.outputTensorMetadata = 4*[output_meta]
model_meta.subgraphMetadata = [subgraph]
b = flatbuffers.Builder(0)
b.Finish(
model_meta.Pack(b),
_metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
metadata_buf = b.Output()
# metadata and the label file are written into the TFLite file
populator = _metadata.MetadataPopulator.with_model_file('/content/gdrive/My Drive/models/research/object_detection/exported_model/detect.tflite')
populator.load_metadata_buffer(metadata_buf)
populator.load_associated_files(['/content/gdrive/My Drive/models/research/deploy/labelmap.txt'])
populator.populate()
Finalement, si vous souhaitez créer un fichier json pour afficher le résultat (le fichier de métadonnées), vous pouvez utiliser:
displayer = _metadata.MetadataDisplayer.with_model_file('/content/gdrive/My Drive/models/research/object_detection/exported_model/detect.tflite')
export_json_file = os.path.join('/content/gdrive/My Drive/models/research/object_detection/exported_model',
os.path.splitext('detect.tflite')[0] + ".json")
json_file = displayer.get_metadata_json()
# Optional: write out the metadata as a json file
with open(export_json_file, "w") as f:
f.write(json_file)
PS: Veillez à modifier les quelques parties de code, afin d'être compatible avec vos besoins. (par exemple, si vous utilisez des images de 512x512, vous devez la modifier à partir de la variable "input_meta.description").
Jana Duggar a été ouverte sur sa recherche de l'amour. Voici tout ce qu'elle a dit sur le sujet et sa fenêtre de mariage de cinq ans.
La star d'Outlander, Sam Heughan, a récemment révélé ce qu'il retirera du tournage pour se souvenir de Jamie Fraser, le rôle qui a fait de lui une star.
"She Loves You" a été écrite en une heure, enregistrée en une journée, et a été la chanson des Beatles avec l'une de leurs meilleures performances de leur carrière.
Dolly Parton et sa grand-mère Bessie avaient une relation spéciale. Grand-mère Parton était très malade, mais cela n'a pas empêché Dolly de lui faire des farces.
Vous pensez peut-être que le chêne ou le noyer sont résistants, mais en matière de bois les plus durs au monde, ils sont loin derrière.
L'océan regorge de beauté, mais il abrite aussi certaines des créatures marines les plus terrifiantes de la planète. Nombre de ces animaux vivent dans les profondeurs obscures et sous haute pression des abysses.
Que vous affrontiez des créatures hostiles ou vous prépariez pour des affrontements PvP, connaître les meilleurs enchantements d'épée dans Minecraft peut vous donner un avantage considérable. Enchanter vos épées vous permet d'infliger plus de dégâts, d'augmenter le butin des créatures et d'accroître leur durabilité.
Quand on parle de pays socialistes, on imagine souvent un contrôle total de l'État et l'absence de propriété privée. Mais en réalité, les économies socialistes sont très diverses.
« Enfants » laisse tomber un caméo de grand nom et des nouvelles dévastatrices
Ce RAV4 est déclaré en excellent état et est prêt pour un jeu de chaises musicales.
Des images de drones ont montré des pompiers semblant lutter pour éteindre l'incendie.
Eyes of Wakanda est directement lié au MCU, ainsi que des mises à jour sur X-Men '97, What If..., Daredevil, et plus encore.
Ava Gardner a été mariée à Mickey Rooney et Frank Sintra, et a fréquenté plusieurs autres stars d'Hollywood. Voici un aperçu de l'histoire amoureuse d'Ava Gardner.
John Cleese a épousé sa femme, Jennifer Wade, en 2012. Voici tout ce qu'il faut savoir sur la femme de John Cleese, Jennifer Wade.
Craig Melvin a épousé la présentatrice sportive Lindsay Czarniak en 2011. Voici tout ce qu'il faut savoir sur la femme de Craig Melvin.
Maggie Gyllenhaal et Peter Sarsgaard se sont mariés en 2009 et partagent deux filles ensemble. Voici une chronologie complète de leur relation.
Ça me frappe tout à coup, comme c'est si souvent le cas C'est à nouveau le milieu du chemin <Non, pas celui du Pacifique, toi marron, celui du carnaval> Chaque gros titre fort… ..
En 2022, avec la sortie de GPT-3, la compétence en écriture semble devenir moins importante. Avec l'IA, les personnes ayant une mauvaise écriture peuvent également générer du personnel de qualité.
Dans le monde rapide et compétitif d'aujourd'hui, la carrière d'une personne joue un rôle important dans la croissance personnelle, la stabilité financière et la satisfaction globale de la vie. Cependant, de nombreuses personnes se retrouvent prises dans un cycle incessant de stagnation et d'insatisfaction, dépérissant progressivement dans leur vie professionnelle.
La semaine dernière, j'ai remarqué un communiqué de presse, envoyé via PressGazette (un site Web d'information britannique). L'article annonçait qu'Acast, la société d'hébergement et de publicité de podcasts de Scandi, dirigerait un consortium d'éditeurs "probablement les plus influents" du podcasting.