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ABSTRACT

In this paper we present fast and scalable methods to access
relevant data from music scores stored in an XML based
notation format, with the explicit goal of using scores in
real-time audio processing frameworks. Quick and easy
access is important when accessing or traversing a score,
for instance for real-time playback. Any time complexity
improvement in these contexts is valuable, while memory
constraints are usually less important. We show that with
some well chosen design choices and precomputation of
the necessary data, runtime time complexity of several key
score manipulation operations can be reduced to a level
that allows use in a real-time context.

1. INTRODUCTION

In real-time audio processing software, the use of music
scores is not commonplace. To fill that gap, we started the
construction of a small C++ software library for handling
MusicXML files, specially tailored for use in real-time au-
dio processing software frameworks and streaming appli-
cations. Since a score is for many people a well-known
way to represent music, we consider this important func-
tionality that has been strangely absent in real-time audio
frameworks until now.

Being able to use XML-encoded digital music scores
natively in real-time environments has clear advantages over
the alternatives that are often used now, like MIDI [1] or
the development of an own ASCII-based format. The abil-
ity to use the countless mature software tools that are avail-
able for XML parsing and processing is the main reason to
prefer XML-based formats over others. Nowadays most
score file formats encode very detailed information, and
XML formats can be easily extended or stripped to add or
remove information, without needing to adapt the parser,
which is much more difficult with binary or plain text file
formats. Also most upcoming web developments are cen-
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tered around XML-based standards (the semantic web etc.).
For all of the aforementioned reasons, we will only con-
sider XML-based file formats here.

MusicXML [2, 3] is the most widely used XML-based
file format for scores at the moment, but others exist. MEI
[4, 5] is a mature alternative and provides valuable func-
tionality to encode versioning and history tracking in doc-
uments. The WEDELMUSIC format [6] was developed as
all-round multimedia format in an academic context and
seems not to be under active development anymore, but its
legacy can more recently be found in MPEG SMR [7] and
IEEE P1599/MX [8], that are both striving to include score
information in a broader multimedia context.

We widen the scope of this paper to all of the aforemen-
tioned formats, as they are all XML-based and use similar
hierarchies to encode scores. The principles outlined in
this paper here thus hold for any of these formats. Also the
programming language is of lesser importance: in any ma-
jor object-oriented programming language, the argumenta-
tion for the design decisions will hold.

2. PROBLEM STATEMENT AND
REQUIREMENTS

In real-time audio processing, audio data is processed frame
by frame, the necessary operations need to be performed
within a certain time, and then the results are written to an
output buffer. The frames are usually kept small to min-
imize delays. This leads to very strict time constraints,
as also the operating system’s scheduler will lay claim to
some time for other processes or interrupts.

A music score is layered on several levels (voices, in-
strument parts, chords), but these layers are often very much
interlinked (like voice crossing). This makes it unfeasible
to find an ideal single XML hierarchy to represent a score.
The result is that notes, voices and/or parts that are active
at the same time can be found encoded in very different
places in the file. If you need to access all notes occuring
at a single moment, you may need to access data at tens to
hundreds of different positions in the score file. Processing
time is very limited, and user interactivity or display of the
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score require also quick access to random positions in the
score. This makes it becomes quickly undesirable to do the
necessary data structure traversals in real-time, based only
on the existing XML hierarchy.

XML-based score data formats tend to produce really
large data structures: common uncompressed score files
contain easily up to 250KB of text for a single A4 size page
of piano solo music. When parsed into memory, this results
in a relatively large XML tree. Since we envisioned use in
real-time environments, we want to absolutely minimize
any calculation time that is needed ’on-line’ (during pro-
cessing). There is no time to traverse an entire XML-tree to
find the data that we need to access, as is commonplace in
the visitor design pattern [9] as used in libmusicxml [10].

Because data that is ’scheduled’ to occur at the same
time, can be heavily dispersed throughout the file, a SAX-
based approach to XML-parsing becomes difficult, and a
DOM model is easier to handle. This made us decide to
write our own data structure for the score, firmly based on
the existing hierarchy of the format but with a few extra
additions in functionality and precalculation of data. In the
following sections of this paper, we will elaborate on the
additions that we had to make to keep run-time calcula-
tion load as low as possible. To be able to parse XML files
encoded in UTF-16, routines provided by the Unicode con-
sortium can be used for the conversion of UTF-16 to UTF-
8 data [11].

We set out to write a software library that could be used
from real-time audio plug-in frameworks, as there are VST
[12], AudioUnits [13] or RTAS [14]. In the end, we want to
be able to use and manipulate a music score in a sequencer
the same way we can use and manipulate an audio track.
We need:

e quick access to all data.

e an easy method for timewise browsing through a score.

e casy extendability.

e cross-platform operation, documentation, testing ...

On top of that, in practice we need to adhere to sev-
eral guidelines for real-time programming, amongst which
some important ones are [15] :

e not allocating or deallocating memory

e avoiding denormalized floating point numbers

3. IT’S ABOUT TIME
3.1 Timestamping

Music scores are generally structured as follows: scores
contain multiple parts or instruments, each of which con-
sists of a series of measures that contain the notes. A score
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or a part can be subdivided into several sections, or within
a measure, multiple voices may be separately encoded. We
leave intermediate levels like these out here for clarity.
Coda, segno and other repeat signs influence at what ab-
solute time certain notes need to be played. This makes
that music scores are rarely written to file in a way that is
linear in time. The standard MIDI file format (SMF) comes
close, but was never meant to be used for score encoding.

MusicXML stores timing information different than other
formats: it only stores the note order and note length, and
not the absolute position in the score at which the note
occurs. This system was derived from the MuseData for-
mat [16]. In a real-time environment, we need absolute
timestamps in order to know at any given time where we
are in the score. These timestamps thus need to be cal-
culated if they are not present. The quarter note as a unit
of absolute time is the most convenient choice. This is
portable across scores, whichever time signature they have,
and across recordings, whichever tempo they are played in.

In MusicXML, in order to know at what absolute time
in the score a specific note occurs, one needs to add up the
length of all previous measures, and the previous notes in
the same measure. This is a too intensive computation in
real-time, therefore we need to precompute any absolute
time values that we need in our application. The easiest
way to do this is to keep track of a global absolute time
value during parsing, and store a timestamp in every ele-
ment that we encounter.

Having timestamps in the data structure has the follow-
ing effect on run-time operations, with n the number of
elements that need to have such a timestamp:

e worst-case time complexity to compute absolute time
values in real-time decreases from O(n) to O(1),

e when a change occurs in the score, these values need
to be updated throughout the score, introducing a
penalty of O(n).

These figures assume that the notes in a measure are
already sorted based on time, and that the timestamp of
previous elements can be used to update the timestamp of
later ones. Sorting on time is easy to accomplish by cre-
ating or overloading a comparison operator and running
a generic sorting algorithm after parsing. In general, all
time-modifying elements in the file format need to be pro-
cessed during parsing to calculate timestamps for all notes.
We found it handy to also store the time at which a certain
timed element ends.

We need to add here that the increased complexity when
changes occur to the score (measures or notes added, deleted
or moved), rarely outweighs the benefits of having a times-
tamp on all elements for the applications that we envision.
Fast access to useful data is the most important for us, and
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in real-time applications, especially when user interactiv-
ity is in play, score access operations tend to occur thou-
sands of times more often than score manipulation opera-
tions. If large-scale content manipulation of scores needs
to be done very often, tools like XQuery are more fit for
the job [17, 18].

3.2 Some notes on tempo and repetitions

In order to be able to accomodate easily for tempo changes

or other elements that affect playback (rallentando, accelerando

etc.), we tilted this performance timing information out of
the score, and transferred it to a separate datastructure. An
elegant solution is the use of a warping function, map-
ping playback time (in seconds) to score time (in quarter
notes). The first derivative of this function is the equiva-
lent of the local tempo at a certain time. Smooth increases
or decreases in tempo can be modeled using splines. Cu-
bic Hermite splines are a good choice since those can be
calculated based only on two points and the tempo at these
points. When constraints are applied to keep the function
strict monotonously increasing, an inverse of that function
exists which could eventually be used to encode informa-
tion about performance, like lyricism.

Also affecting playback are structural elements, as there
are repeat, coda, segno, ... Since these are usually limited
in number and smooth transitions are not applicable here,
this data can be stored easiest in a simple table, storing the
timestamp values of all sections. When repeats should be
skipped, one can just adapt this table, eliminating the need
to do processing on the entire score data structure.

Going from playback time to score time ( illustrated in
fig. 1) then comes down to deciding with what time in
quarter notes this corresponds, through the previously de-
fined warping function. If sections are repeated or skipped,
offsets to this time need to be added or subtracted, accord-
ing to the information in the structure table. That way,
we come to a corresponding timestamp value in the score
structure itself, which can be used to access the necessary
data.

Note that in this way, changes in tempo or performance
information do not require updating the calculated times-
tamps in the score, which would be a rather costly oper-
ation as mentioned previously. As long as the score data
itself remains unchanged, data related to performance and
overall structure (repeats etc.) are kept outside the score
itself and are quickly and easily accessible and modifiable.
This is useful in applications needing some form of audio-
to-score alignment [19].

4. STRUCTURE AND DESIGN
4.1 Indexing collections

A score contains a number of parts, a part contains a num-
ber of measures, a measure contains a number of notes: it
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Figure 1. Flowchart: from real time to score timestamps

is clear that collections are an important feature in scores.
These collections often need to be accessible in multiple
ways. For fast direct access, a vector-like construction
is ideal: accessing an element is then done in constant
time. But a standard XML parser will store elements in
a tree structure. In this tree, notes can be interleaved with
other data (like harmony indications, certain dynamics el-
ements), and are not necessarily ordered on timestamp.

To gain fast access to the most important data, we im-
plement indices in the data structure, sorted on the criteria
we wish to use for retrieval. We obtain fast access to notes
by, during parsing, storing them in a map keyed on the
timestamp that it has been given. When we need to search
for a certain note occurring at a certain time, we can easily
retrieve it (a map generally uses a binary search), and it-
erating over all notes in order can still be done in constant
time using the best fit iterators.

Using sorted indexes to access certain structures intro-
duces:

e searching for a certain element can be done in O(log(n))
instead of O(n).

e accessing a specific element takes O(log(n)) for maps
and O(1) for arrays.

e when a change occurs, the indexes might need to be
updated. The cost depends on the operation being
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performed and the data structure used for the index.
Insertion or deletion on a map takes only O(log(n)),
but if resorting an array is needed, the penalty is O(n
log(n)).

Implementing collections with these properties can be
done by designing proper templates for them - [20] is an
excellent resource on this. Templates are specifically meant
to define operations and algorithms independent of type,
and can thus be used for any type of element, while still
making specializations based on type possible. Operator
overloading is a useful programming trick to add additional
accessing functionality.

4.2 Cursors and Listeners

For browsing through a score, an iterator system is most
elegant. Most programmers are very familiar with this
kind of interface. Preferably, a score iterator for real-time
use corresponds to a position marker on a sequencer track,
we’ll therefore call them cursors. The cursor needs ac-
cess to the tempo and structure information from the score.
Multiple cursors on a single score are an asset, but to avoid
discrepancies when multiple cursors are used, only one
structure table and tempo function should exist for each
score. The cursor’s internal logic is then responsible for
translating the time information from the sequencer to the
relevant position in the score.

To keep track of the position in the score, a cursor keeps
track of:

e its current position in quarter notes (timestamp)

e for each part, the current measure (this allows for
multimetric music)

o for that measure, the next note that needs to be played.

In real-time software, a cursor is moved forward or back-
ward by very small increments. Using the adapted internal
score structure, moving the cursor forward comes down to:

e calculate the target timestamp of the cursor.

e for each part in the score, repeat the following un-
til the next note’s timestamp is scheduled after the
target timestamp:

— if the next note’s timestamp is before the target
timestamp, go to the next note

— if there are no more notes in the current mea-
sure, go to the next measure

This could be even more simplified improved upon by
collecting all notes of a score together and abstracting away
the different measures and parts. But in practice, we found
that we often needed to know at a certain moment which
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Figure 2. Simplified component diagram of the overall
design

measure that a currently played note was in, and to what
part it belonged. We consider it easier to keep track of this
information in the cursor and request it from there, then to
ignore it there but later have to obtain it through the score
anyway. The number of measure crossings and the number
of parts is also usually limited compared to the number of
notes.

As mentioned earlier, intermediate levels in the score
hierarchy, like voices or sections, can exist. Each sup-
plementary level may add a nested loop to the aforemen-
tioned cursor moving algorithm, so it is beneficial to keep
the number of different levels low. The trade-off between
removing intermediate levels, keeping the original struc-
ture and accessing its information, and performance ben-
efits or losses in different scenario’s is difficult to make,
and in the end the performance is highly dependent on the
scores used: if a large amount of nested loops is kept, a
single voice melody score will likely still be iterated over
very fast, while traversing an orchestral score will go much
slower. On the other hand, by eliminating too many loops
we risk to need to introduce a large amount of intermedi-
ate variables in the cursor to keep track of all the necessary
information, and updating and testing against these also
takes time.

A cursor interface can be easily combined with the im-
plementation of an observer pattern [9]. That way, when
the cursor passes a note, it can notify another part of the
software and trigger an event. In the observer pattern, one
or more listeners can be attached to a cursor. The cursor
then only needs to notify all of its listeners that an event
was encountered. This system can be further generalized
to enable notifications to be triggered at whatever element
that is encountered in a score, and have them pass data for
the listeners.

A simplified component diagram of the overall design
of the score handling library is shown in fig. 2 .
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5. IMPLEMENTATION

The library that we developed is part of a larger project,
implemented as VST plugin [12]. It is meant to serve as
prototyping platform for applications that use both audio
and scores in real-time hosts. A screenshot is shown in fig.
3.

As a practical example, if we want simple playback, a
cursor is put on the score at the beginning of the score,
and incremented in small steps corresponding to the length
of the audio data in the processing function of the plugin.
When notes are encountered, an event is sent to a spe-
cific listener, that will take the note and some other nec-
essary information to generate MIDI events out of it. The
start events are sent back to the host, while the stop events
are stored in a scheduler to be used when they are neces-
sary. If another event should happen when a note, measure,
crescendo, or whatever element in the score is encountered,
a developer would only need to write his/her own listener,
connect it to the cursor, and configure the cursor in such a
way that it reacts to the element needed.

To display the score, we use exactly the same setup,
only now the cursor is not moved over a timeline, but over
a frame on the screen. A cursor is set on the position cor-
responding with the left viewport boundary as defined by
the GUI’s zoom data, scroll data (scrollbars) and window
plane. When the screen is redrawn, the cursor is moved
to the right viewport boundary. A listener is notified at
each note that is encountered, which draws the note onto
the window when necessary. There can be several thou-
sands of these events triggered to draw a single score when
zoomed out. Nevertheless we experienced that zooming
and scrolling go fluently using this design, even if they
force several redraws of the screen each second, each time
generating a large flow of events.

While fig. 3 only shows a piano roll representation of
the notes in the score, the cursor system combined with
an implementation of the observer pattern, allows to create
other visualizations as well. We might add dynamics in-
formation, incorporate or leave out information about the
tempo, or leave the notes out and only show rests - the
list goes on, and any custom visualization can be created
based on the same system that is used for MIDI playback
or setting parameters in a plugin. In our work we haven’t
gone that far though, and we will focus in the near future
on the development of real-time plugins using scores for
e.g. audio-to-score matching, rather than on visualization.

6. CONCLUSION

The use of music scores is not yet commonplace in many
real-time applications - usually a MIDI representation is
used as substitute. In this paper we have presented our ef-
forts to create a library to enable the use of music scores
file formats natively in such environments. We have sin-
gled out the design desicions that were taken in order to
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Figure 3. GUI of a prototype application, showing a basic
piano roll representation of Joplin’s Elite Syncopations.

come to a performant library. These considerations are ap-
plicable over the boundaries of file formats and computer
languages.

In the applications that we envision, the benefits of fast
information retrieval from the score and score browsing
outweigh the slightly increased complexity on rarely used
operations and the precomputation needed. The design
considerations presented herein ensure that the computa-
tional load during processing is kept to a minimum.
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