
InformaƟ on Systems & Grid Technologies

Ninth InternaƟ onal Conference ISGT’2015

Sofi a, Bulgaria, May, 29 – 30., 2015.

ISGT’2015 Conference Commi ees

 Chair

 Prof Vladimir DIMITROV

 Program Commi ee

• Míchéal Mac an AIRCHINNIGH, Trinity College, University of Dublin

• Pavel AZALOV, Pennsylvania State University

• Irena BOJANOVA, University of Maryland University College

• Marco DE MARCO, Catholic University of Milan

• Milena DOBREVA, University of Malta

• Vladimir GETOV, University of Westminster

• Seifedine KADRY, American University of the Middle East, Kuwait

• Kalinka KALOYANOVA, University of Sofi a “St Cl Ochridsky”

• Angelika KOKKINAKI, University of Nicosia

• Violeta MANEVSKA, University of Bitola “St Cl Ochridsky”

• Maria NISHEVA, University of Sofi a “St Cl Ochridsky”

• Dov TE’ENI, Tel-Aviv University

• Stanislaw WRYCZA, University of Gdansk

• Fani ZLATAROVA, Elizabethtown College

 Organizing Commi ee

• Vasil GEORGIEV

• Maria KOLEVA

St. Kliment Ohridski University Press

Vladimir Dimitrov, Vasil Georgiev (Editors)

InformaƟ on Systems &
Grid Technologies
Ninth InternaƟ onal Conference ISGT’2015

Sofi a, Bulgaria, May, 29 – 30., 2015.

Proceedings

organized by

Faculty on MathemaƟ cs and InformaƟ cs.
University of Sofi a St. Kliment Ohridski

Bulgarian Chapter of the
AssociaƟ on for InformaƟ on Systems (BulAIS)

© 2015 Vladimir Dimitrov, Vasil Georgiev (Eds.)
 ISSN 1314-4855
 St. Kliment Ohridski University Press

Preface

This conference was being held for the ninth Ɵ me in the end of May, 2015 in the
Rector’s meeƟ ng hall of the University of Sofi a “St. Kliment Ohridski, Bulgaria. It
is supported by the Science Fund of the University of Sofi a “St. Kliment Ohridski”
and by the Bulgarian Chapter of the AssociaƟ on for InformaƟ on Systems (BulAIS).

Total number of papers submiƩ ed for parƟ cipaƟ on in ISGT’2015 was 21. They
undergo the due selecƟ on by at least two members of the Program CommiƩ ee.
This book comprises 18 papers of 17 Bulgarian and 9 foreign authors. The
conference papers are available also on the ISGT web page hƩ p://isgt.fmi.uni-
sofi a.bg/ (under «Former ISGTs» tab).

Responsibility for the accuracy of all statements in each peer-reviewed paper
rests solely with the author(s). Permission is granted to photocopy or refer to
any part of this book for personal or academic use providing credit is given to the
conference and to the authors.

The editors

5

T C

Web applicaƟ on as a tool for enhancing clientelism in the public sector
Snezana Savoska, Branko Dimeski, Dragana Anceva ... 7

Ontologies in BioinformaƟ cs: Main Features and ApplicaƟ ons
Maria Nisheva-Pavlova, Pavel Pavlov ..20

Quantum Bits
Mícheál Mac an Airchinnigh ... 31

Usage and Analysis of Game Development Tools for
Android Mobile OperaƟ ng System
Saule Sarsimbayeva, Bereket Kamash ..40

The Development of “MulƟ -Field Search” Forms to look into the
Library System of ScienƟ fi c OrganizaƟ on
Kalina Ilieva, Svetlana Vasileva ...44

Performance Study of SQL and Graph SoluƟ ons for AnalyƟ cal Loads
Emanuela Mitreva, Hristo Kyurkchiev ...52

A Framework for RUP and PMI ArƟ facts
Kalinka Kaloyanova, Elitza Koleva ... 63

Possible improvements in the Big Data management with
InnoDB Memcached integraƟ on
Svetoslav Savov, Dimitar Vassilev ... 73

PhyloEdit: a web-based GUI for visualizaƟ on and analysis of evoluƟ onary trees
Zhenya Duylgerova, Irena Avdjieva, Deyan Peychev, Dimitar Vassilev 82

CWE-119 in Z-NotaƟ on
Vladimir Dimitrov ..90

The Need to Formalize the SoŌ ware Bugs
Vladimir Dimitrov ...95

SemanƟ c Templates and SoŌ ware Fault PaƩ erns – an Overview
Vladimir Dimitrov ...100

6

PersonalisaƟ on of learning environment for delivery of electronic services
and electronic content
Daniela Orozova, Magdalina Todorova ..108

Traffi c PrioriƟ zaƟ on System Based on Embedded Components
Ioannis PaƟ as, Vasil Georgiev .. 116

TransformaƟ on and modernizaƟ on of PRINTS database
Anatoliy Dimitrov, Teresa AƩ wood, Ognyan Kulev,
Dimitar Vassilev ...124

SoŌ ware protecƟ on integraƟ ng registraƟ on number
and anƟ -debugging protecƟ ons
Magdalina Todorova, Daniela Orozova ..138

Embedded Architecture of Tolls CollecƟ on System
Ioannis PaƟ as, Vasil Georgiev ...152

AutomaƟ on Process By Means Of Profi cy Machine EdiƟ on
Zh. Sartabanova, R Karassayev ...160

A I ... 164

7

Web Application as a Tool for Enhancing Clientelism
in the Public Sector

Snezana Savoska1, Branko Dimeski2, Dragana Anceva1

1Faculty of information and communication technology, Bitolska bb,
University „St.Kliment Ohridski“ – Bitola,7000Bitola,

2Faculty of Law, Kicevo,University „St.Kliment Ohridski“ – Bitola, 7000 Bitola,
R.of Macedonia,

savoskasnezana@gmail.com, branko_dim@yahoo.com, dragana_anceva@hotmail.com

Abstract. In recent years, the whole activities of people and businesses are on the
Internet and can be done from anywhere and timely by using web applications.
For web applications development, many tools and open source platforms can be
used, such as: LAMP helped by WordPress, Joomla, Drupal, XOOPS, and Alfresco
etc. However, it should be mentioned that Microsoft VisualStudio.NET is also an
excellent solution for web applications development. The paper will present an
integration of three specifi c areas: public relations, clientelism as administrative
modernization and undertaken activities for the needs of the local community and
programming of Web application. Their symbiosis will produce socially useful
tool that will be designed to improve the public sector by applying the relations
clientelism, service by issuing preferential tickets to students and raising customer
satisfaction. The design of web application with VisualStudio.NET will help in
solving the above mentioned issues in the public sector.

Keywords: Web applications, Public services, Clientelism, ASP.NET, ADO.NET,
IIS, Public Transport Enterprise.

1. Introduction

The “citizen-center oriented” concept infl uenced public administration
institutions in improving the operations of the public sector. The relationships
between institutions and citizens sometimes are not regulated by obligatory
relations, but rather, they are regulated with contracts for reciprocal exchange
of goods and services based on moral obligations, known as clientelism or
“democratic patronage” which supports administrative modernization projects
that mostly address the needs of local governments. In this paper the term is used
to show the improvement of the process of issuing high school tickets (HST) by
the Public Transport Enterprise (PTE) using the electronic connection between
the institution and the public schools which have to input record for the students
who should receive high school tickets.

There isn’t effi cient way to improve the effi ciency, effectiveness and control

8

of the processes than introduction of information technologies (IT) and systems
in the operating of companies and institutions. Web applications that appear
every day on the web spaces perform a myriad of tasks in order to increase the
availability of services from companies via institutions to citizens.

With a well-designed Web application some improvement of performances in
the public sector can be achieved as well as customer relationships enhancement
and better processes in the overall society integration. Analysis of the needs
and requirements of users for the service are made for the process of issuing
tickets (HST) by the PTE. In addition, in order to improve the effi ciency and
effectiveness of employees in the PTE Skopje in issuing HST, a web application
is developed. Web application is available via Internet and allows monitoring of
the work through the company network or from any location that has Internet
access.

Web application can allow PTE employees to increase their effi ciency in part,
with obtaining data for high school students. By using such data, the employees
of PTE will be able to create and issue HST tickets. The use of the application
will allow facilitating of employees’ work and will signifi cantly shorten the time
needed for fi nishing the job and will reduce the documents required from students
in the process of purchasing tickets. In doing that, schools staff should input data
for HST, which is not obligatory commitment, but socially useful.

 In creating of web application ASP.NET tool and other parts of MS
VisualStudio.NET (C# and ADO.NET) are used. The paper describes how
the Web application is created, the need for creating this application, and the
analysis and design of the proposed solution based on information needs of
the application users. Joint operation of different platforms is imperative in
distributed applications. It was therefore necessary to ensure standardization
in data exchange. So .NET platform is built on XML technology standards and
SOAP (Simple Object Access Protocol). Also, work with this kind of application
implies the existence of the .NET Framework that contains CLR (Common
Language Runtime) and collections of classes in this environment. These
features provide creating distributed applications whose units can operate with
independent platforms, even written in different programming languages. All
languages covered by the new package of Microsoft Visual Studio.NET have
support for .NET classes [8].

2. The concept of “clientelism”

The concept of “clientelism” is defi ned as a relationship between individuals
with unequal economic and social status (“boss” and his “customers”), which
involves a reciprocal exchange of goods and services on a personal basis
that is generally regarded as a moral obligation [11, 12]. Defi ned in this way,

9

clientelism means moral obligation “stronger” to help “weaker” on a moral
basis. It is also known as “democratic patronage” or way of supporting
administrative modernization projects, which primarily address the needs of local
governments. However, the expansion of interventions from various states and
local governments generate new opportunities for politicians to be able to control
public resources and thereby mobilize electoral support. Social policies, urban
renewal and economic development subsidies could be used to strengthen these
“political machines”. Some political scientists have gone so far that have started
using the term “clientelistic” and ranked the state as a political system in which the
dominant party takes the bureaucracy, collective goods and their distribution. Yet,
so far, clientelistic’ practices despite generally “moral obligation or democratic
auspices which supports administrative modernization projects that primarily
address the needs of local governments” can be viewed either as a relic of the
past and tradition, as a sign of improper functioning of democracy, anomaly of
political systems caused by the lack of civic culture or “capture” of institutions
by politicians interested only to preserve their power [13]. Thus, the clientelism,
despite the democratic modernization and support of the central authorities to
local communities, is perceived as a political “pathology” that blocks democracy
and wastes public goods.

Web application designed for PTE is a powerful tool for communicating with
existing and potential customers. Through its proper functioning, employees and
customers are constantly in contact by mutual fl ow of useful information.

3. Public sector problems in operating with clients and possible IT
solutions

Part of the research is focused on the fact how web applications contribute
in solving problems in the public sector. With empirical research and interviews
with the users, it was noticed a lack of web applications to enhance public
sector performance. The emphasis is placed on customer relations and how the
implementation of Web application affects clientelism and improves the quality
of public services through achieving greater effi ciency and effectiveness in the
public sector by using ICT. A concrete example on how to overcome the problems
relates to the problem of lack of data for students in the City of Skopje who are
users of public transport and to enable easier and more effective, more accurate
and faster way in getting tickets for students by using web application.

By using Web application, faster information that is needed for issuing HST
for students by the PTE is enabled. The idea of creating this application arose
from the need of facilitating the process of obtaining information for high school
students, easing employees in PTE work and obtaining data for students from
their schools faster manner. Data on students should be input in the database

10

by the persons in charge of high schools, thereby reducing the time needed to
obtain that information. In fact - getting “zero” delay data and avoiding additional
procedures for issuing certifi cates to students by schools, avoiding misuse
and other anomalies are just some of the benefi ts arising from the use of web
application. Through the usage of application, employees from schools that have
user-code and password can input and update data in order to create openwork
database that can issue HST for students by the debtor in PTE.

4. Platform and software in the problem’s context

Almost every application relies on a wide range of software as operating
systems, database management software and sometimes public cloud software.
Regarding the fact in which part works, this software apply application platform
which play fundamental role in modern computing environments [8]. Applications
and data which are used to provide all values that IT brings depend on application
platform. Modern application platforms are not simply. Figure 1 shows layered
software structure, which gives a general picture of modern application platform.
The components of the software support which are used in the web application
for HST creating are also explained.

Figure 1 – Modern web application platform [8]

As shown in the Fig. 1, the modern application platform is broad and
supports all types of applications. This includes individual customers, distributed
applications and applications using cloud services. .NET Platform includes
a large library of classes Framework Class Library (FCL) and provides inter-
operability. Programs written for the .NET platform are executed in a software
environment, the Common Language Runtime (CLR), and application virtual
machine that provide services such as security and memory management. FCL
and the CLR together are the part of the .NET platform. FCL is standard library

11

and a collection of classes, interfaces and value types that provide the user
interface, data access, connection to the database, cryptography, web application
development, numerical algorithms, and network communications.

CLR is a virtual machine on the Microsoft .NET platform and manages the
execution of .NET programs. The process is known as just-in-time compilation
and converts the translated code into machine instructions. CLR provides
additional services including memory management, security type, dealing
with exceptions, garbage collection and security and management of threads.
All programs written for .NET, independent of the programming language are
performed by the CLR [8].

The purpose of the Common Language Infrastructure (CLI) is to provide a
neutral platform for application development and execution, including functions
for managing exceptions, garbage collection, security and inter-operability. By
implementing the main aspects of .NET within the CLI, this functionality will
not be tied to one language but will be available in many languages supported
by the platform. .NET framework includes many standard class libraries
that are organized in a hierarchy of namespaces. Most embedded application
programming interfaces are part of the System.* or Microsoft.* Namespaces.
These class libraries implement many common functions such as reading and
writing fi les, interaction database and XML document manipulation. .NET Class
library is divided into two parts: FCL and BCL (Base Class Library).

FCL includes a small subset of the entire class library and is the core set
of classes that serve as the basic application programming interfaces and CLR.
BCL is a superset of FCL and refers to the entire class library that is sent with
.NET. It includes an expanded set of libraries, including Windows Forms, ADO.
NET, ASP.NET, language integrated query, Windows Presentation Foundation,
Windows Communication Foundation, etc. BCL is much larger in scope than
standard libraries for languages and is comparable in size to the standard Java
libraries.

12

Figure 2. .NET platform and usage of CLI [8]

Mainly, the program support is divided into system support and customer
support program. System support is a set of programs which is ready to accept
and implement customized programs. Customer support program consists of
programs that are used to solve a specifi c task prepared by the computer system.
The program consists of a set of commands and data used to solve a specifi c task.

4.1. IIS (Internet Information Services)

Internet Information Service is a set of Internet based services created by
Microsoft for the Windows platform. It is the second popular web server then
Apache Http Server. The services that supports are FTP, FTPS, SMTP, NNTP,
and HTTP/ HTTPS. IIS is a secure and scalable web server that provides easy
handling platform for developing and hosting Web applications and services. IIS
includes tools for creating reliable communications platform of dynamic network
applications for various environments, small and large companies. It is a robust
platform for the development, implementation and management of new Web sites
and applications. In addition, IIS can run as an application server [10].

13

4.2. ASP.NET

ASP.NET is a part of the integrated .NET Framework, designed to provide
services to create dynamic web applications and web services. Built on the CLR
(Common Language Runtime) the .NET framework includes benefi ts such as:
multi language support, inter-operability, security type, garbage collection and
inheritance [1, 3]. ASP.NET works with Internet Information Server (IIS) to
provide content in response to customer requests. In processing applications, ASP.
NET provides access to all .NET classes, adjustable components and databases.

Web forms are the basis of the development of application in ASP.NET. They
provide fl exibility by allowing controls to be used as objects. These controls can
manage events. Except for Web forms, ASP.NET is used when creating XML
Web services that allow the construction of modular, distributed Web applications
written in any language. These services are inter-operable across different
platforms and devices. ASP.NET handles management conditions, by sending
information to the controls in the web form to the server, ensuring execution
of applications, regardless of the different versions of the .NET framework. We
use XML support for data storage, manipulation and confi guration. However,
when it comes to security applications, ASP.NET uses the security code to
access role-based security features of the .NET Framework and IIS methods for
authentication of user authority. ASP.NET provides two different types of server
controls - HTML server controls and Web server controls. Each type of control
is different, but the focus is increasingly placed on the web server controls.
HTML server controls map to specifi c HTML elements. Some developers want
to separate some of the other controls and store them in their categories [4, 2]:

4.3. ADO.NET

ADO.NET is a technology family that enables .NET developers to interact
with data with standard, structured and primarily disconnected ways. ADO.
NET, expressed through the System.Data namespace, implements a small set of
libraries consuming and manipulating large amounts of simple and clear data.
ADO.NET manages both types of data i.e. internal data - created in memory
and used within the application and external data - stored in the storage section,
usually relational database or a text fi le. ADO.NET generalizes relevant data and
submits them to the code table - columns and rows. When communicating with
external databases, ADO.NET represents unbound (disconnected) data. ADO.
NET is a set of classes that come with Microsoft.Net platform to facilitate access
to data. The power of ADO.NET initially allows the application to access the
various data types by using the same methodology. Second, ADO.NET provides
two models to access the data: linked model where you can keep the connection
to the database and to perform data access, and the other way is to provide all data

14

in ADO.NET objects that will enable to perform data access to the unconnected
structures [5].

Platforms based on data without a specifi c provider use more generic ODBC
and OLE DB providers, involved in ADO.NET. All communication with the
external data source is via the object Connection. ADO.NET supports connection
pooling to maximize effi ciency between queries. DataAdapter object provides
standard defi nitions of queries to communicate with the database. DataReader
object provides fast, read-only access to the results of queries for a number of
times when you just need to take quick data.

5. Case study - public sector improvements by using web
applications

The case study that is used in this paper includes PTE needs analysis, solution
design and development of web application connected to the database. Web
application is made in the C# and ASP.NET programming language. The database
in which data is stored is MS SQL Server. This program platform provides several
impressive benefi ts [6] as an integrated error checking, web forms designer,
an integrated web server, productivity enhancements programmer, granular
debugging, and the ability to fully expand with macros to change the templates of
the project, even adding their own enhancements in Visual studio.

Database is an essential part of the whole web applications where data are
daily entered, read, updated and deleted and they are necessary for the operating
of web application. From web programming aspect, their major advantage relates
to the facilitation of how to work with them. Thus, MS SQL Server is used which
is based on relational algebra that is easy to learn, it has a simple grammar and
simple syntax [7] with standard SQL commands. When using the base, in this
case MS SQL Server, it is about developing a dynamic web application.

When creating a database, it remains to organize data and to determine
objectives: elimination of redundancy, fast search and database consistency.
Therefore, key activities are: application modeling, defi ning the entities and
relationships needed for the application, organizing data into tables, establishing
a connection between tables, determining the requirements for indexing and data
evaluation as well as preparation and preservation of all necessary requirements
related with application. Figure 3 shows the layout of the database application for
the issuance of tickets to high school. It is composed of several tables (entities):
High school tickets, Logging, Municipality and School. Database “HST” contains
data for students who need tickets and login users that log into the system.

5.1. Designing and creating application software i.e. web application

C#.NET is used for creating of web application. It is simple, multi-purpose

15

programming language with object - oriented syntax. In the application fi ve forms
were created. Created forms allow users to see, change or add data. It allows
functions Insert, Delete, Update and read only. Suitable design forms allow users
to gain easy access to information and enable user interaction by placing objects
on screens.

Figure 3 below shows the structure of application’s code that consists
of several forms. Specifi c Solution Explorer window is shown that allows
management of every part of application [9]. He shows all parts of the code of the
Web application. Five forms are created: registration form, login form, and form
by choosing whether to input a new student or consider the other option, the form
for entering data and a new student selection in class or year. See below Fig. 3a
and Fig. 3b.

Figure 3a – Overview of Database structure created in MS SQL Server,
3b - The application code structure

Figure 4a below shows the web application entry screen in which are set
input forms for entering the user’s username and password. Two buttons are
inserted: “Login” and “Register”. By the button “Login” label that informs the
user whether they typed the correct data when logging is set.

16

Figure 4a – Preview of the web application log screen

Only the employees of the high schools have access to the application once
their accounts are verifi ed by PTE and only they can register. Once the user will
receive login information, it can access the application where the screen appears
with the selection button for entering new student and preview button for already
entered student. Additional search buttons were created on the screen (Se below
Figure 4b).

Figure 4b – Preview of screen for input data for a new student

Preview of student intake or review of year or class is also created for the
needs of one of the schools (See below Figure 5a and 5b).

Figure 5a – Students Report per class Figure 5b – Students reports per year

17

Empirical methods, including interview were used to analyze the users’
information needs. In this survey done with the employees of the PTE, interviews
were made in order to determine the needs before and after implementation as
well as the benefi ts of web application. To this end, part of the employees in the
PTE and managers were interviewed and asked questions about effect of time of
getting information when they don’t have application, and expected time results
from the implementation of the application, the number of employees engaged in
the process and their expectations in reducing the number of involved employees,
as well as the effects on the community expectations. From the answers it can
be concluded that they must provide precise data, the expectation from web
application are that the number of engaged employees have to decrease (from 6 to
2), the whole process has to be faster and the needed time for obtaining data have
to be shortened from several weeks to two or three days. The printing of HST will
run through a computer which further reduces the time of issuance of the forms
of identity cards. Through the answers of the questions in these interviews, it can
be asserted that the contributions of this web application for PTE and students
for high schools are really great. In this case, do not only facilitate the operations
in PTE but it facilitated the work of the school staff and shortening the time
of issuing of HST tickets for students. Instead of wasting paper and time for
issuing students ‘certifi cates, the data are entered into the application which saves
time but also saves paper, and besides the fi nancial benefi t it also contributes in
promoting of a green society.

6. Conclusions

It is a fact that Internet and IT has changed the traditional life-style. There
is increase use of various forms of electronic business between companies,
government institutions and customers. In the public sector the introduction of
ICT is associated with the emergence of the concept of e-government where
ICT are not just a tool but rather a basis for reforming the functioning of the
public management and public services in order to improve the effi ciency and
effectiveness of public sector operations. The introduction of ICT is used to
improve and facilitate the administrative procedures related to different relations
of the public sector management and citizens as customers and interconnection of
public sector institutions known as relation G2G (government-to-government).
This conclusion is logical if we take into consideration all the benefi ts associated
with this way of working in which each public employee, associate or service
customer, wherever they are located, can complete their work quickly, effi ciently
and economically using a web application.

Establishing relationships with customers and users for every company and
institution certainly represents the most important element in private and business

18

lives, but also in the “life” of PTE. When it comes to business relations between
the local company, customers and other enterprises, and in terms of building
long-term relationships based on mutual interest and moral obligation, we talk
about customer oriented government / public administration [11]. Creating
support for such kind of relationships through a web application by creating
satisfaction and loyalty, we want to make a symbiosis between technology, public
sector enterprises and clients. From the interviews made with customers is very
important to determine if only companies understand the establishment of these
relations or they are under-assessed from the clients.

With a web application developed according to customer needs for PTE can
be achieved overall improvement of the public sector management performances,
customer relationships and greater integration of all society processes. During
the creation of the application, VisualStudio.NET platform is used and it enables
integrated .NET Framework that is designed to provide services to create dynamic
web applications and web services. Applications and data are used to provide all
values that information technology brings depend on application platform. Because
almost every public organization today tends on work by web applications, there
is a clear relation between public business values and web application platforms.
Web application as easy, fast and simple way, allows completing the obligation
for which it was designed. By using it, we save resources, improve customer
satisfaction and therefore, can be a much powerful and valuable tool in the hands
of public sector managers.

References

1. Matthew MacDonald, Beginning ASP.NET 4.5 in C#, Apress, 2012
2. Sandeep Chanda, Damien Foggon . Beginning ASP.NET 4.5 Databases, 3rd Edition, Apress,

2013
3. Jason N. Gaylord, Christian Wenz, Pranav Rastogi, Todd Miranda, Scott Hanselman (2013).

Professional ASP.NET 4.5 in C# and VB, Wiley, 2013
4. Morgan Skinner (2010). C#4, ASP.NET 4, and WPF, with Visual Studio 2010 Jump Start,

Wiley, 2010
5. Tim Patrick, Microsoft ADO.NET 4 Step by Step, O’Reilly Media Inc.,2010
6. Sur A., Visual Studio 2012 and .NET 4.5 Expert Development Cookbook, Packt Publishing

Ltd., 2013
7. Alex Kriegel, Discovering SQL, A Hands-On Guide for Beginners, Wiley, 2011
8. Thuan Thai, Hoang Q.Lam, .NET Framework Essentials, O’Reilly Media, 2003
9. Andrew Troelsen, Pro C# with .NET 3.0, Apress, 2007

19

10. Kenneth Schaefer, Jeff Cochran, Scott Forsyth, Rob Baugh, Mike Everest, Dennis Glendenning,
Professional IIS 7.0, Wiley,2008

11. http://en.wikipedia.org/wiki/Clientelism, 02.05.2015
12. http://www.britannica.com/EBchecked/topic/1916881/clientelism, 05.06.2015
13. Robinson J., Verdier T., The political economy to clientelism, Scand. J.of Economics, 115(2),

260-291, 2013

20

Ontologies in Bioinformatics:
Main Features and Applications

Maria Nisheva-Pavlova, Pavel Pavlov

Faculty of Mathematics and Informatics, Sofi a University St. Kliment Ohridski
5 James Bourchier blvd., 1164 Sofi a, Bulgaria

{marian, pavlovp}@fmi.uni-sofi a.bg

Abstract. The paper discusses the main features of some of the most popular
ontologies for bioinformatics: the variety of their concepts, types of relations and
logical characteristics. Multiform real and potential applications of ontologies in
bioinformatics research are analyzed. The presentation is focused on the usability of
proper types of ontologies as models and formalisms for knowledge representation,
knowledge sharing, information integration, and knowledge discovery in
Bioinformatics.

Keywords: bioinformatics, ontology, knowledge representation, knowledge
sharing, information integration, knowledge discovery.

1 Introduction

Bioinformatics is an interdisciplinary fi eld that develops methods and
software tools for automated analysis and interpretation of biological data. Its
primary goal is to increase the understanding of biological processes and its main
activities are focused on developing and applying computationally intensive
techniques to achieve this goal.

Lately bioinformatics provides important tools for many areas of biology. For
example, it assists signifi cantly in sequencing and annotating genomes and their
mutations. It helps in the text mining of biological literature and the development
of biological and gene ontologies to describe and query biological data.

Bioinformatics uses mostly community knowledge stored as natural language
texts. This knowledge needs to be represented in a computationally appropriate
form containing strong defi nitions of its meaning, main features and restrictions.
Ontologies offer adequate means for this purpose.

Ontologies have a rapidly extending range of bioinformatics applications.
Bioinformatics can be considered as one of the most remarkable areas which
demonstrate the real advantages of the use of ontologies, knowledge-based
methodology and semantic technologies for achieving their specifi c research
goals. From the other side, problems arising from real application areas like
bioinformatics motivate new research activities in many directions of ontology-

21

based technologies such as ontology engineering, ontology mapping, ontology
alignment, etc.

2 Types of Knowledge and Formal Reasoning for Bioinformatics

Two main types of knowledge may be distinguished in bioinformatics
research and practical applications [1]: common knowledge and local-domain (or
novel) knowledge.

2.1 Common Knowledge

The term common knowledge refers to knowledge that is generally known
and accessible to everyone in a particular community, and which can be formally
described. Explicit common knowledge is the one that is already formally described
in a proper format and is directly available to the corresponding applications.

An example of explicit common knowledge is the following rule describing
the SNP (single nucleotide polymorphism) associations with diseases, where
the polymorphism does not alter the codons directly, but the protein is either
truncated or spliced differently [1]:
 ∀ Genetic_Disease ∃ Gene ∃ Protein ∃ SNP
 (SNP within Gene ∧ Gene expresses Protein ∧
 SNP modifi es Protein ∧ SNP associated Genetic_Disease)
 ⇒
 SNP root_cause_of Genetic_Disease

Common knowledge is useful for most forms of reasoning in bioinformatics,
since it facilitates making connections between specifi c data in local problems
and generalized rules or facts. Many authors point out that true inference is not
possible without the proper encoding of complete common knowledge.

Due to the vastness of common knowledge around all biomedical domains
(including all instances of genes, diseases, and genotypes), it is very diffi cult to
explicitly formalize all of it and place it in a single knowledge base. However, if
public data sources are considered as references of knowledge, then the amount
of explicit common knowledge can be easily and greatly augmented. This process
will require some mechanism for wrapping these sources with proper knowledge
representation formalisms, for example associating entities with classes.

2.2 Local-domain or Novel Knowledge

There are large collections of local-domain knowledge consisting of works and
models created by individual research groups. This is usually novel knowledge
that has not been completely validated yet. It has mainly the form of hypotheses
or beliefs, but nonetheless may be of interest for other researchers working

22

on the same or similar problems in order to compare or corroborate the used
methodology and the proposed hypotheses. This knowledge is connected to and
relies on the fundamentals of biology, which are in fact common knowledge.
Because of that researchers are looking for a model which allows connecting
local-domain knowledge easily with common knowledge.

2.3 Types of Formal Reasoning for Bioinformatics

Logical reasoning in classical knowledge-based systems is realized in three
main forms: deduction, induction, and abduction. All of them work on rules
(usually called production rules) which consist of preconditions (antecedents)
and conclusions (consequents). Deduction is directed to solving for the
consequent given the antecedent and the rule. Induction is about fi nding the rule
that determines the consequent based on the known precondition. Abduction is
directed to determining the preconditions based on the conclusions and the rules
followed. It is not so frequently used in knowledge-based systems designed to
perform reasoning in the area of Bioinformatics [1].

Formal methods and software tools for Data Mining and Knowledge
Discovery (KDD) are widely used in Bioinformatics research. KDD is aimed at
extracting patterns from data, but distinguishes itself from other subjects in that
the patterns have to be validated, made intelligently interpretable, and applicable
to the particular problem.

The set of key issues that KDD is successfully addressing in the area of
Bioinformatics include [1]:

• prediction of gene/protein function and localization;
• prediction of molecular bioactivity for drug design;
• information extraction from biomedical articles;
• yeast gene regulation prediction;
• identifi cation of pulmonary embolisms from three-dimensional computed

tomography data
• computer aided detection of early stage breast cancer from X-ray images.
The progress in development of modern semantic technologies and the

success in implementation of the Linked Open Data initiative (http://linkeddata.
org/) face KDD with new challenges and opportunities.

2.4 Sources of Data in Bioinformatics Knowledge Bases

Bioinformatics knowledge bases include data originating from three types
of sources [1]: data added by internal curators, data submitted by external
collaborators, and data added automatically.

(1) Data added by internal curators
A central to the biological knowledge concept is data curation. Biological data

23

curation typically involves experts interpreting data and specialized literature and
using this information to populate the corresponding database(s). It is a manual,
highly time-consuming process that adds confi dence, value and quality to the
used resources.

The range of work performed by a curator can include the entire process of
addition of new information [1]: stating whether some particular data are ready
to be released to the public or not; composition of natural language text from
literature sources to describe a specifi c aspect of a database entity; association of
ontological terms (concepts) to new entries; structuring of relationships between
data in the database.

(2) Data submitted by external users and collaborators
Knowledge bases often allow submission of data by users who are not part

of the institution where the particular resource was developed and maintained.
Many databanks provide tools to allow submission of data on both a small and a
large scale. For small-scale submissions, Web-based forms tend to be provided
where a user can interactively enter data that are subsequently validated. In the
case of large-scale submissions, a standardized data format is typically defi ned in
advance (usually in a markup language such as XML) and the user should prepare
the “new” data in accordance with this format.

(3) Data added automatically
A signifi cant part of data contained in Bioinformatics knowledge bases is

a result of automatic associations or predictive calculations. The information
obtained and added in this way is not as in-depth as that added by a human curator
but nevertheless these processes’ output is much greater.

In addition, automated pipelines that require minimal human intervention are
implemented more and more in practice instead of relying on manual processes
to load and transform data. This can be considered as a consequence of the need
to handle very large amounts of data in an effi cient way.

3 Ontologies and their Potential for Knowledge Representation
and Reasoning in Bioinformatics

Bioinformatics is a large and complex domain, appropriate for testing
knowledge representation techniques to the limit of their expressive power,
precision and adaptability. Research in bioinformatics relies mostly on the
use of community knowledge, rather than logical laws and axioms, for further
understanding and knowledge generation. This knowledge has traditionally
been kept as natural language texts and nowadays needs to be represented in
computationally amenable forms. Ontologies offer a widely accepted mechanism
for creating an understanding of the meaning of biological knowledge which can
be shared by humans and computer systems.

24

An ontology may take various forms, but it always contains a vocabulary
of terms (or concepts) and some specifi cation of their meaning. This includes
defi nitions of concepts, their relationships and some constraints on the possible
interpretations of terms.

Gruber defi nes an ontology as “the specifi cation of conceptualizations, used
to help programs and humans share knowledge” [2]. The conceptualization is
the expressing of knowledge about the world in terms of entities (things, the
relationships they hold and the constraints between them). The specifi cation
is the representation of this conceptualization in a concrete form. One step in
this specifi cation is the encoding of the conceptualization in a knowledge
representation language. The goal is to create an agreed vocabulary and semantic
structure for exchanging information about the corresponding domain.

Ontologies are most often used in biology for conceptual annotation. They
are also used to support the development of various types of intelligent search
engines that are able to perform complex queries over heterogeneous, distributed
information sources. In this case an ontology creates a shared understanding of the
meaning of the domain-specifi c terms and the relations between the corresponding
concepts. Ontologies provide a means for a schema defi nition suitable for the
complexity and precision required for biological knowledge bases.

Ontologies designed mainly for bioinformatics applications can be divided
into three types [3]:

• domain-oriented, which are based either on knowledge about domain-
specifi c concepts (e.g. E. coli) or on domain generalizations (e.g. gene
function or ribosomes);

• task-oriented, which are either task-specifi c (e.g. annotation analysis) or
task generalizations (e.g. problem solving);

• generic, which capture common high level concepts, such as Physical,
Abstract, Structure, Substance, etc. Generic ontologies are also known as
upper ontologies, core ontologies or reference ontologies. They provide
fl exibility and reusability of the corresponding software applications.

Ontologies are used in a wide range of biology application scenarios [3, 4, 5]:
• as common vocabularies for describing, sharing, linking, classifying,

querying and indexing database annotations. This is currently the most
popular use of ontologies in bioinformatics. The Gene Ontology (GO,
http://geneontology.org/) and the MGED Ontology (MO, http://mged.
sourceforge.net/ontologies/MGEDontology.php) are mentioned as most
representative examples in this sense;

• in understanding database annotation and technical literature. Usually
ontologies are designed to support natural language processing that
links domain knowledge and linguistic structures;

• as means for data integration and support of interoperability between

25

multiple resources. Various forms may be mentioned, for example:
indexing across databases by shared vocabularies of their content, inter-
database navigation and querying, using an ontology as a virtual schema
for federation of databases, etc.;

• as knowledge sources for intelligent search (also known as semantic
search or ontology-based search) over heterogeneous databases or other
repositories of biological information. Search queries can be augmented
and refi ned by following some relationships within the ontologies, in
particular the taxonomic relationships.

The use of ontologies can also help to address a challenge that machine
learning and data mining approaches face: the incorporation of different types
of features (or attributes) for application of learning and especially classifi cation
algorithms [4]. Extraction and combination of information from text, images,
videos, molecular data or structured data in knowledge bases aimed at improving
classifi cation can be facilitated through the use ontologies, by fi rst extracting
relevant attributes from each type of information and then representing the
results using a single ontology that combines the information used for training
the classifi er.

4 Current Knowledge Sources and Knowledge-based Tools for
Bioinformatics Research

The National Center for Biomedical Ontology (NCBO, http://www.
bioontology.org/) and the European Bioinformatics Institute (EMBL-EBI, http://
www.ebi.ac.uk/) are widely recognized as the most important primary knowledge
sources for bioinformatics researchers. According to [6], the services hosted
by both institutions include more than 60 ontologies of the Open Biomedical
Ontologies Foundry (OBO Foundry, http://www.obofoundry.org/). The OBO
Foundry is a collaborative experiment involving developers of science-based
ontologies who are establishing a set of principles for ontology development with
the goal of creating a suite of “orthogonal” interoperable reference ontologies in
the biomedical domain.

4.1 Ontologies Used in Bioinformatics Research

Ontologies used in bioinformatics differ with respect to their scope, size and
granularity. Some of them are devoted to anatomy and physiology of specifi c
organisms, others provide descriptions of biomedical resources and experiments
in analytical research labs. A signifi cant number of ontologies are oriented to
related areas like health care and medical applications.

The Gene Ontology (GO) [6, 7] is the most popular ontology in
bioinformatics. Its origin dates back to 1999 when several model-organism

26

database projects (initially FlyBase, the Mouse Genome Informatics Database and
the Saccharymyces Genome Database) noticed that a common vocabulary will
improve the interoperability between databases and simplify data integration. The
key to associating these model databases was the genetic structure of organisms.
The GO integrates concepts that serve for classifying gene products according to
what they do, where they act and how they perform these activities. It actually
comprises three separate ontologies, one for molecular functions, one for cellular
components, and one for biological processes. In addition to subsumption (is-a)
and meronymy (part-of) it provides a third kind of relationships for describing
interactions between biological processes, molecular functions and biological
qualities.

The GO provides a standardized set of names for genes and proteins and the
terms for characterizing – or annotating – their behaviors. Concept defi nitions
have the form of textual descriptions (see for example Fig. 1).

Gene product semantics are organized into three categories which capture
the primary “aspects” (or “views”) of genes: (1) biological process, that identifi es
the largest process in which the gene product is active; (2) molecular function,
that specifi es the biochemical function the gene product contributes to through
the pointed process; (3) cellular component, that fi xes the location in the cell
where that particular function is realized or expressed. Annotations for the same
term in each “view” are cross-referenced on the basis of the unique identifi er
assigned to each term in the GO.

Fig. 1. An example of concept defi nition in the Gene Ontology.

The MGED Ontology (MO) [8] provides terms for annotating all aspects of
a microarray experiment from the design of the experiment and array layout, to
the preparation of the biological sample and the protocols used to hybridize the
RNA and analyze the data. The MO does not attempt to incorporate terms from
existing ontologies, e.g. those that deal with anatomical parts or developmental
stages terms, but provides a framework to reference terms in other ontologies
and in this way facilitates the use of ontologies in microarray data annotation.
The MO is primarily used to annotate microarray experiments, but it contains

27

concepts that are universal to other types of functional genomics experiments
such as protocol and experiment design and thus can also be used for annotation
of some of the data in these domains.

The MO is primarily used in three ways [8]: (1) embedded within an
application to annotate or query microarray data, e.g. by biologists who have
some knowledge of the MO structure; (2) directly for annotating microarray data,
e.g. by an annotator; (3) for producing an application that uses the MO, e.g. by a
software developer.

The TAMBIS ontology [9] covers a wide range of biological concepts. It is
used as a unifi ed schema to support queries over multiple biological data sources
in an information integration system. The aim of the TAMBIS Ontology is thus
to integrate biological and bioinformatics knowledge in a logical conceptual
framework constrained in such a way that [9]: it classifi es correctly only
biologically sensible concepts; it can encompass different user views; it makes
biological concepts and their relationships computationally accessible. TAMBIS
can be considered as a knowledge base which is based on description logics.

The FungalWeb Ontology [10] is a large-scale integrated bio-ontology in the
domain of fungal genomics based on the use of modern semantic technologies. The
ontology provides simplifi ed access to units that describe intersecting information
from different biological databases and existing bio-ontologies. In particular, the
FungalWeb ontology is being used as a core for a Semantic Web system. This
system can be used by humans or bioinformatics software applications, including
intelligent systems for ontology-based information retrieval to provide extended
interpretations and annotations.

The FungalWeb Ontology reuses other existing domain specifi c bio-ontologies
such as GO and TAMBIS. This is done by mapping, merging, and sharing common
concepts and partially by importing instances. The ontology is designed with a
high level of granularity and implemented in OWL-DL language in order to take
advantage of the combination of frame-based knowledge representation within
the OWL framework and the expressive power of description logics.

4.2 Usability of Semantic Technologies

Ontologies like FungalWeb make it possible to apply various semantic
technologies in bioinformatics research. For example, [10] describes the use of
the popular software tool RacerPro (https://www.w3.org/2001/sw/wiki/RacerPro)
as a description logics reasoning system with support for the so-called T-Box
(containing the axioms about class defi nitions) and A-Box (with the assertions
about individuals) for reasoning on this ontology and checking the A-Box and
T-Box consistency. Moreover, the FungalWeb Ontology currently supports a
number of application scenarios including [10]:

28

• identifi cation of enzymes acting on substrates;
• identifi cation of enzyme provenance and common taxonomic lineage;
• identifi cation of commercial enzyme products for enzyme benchmark

testing;
• identifi cation of enzymes with unique properties suited for industrial

application.
These scenarios are realized by defi ning and fulfi lling semantic queries to the

FungalWeb knowledge base using the description logics based query language
nRQL (new Racer Query Language, http://franz.com/agraph/racer/racer_features.
lhtml). nRQL is implemented in RacerPro with its applicability to OWL Semantic
Web repositories to retrieve A-box individuals under specifi c conditions. nRQL is
more expressive than the traditional concept-based retrieval languages provided
by other description logics reasoning systems.

A number of successful projects directed to automatic ontology generation,
ontology engineering, and ontology matching (including ontology alignment and
ontology merging) in the fi eld of bioinformatics have also been realized [11].

5 Machine Learning Applications in Bioinformatics

Machine Learning (ML) is a scientifi c discipline concerned with the design
and development of algorithms that allow computers to change their behavior
on the base of available data (also known as training data or training examples).
Major focuses of machine learning research are to automatically learn to recognize
complex patterns and to make intelligent decisions based on data.

ML methods have been applied to a broad range of areas within genetics and
genomics. ML is considered as most useful for the interpretation of large genomic
datasets and has been used in the annotation of a wide variety of genomic sequence
elements. ML applications have also been used to assign functional annotations
to genes. Such annotations usually take the form of GO term assignments. A wide
variety of bioinformatics data have been used as input to ML algorithms: genomic
sequences, gene expression profi les across various experimental conditions or
phenotypes, protein–protein interaction data, etc. [12]. A number of ML methods
have been especially developed to help to understand the mechanisms underlying
gene expression and to predict the expression of a gene on the basis of the DNA
sequence.

The selection of features (or attribute selection) is recognized as one of the
most signifi cant challenges to the application of ML methods in bioinformatics
research. In practice, it is important to distinguish among three distinct
motivations for carrying out attribute/feature selection. First, in some cases, it is
useful to identify a small set of features that yield the best possible classifi er. For
example [12], we may want to produce an inexpensive way to identify a disease

29

phenotype on the basis of the measured expression levels of a set of genes. Such
a classifi er, if it is precise enough, might form the basis of an inexpensive clinical
assay. Second, it might be advisable to use a classifi er to help to understand the
underlying biology. In this case we expect the attribute selection procedure to
identify only the genes with expression levels that are actually relevant to the
task, hoping that the corresponding functional annotations or biological pathways
might provide insights into the aetiology of disease. Third, it is usually desirable
to have proper data for training the most accurate possible classifi er. In this case
the attribute selection is expected to enable the classifi er to identify and eliminate
noisy or redundant attributes.

As common diffi culties in many applications of ML techniques to
bioinformatics research [12] indicates (1) the large imbalance in the relative sizes
of the groups being classifi ed and (2) the fact of missing data values that can come
from various sources, such as defective cells in gene expression microarrays,
unmappable genome positions in functional genomic assays, etc.

6 Conclusion

Lately the application of ontology-based (and more generally, knowledge-
based) approaches and ML methods has an important role in bioinformatics
research. From the other side, the use of new technologies generates more and
more large, complex genomic and proteomic datasets, therefore the profi cient
application of Artifi cial Intelligence models and algorithms is expected to become
increasingly important to advancing genetics and genomics.

Acknowledgments. This work has been supported by the National Science Fund
of Bulgaria within the “Methods for Data Analysis and Knowledge Discovery in Big
Sequencing Datasets” Project, Contract DFNI-I02/7 of 12 December 2014.

References
1. Alterovitz, G., Ramoni, M. (Eds.): Knowledge-Based Bioinformatics: From Analysis to

Interpretation. John Wiley & Sons (2010)
2. Gruber, T.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing.

International Journal of Human-Computer Studies, Vol. 43 (1995), pp. 907-928 (1995)
3. Stevens, R., Goble, C., Bechhofer, S.: Ontology-based Knowledge Representation for

Bioinformatics. Briefi ngs in Bioinformatics, Vol. 1 (2000), pp. 398—414. Oxford University
Press (2000)

4. Hoehndorf, R., Schofi eld, P., Gkoutos, G.: The Role of Ontologies in Biological and Biomedical
Research: A Functional Perspective. Briefi ngs in Bioinformatics, Vol. 16 (2015), pp. 1—12.
Oxford University Press (2015)

5. Jakoniene, V., Lambrix, P.: Ontology-based Integration for Bioinformatics. In: Proceedings of
the VLDB Workshop on Ontologies-based Techniques for Databases and Information Systems
– ODBIS 2005, pp. 55—58 (2005)

30

6. Hartmann, S., Köhler, S., Wang, J.: Ontology Consolidation in Bioinformatics. In: Proceedings
of the 7th Asia-Pacifi c Conference on Conceptual Modelling APCCM 2010, pp. 15—22 (2010)

7. Schuurman, N., Leszczynski, A.: Ontologies for Bioinformatics. Bioinformatics and Biology
Insights, Vol. 2, pp. 187—200 (2008)

8. Whetzel, P., et al.: The MGED Ontology: A Resource for Semantics-based Description of
Microarray Experiments. Bioinformatics, Vol. 22 (2006), pp. 866-873 (2006)

9. Baker, P., et al.: An Ontology for Bioinformatics Applications. Bioinformatics, Vol. 15 (1999),
pp. 510–520 (1999)

10. Shaban-Nejad, A., et al.: The FungalWeb Ontology: Semantic Web Challenges in Bioinformatics
and Genomics. LNCS, Vol. 3729, pp. 1063—1066. Springer, Heidelberg (2005)

11. Huang, J., et al.: Ontology-Based Knowledge Discovery and Sharing in Bioinformatics and
Medical Informatics: A Brief Survey. In: Proceedings of the Seventh International Conference
on Fuzzy Systems and Knowledge Discovery FSKD 2010, Vol. 5, pp. 2203—2208. IEEE
(2010)

12. Libbrecht, M., Noble, W.: Machine Learning Applications in Genetics and Genomics. Nature
Reviews Genetics, Vol. 16, No 6, pp. 321—332. Macmillan Publishers (2015)

31

32

33

34

35

36

37

38

39

40

Usage and Analysis of Game Development Tools for
Android Mobile Operating System

Saule Sarsimbayeva1*, Bereket Kamash2

1- Mathematics and Physics Department, K.Zhubanov Aktobe Regional State University, 7
Grishina Str., Aktobe 030000 Kazakhstan

2 - Mathematics and Physics Department, K.Zhubanov Aktobe Regional State University, 7
Grishina Str., Aktobe 030000 Kazakhstan

* - corresponding author (saulesarsi@gmail.com)

Abstract. The article is devoted to the problems of using and analyzing game
development tools for Android mobile operating system.

Keywords: software, smartphone application, programming, Android, IDE

Nowadays a rapid increase of high capacity smartphones and growth of
mobile applications have made application developers pay attention to the new
mobile platforms - Android, iOS, Blackberry. Such mobile digital distribution
services as PlayMarket and AppStore effected the rates of mobile applications
market development. Simplifi ed registration procedure in these services enabled
the developers to get a profi t from selling their mobile applications. Mobile
games being a large segment of mobile applications market show their signifi cant
growth. Nowadays smartphones can compete with game consoles and personal
computers for being the most popular game platform. It forced game development
companies to add support of the most popular mobile platforms for their games.
The motivation for the studyis determined by the demand for mobile games
and loads of professional game development tools. This work is devoted to the
analysis and usage of game development tools for virtual reality mobile games.

Game engine is a universal game development tool that combines a graphical
engine, a physical engine, a script editor, a compiler and a level editor. These
components are basic for every game engine. Game engines provide main
technological reliability and performance of the project and they are usually
platform irrespective. Modular architecture of the game engine provides an
opportunity to select its components. For example, game developers can change
built-in physical engine for the more specialized one.

Graphical engine [1] is a program application that responds for drawing game
graphics. It’s an important component of the game engine. Some of the game
engines consist of graphical engine without other components. Major difference
between game graphical engines and rendering engines is that the game graphical

41

engines provide real-time rendering and visualization. The capabilities of the
graphical engines is not enough to create a modern video game, that’ why game
engines should include other components.

Physical engine [1] is a computer software that provides an accurate
modeling of certain physical systems based on mathematical calculations.
They are mainly used in video games and scientifi c spheres. In fi rst case, there
aresome strict requirements foran accurate modeling, but not for the calculating
speed. In the second case, the calculating speed is highly précised, particularly
in real time. Physical game engines provide such kindsof modeling as rigid body
dynamics(including collision detection), soft body dynamics and fl uid dynamics.
Physical engine uses such abstractions as a body which has its form and number
of parameters, a link being game physics limitations. When existing algorithms
of the physical interaction aren’t enough, the developers may create their own
ones as the most of physical engines give that opportunity.

Audio engine [1] is a component consisting of any algorithms related to sound
and acoustic phenomena. The most known audio engines are Environmental
Audio Extensions, OpenAL, DercictSound3D.

In this work the virtual reality game was developed, existing game engines
were analyzed among which the most suitable one was selected.

App Game Kit [2] is a development of “The Game Creators” company.
The Engine is a special development environment which was designed for the
programming of the games for various target platforms. The list of the supported
platforms includes iOS, MacOS, Windows, SamsungBada, MeeGo. Game
development enthusiasts, which are fond of game development, choose this
engine. The AGK includes 2 interpreters: Basic and C++. Programmers write
scripts using one of these programming languages, then the compile project in
handy IDE. The licensing policy is fl exible and allows small companies and
giants of the game development industry to use the engine.

Project “Anarchy” [2] is a product of the Havokcompany. The main
components of the engine are HavokPhysics physical engine, HavokVision
graphical engine, HavokAI – game artifi cial intelligence module, WYSIWYG
level editor. Such programming languages as LUA and C++ are available for
the developers. Such platforms as Android, Tizen and Windows are supported
by the engine. The engine will be available to everyone for free if anadvertising
company is hold jointly with the Havokcompany. Commercial version of the
software unlocks additional services. The Havokcompany is a leader of the
virtual physics and artifi cial intelligence, that’s why those engine components are
considered to be reliable.

Cry Engine 3 [2] is a development of Crytekcompany, a descendant of Cry
Engine 2. This game engine is the most popular choice of the game developers.
One of the main reason of its popularity is a demonstration of its effi ciency on the

42

example of Crysis 2 video game that had the most advanced graphics when it was
fi rst released. It worse to mark Ubershadershader system, used in Cry Engine3,
that helps to create complicated visual effects. Graphical abilities of Cry Engine 3
allow to create such effects as refl ections, refraction of light, effect of volumetric
fever and fl ecks of sunlight. Maximal screen resolution is 7680x3200 pixels.
Technology implementing this screen resolution is exclusive for Radeon 5000
– series video cards. The Crytekcompany has several engine licensing options.

Unreal Engine 4 [2] is a development of the Epic Game studio and it is one of
the most advanced game engines. Technical demonstration was heldin June 2012.
The main feature of this game engine is an access to source codes. They could be
easily found in github-repository. Programming language is C++. Synchronization
with Visual C++ is implemented. A hoy reboot system allows to edit a code when
application is running as well as to estimate changes without stopping the game.
An engine provides a wide range of tools for working with graphics: a visual
shadereditor which allows to create complicated shaders without necessity to
write them manually. There is a system of animation control called Matinee. An
engine supports advanced abilities of DirectX 11, 12 visualization. CascadeVFX
particle editor allows to create detailed effects of fl ame, snow, smoke and dust. It
allows to calculate high-performance particle simulation and collision detection
and illumination from each of million particles. License policy of the Epic Games
studio allows everyone to use Unreal Engine 4fully andfor free.

Unity 3D [2,3] is 2D and 3D game development tool available for Windows
and OSX. This cross-platform game engine allows to create games for all platforms
including web-browsers. This advantage, on the other hand, is a disadvantage
of the engine, because cross-platforming brings additional computational loads.
Nvidia Physics is used as a physical engine. A list of build-in tools includes
a landscape editor which allows creation of sinuous surfaces. There are three
programming languages such as Boo, C# and JavaScript. Game project consists
of one or multiple scenes which store their realms. Basic unit of the scene is an
object.

A detailed review and analysis of multiple game engines and packages of
3D graphics were made in this research work. Unity3D as game engine and 3D
Max as package of 3D graphics arethe most optimal choice. The choice was made
taking into account all the advantages and disadvantages of reviewed options
and specifi cs of the project. A process of the game development on the example
of virtual reality game developmentwasstudied in details. Such aspects of game
developing as implementation of main and minor aspects of gameplay, planning
and fi lling of game level were described in details. A mobile virtual reality game
was the fi nding of the current study. Game character is shown on picture 1.

43

Picture1. Game Character.

A review and analysis made in the work could help novice game developers
get an idea of instrumental tools required for the game development as well as
discover advantages and disadvantages of the most popular game development
tools.

References

[1] Gregory J. Game Engine Architecture. – A K Peters, 2014. – 1052 c.
[2] Rabin S.,Game AI Pro: Collected Wisdom of Game AI professionals.–A K Peters,

2013.– 626 c.
[3] Gibson J. Introduction to Game Design, Prototyping, and Development: From Concept

to Playable game with Unity and C#. – Addison-Wesley Professional, 2014. – 944 c.

44

The Development of “Multi-Field Search” Forms
to look into the Library System of

Scientifi c Organization

Kalina Ilieva1 and Svetlana Vasileva2,

1 Dobrudzha Agricultural Institute - General Toshevo
9500 General Toshevo, Bulgaria

2 Shumen University „Bishop Konstantin Preslavski“, College-Dobrich, Dobrotitsa 12
9302 Dobrich, Bulgaria

{kalito_21, svetlanaeli}@abv.bg

Abstract. The paper considers “multi-fi eld search” forms, which are an integral
part of a project to implement an information-retrieval system designed for the
needs of the research library. The system was developed two years ago by means
of MS Access 2003. The project aims to facilitate the search of the specialized
literature by researchers, users of the system, as well by the staff of the library of
the Dobrudzha Agricultural Institute - General Toshevo municipality. Thanks to the
developed “multi-fi eld search” forms, the demand of the researchers for the desired
information (by more than one criterion) it is optimize signifi cant.

Keywords: search, “multi-fi eld search” forms, information-retrieval system, users.

1 Introduction

The forms serve as the primary interface between users and the information
system. Designing search forms in one information-retrieval system aims to
optimize the search for the desired refund quote. In this case it is to search for
literature in library science in the fi eld of agricultural sciences. The developed
system of scientifi c library is an advantage in terms of not only the demand for
information, but also of the ongoing daily library processes - registration, logging,
an inventory, loan, etc.

The library users occupy a very important part in the development of the
system. With their help, the system is functional even in terms of the demand for
information about a research team is constantly necessary and valuable.

2 The Switchboard of the Library Information System

Fig. 1 shows the system startup form, called Switchboard. Original startup
form of contact with users of the Library Information System is presented in [1].
The form contains six basic forms, as when selecting each of them, they reference

45

to other forms satisfying consumer interests. Unlike the original version of the
system here has added a new form to search for scientifi c publications. For the
research team that is a convenience to search for posts directly. It can be searched
by author, keyword or edition. Each researcher works daily with publications and
this would save time, even just in terms of what can be informed.

Fig. 1. Switchboard of the library system.

3 The forms „Search” and „Advanced Search”

Fig. 2 illustrates a search form that includes fi ve search fi elds. The form was
created in Design view. The form is “multisearch”, which allows user to search
more than one criterion. To this end, multiple queries are used, which correspond
to each criterion separately. The more criteria contain a form the more useful is
the search for requested information and the better the results display system. For
users of library science that is a functional form that meets the most elementary
questions the system.

On Fig. 3 can be seen a search for a collective author who for scientifi c
organization is common, as the library has many publications issued by
universities, institutes, academies, etc. Scientifi c Library keeps many editions of
Agricultural Academy. When looking for Collective author does not need to be
displayed full name, user can display only the abbreviation “SAA”.

46

Fig. 2. Form for the consumer demand.

Fig. 3. Search Result for Collective author.

In search forms for each desired criterion a request is made, and participates
in it an expression which is less complex but has its specifi cs [2]:

For example, the criterion for „Search by Author“ expression will type:

Like “*” & [Forms]! [SearchF_Users]! [Text56] & “*”,

which is understood as follows:

Like “*” & [Forms]! [Form Name]! [Search Criteria] & “*”,
where [Tekst56]

appears sought expression that can be a keyword, author’s name, reader, etc.

47

Such an example is shown in Fig. 4, where user can search by author, meaning
by his family name. As can be seen from the result, we have two authors in with
family Kolev. It is advisable to seek a family, as it appears in the tables at their
introduction.

Fig. 4. Search Result for Collective author.

Another further developed for the needs of users is an advanced search form,
shown in Fig. 5.

Each search criteria as “Books”, “Magazines” and others is made through a
separate request matching your search criteria. In this form are added two new
search fi elds [1]: Materials of conferences and Series. Creating more search fi elds
is convenient not only for scientists who constantly publish articles and looking
constantly in collections, series, conference proceedings, but also for developing,
facilitating the work of serving the research team.

Fig. 5. Advanced search form.

The seeking forms are a tool to optimize the performance of both library
professionals and consumers scientists in the process of searching for the desired
information.

48

Fig. 6 shows search using the form keyword “hel”. As already mentioned
is not necessary to be displayed the whole word searched. Using the expression
above, including the operator Like it only searches the database. Fig. 7 shows
search scientifi c journal by the Advanced Search form.

Fig. 6 Search by series in the Advanced Search form.

Fig. 7 Search Result on magazines from the Advanced Search form.

4 Search form for science publications

This new form has been developed further in another way, and includes only a
query, unlike the forms described above. Again using specifi c expression operator
Like. [3], [4] User can search by author (only Research Fellow), publication
(keyword) and by edition.

The request includes only those tables which will be used, and will be easy
to manipulate the information in them. Most scientists are interested in the title of
the publication in which edition is published and the year of issue.

This form is simplifi ed but also easy to work with it. For example, if
researcher searches by author, the user gets information on both the publication

49

and the magazine, which was published for the signature of publication, number
of volumes, number of books, which are the page numbers, year of issue.

As it is shown in Fig. 8 the search for the author of the publication provides
information and co-authors of the article designated. This is useful for user
search. These data are important and valuable in shaping bibliographic lists of
publications, which often face researchers in their daily lives.

The form is useful for scientists, containing the necessary data and for the
library specialist who may at any time to provide timely and relevant information
on any new scientifi c publication.

Fig. 8 Search Result by author of scientifi c publication.

5 Queries for creation of search fi elds in the forms

For the development of these forms are executed several important steps, and
one of them are the queries which are built on the basis of the expression written
above (Paragraph 3) with the operator Like [2], [3], [4], etc.

For the implementation of the query are chosen the desired tables from
the database. The other point is to choose a box which will seek the desired
information, such as title, the most common search criteria. Of course, we must
fi rst do a basic form to use it for searching particular information.

In our case, the form shown in Fig. 8 shows clearly the seeking fi eld and
the search results. It is evident that searching by author surname “Ivanov” as
an author are displayed all authors with that surname plus coauthors of specifi c
scientifi c publication. Initially, the user can display the fi rst co-author of the
publication and still obtain the desired information. This is an advantage of this
form because it is suffi ciently informed.

Returning to the query for the establishment search fi elds besides creating a
basic form is important the expression displayed in the search box on the query
and also the relationship with the query form to get to putting the results.

The specifi cs in this form is that there is no separate request for each fi eld, as
in the other forms described above, it is used only one single query in the case.

50

The expression, written in the criterion looks like this:

From the expression in the example shown, the form is entitled [Search_
publication] and the search fi eld is [Imena], which includes the surname and
name of the author. The same applies to other fi elds.

This kind of queries are parametric requiring an input value, which is the
criteria that will be sought, whether title, year of publication or release, etc.

It is very important, how it is built and whether the query allows for demand
and which fi elds will be sought. It is important that the fi elds that will be used to
have a lot of “information” to incorporate more information charge. Therefore,
the system is an information-seeking and forms must meet this criteria.

Developed forms are tailored to consumer needs and interests. Developed
based on inquiries addressed to library professionals in the science library. For
example, often looking for information on selection and genetics of wheat,
sunfl ower and other crops and therefore there is a request to fi lter titles include
these keywords. The results are consistent with the criteria in the application,
which is ancillary to systematize the large volume of information. Therefore the
involvement of consumers in the development is very valuable for the system to
be more functional, fl exible and effective.

6 Conclusion

The development of the search forms on an information system is a complex
process. Displayed above forms are simpler, which is advantageous when used
by the user.

For an information system in such organizations the search is very important,
especially for the research team, seeking always up to date scientifi c information.

The seeking forms are an effective means of communicating with the user
system, but also a challenge for the developer, which operates continuously with
her familiar in detail with the user’s needs and constantly tested.

These forms are “calling card” of an information system.
Applications created with MS Access should not be underestimated because

they are a stable means of developing information systems that do not require
funds to maintain. Information system for scientifi c library is constantly in the
process of improvement until the complete and effi cient system. It needs more
complex search forms and forms for data entry convenient for staff. Considering
to make an application using SQL Server 2012 MS and PHP, but unfortunately it
will take time and it is diffi cult to achieve.

51

Creating a database is a diffi cult and time consuming process, because always
the addition of new tables, queries, forms. Perhaps most suitable programming
language is Visual Basic, which is the most compatible with the application, but is
yet to be developed. The use of additional programming language is an important
step in the completion of the system and its improvement as a prerequisite for
soundness and quality.

Completion of the system is an advantage of such an organization, storing
thousands of valuable volumes of scientifi c literature in the fi eld of agricultural
sciences. Therefore, guarantees the effectiveness of the system is the continuous
testing, which helps to avoid errors and adverse outcomes. Before testing, a very
important place has the processes related to the construction of relational scheme,
the creation of applications and best looking and qualitative forms corresponding
to the user requirements.

Scientifi c organization is always demanding and similar system except that
inform consumers also promotes scientifi c information in the fi eld of agricultural
science and to scientists and to anyone who wants to be informed in this scientifi c
fi eld.

References
1. Илиева, К., С. Василева.: Разработка поисковых форм для информационной системы

обслуживающей научную библиотеку. In: Сборник научных трудов по материалам VII
Международной научно-практической конференции „Теоретические и прикладные
аспекты современной науки”, Часть II, cc. 154—161. Агентство перспективных научных
исследований, Белгород, 2015. / Ilieva, K., Vasileva S.: Development of seeking forms for
information system servicing scientifi c library. In: Proceedings of VII International conference
on theoretical and applied aspects of modern science, Part II, pp. 154--161. Perspective
Investigations Agency, Belgorod, Russia, 2015.

2. Austin, R. Using the Like operator in queries. Access All In One .http://www.accessallinone.
com/using-the-like-operator-in-queries. (2013)

3. Harkins, S. 10 Tips for using wildcard characters in Microsoft Access criteria expressions.
TechRepublic. http://www.techrepublic.com/article/10-tips-for-using-wildcard-
characters-in-microsoft-access-criteria-expressions/ (2007)

4. Rost, R. Build a Multi-Field Search form. Access Learning Zone. http://www.599cd.
com/tips/access/multi-fi eld-search-form-like/Czajkowski, K., Fitzgerald, S., Foster, I.,
Kesselman, C.: Grid Information Services for Distributed Resource Sharing. In: 10th IEEE
International Symposium on High Performance Distributed Computing, pp. 181--184. IEEE
Press, New York (2001)

Aknowledgments This Paper is supported by Project N РД-08-277/11.03.2015 of
Shumen University “Bishop Konstantin Preslavski”

52

Performance Study of SQL and Graph Solutions for
Analytical Loads

Emanuela Mitreva1, Hristo Kyurkchiev1

1Faculty of Mathematics and Informatics, Sofi a University, 5 James Bourchier blvd.,
1164, Sofi a, Bulgaria

emitreva@gmail.com, hkyurkchiev@fmi.uni-sofi a.bg

Abstract. NoSQL has become an extremely popular term in the database world.
We take one of its concrete instances - graph databases and more precisely Neo4j
on its promise of great analytical performance and compare it against a traditional
relational DBMS (Oracle) and other NoSQL siblings (Vertica, MongoDB).
Starting with the data models of each some preliminary hypothesis is build about
each one’s strengths and weaknesses. These are checked by using our previously
developed performance benchmarking model. Stepping on the results we are able
to make a list of all the advantages and disadvantages of each and come up with a
recommendation on the usage and suitability.

Keywords: Database systems, Relational databases, Data warehouses, NoSQL,
Column stores, C-Store, graph databases, Neo4j, performance evaluation, analytical
queries

1 Introduction

Data mining has become increasingly popular area in recent years, thus the
requirements for tools to handle big data and effi ciently retrieving information or
important patterns are more and more demanding and data mining could be used
on different levels [5]. Therefore the research into database management systems
(DBMS), which can provide fast performance for analytical queries, has great
signifi cance to the business world. In a series of articles [4], [6], [7], [8], [9] we
are trying to fi nd the best solution for such purposes by making performance tests
on different types of data stores. In the overview article [10] we have presented
the alternative data stores – key-value, column-based, document and graph stores.
They all have their advantages and disadvantages considering how they store the
data, how effi cient they are for DML statements or for selects, etc. In the fi rst
article [6] we have considered a column store solution - Abadi’s Vertica [8], the
commercialization of C-Store [1], [2], [12] as a prominent example of its group.
Vertica is a DBMS, which stores data in columns, rather than rows, providing both
the standard SQL language for querying databases, and the performance needed
for effective data mining. In previous research [6] we aimed at researching how

53

Vertica compares to Oracle - a commercial grade row store. We found out that by
using Vertica instead of Oracle one achieves signifi cant performance gains, which
are, however, not in the same order of magnitude as previously suggested [15].
In the next article [7] we decided to choose a more modern solution – MongoDB,
a document store NoSQL solution [11]. The setup of the data was done to mirror
the Oracle and Vertica’s structure and whether because this (document store does
not support joins and the data from the different tables was stored in different
collections, thus making alternative ways of joining the data a necessity) or
because of the performance of the store itself, we achieved signifi cantly low
results, specially when compared to Vertica. Our next candidate, as outlined in
previous research [7] were the graph stores – another NoSQL solution with a
different data model and structure.

2 Architectural overview

2.1 Neo4j data model

Considering the problems and the low performance of MongoDB for our
queries and data set, we have decided to try a data store, focusing more on the
importance of the relationships between the data objects than on the structure
of the data objects themselves. The assumption is that if the focus is on the
relationships, queries with joins will be executed much faster. As the world’s best
and fi rst graph database [14] Neo4j seemed the logical choice for our performance.

Fig. 1. Graph database structure

Logical and physical database structure. The Neo4j solution is a graph da-
tabase, i.e. the data is stored in the form of graph like it is shown in Figure 1.
A graph has nodes and edges – the records are the nodes and the edges are the
relationships between the edges. There is no limitation to how many edges a node
could have, thus making the graph store a good approach in the case of a many-
to-many relationship. As in MongoDB, the schema of the records/nodes does not

54

need to be defi ned beforehand, but the nodes are defi ned upon insertion. This
mutable schema allows the user to introduce new attributes (in Neo4j are called
properties) at any time, unlike Neo4j the relational model’s rigid schema makes
it hard for any changes to be made [3].

Read optimization. Neo4j has high performance read and write scalability,
without compromise. It delivers fast read and write performance, while still protect-
ing the data integrity. It is the only enterprise-strength graph database that combines
native graph storage, scalable architecture optimized for speed, and ACID compli-
ance to ensure predictability of relationship-based queries [14]. As a result of its
characteristics and strengths, Neo4j is really suitable in the cases when:

 Queries with many joins need to be executed;
 Some hierarchical data need to be retrieved;
 There are a lot of many-to-many joins or tree-like data structures;
 The data is already in a graph form (e.g. information about who is friends

with whom in a social network) [13].

2.2 Compared to Vertica and Oracle

There are both similarities and differences between Neo4j, MongoDB, Oracle,
and Vertica. A comparison of the main properties is presented below.

Table 1. Basic comparison between Neo4j, MongoDB, Vertica and Oracle

Characteristic Neo4j MongoDB Vertica Oracle
Data storage Nodes and

edges
XML or (B)JSON Columns Tables, rows

CAP Consistency
and Availability

Consistency and
Partition toler-
ance

Consistency and
Availability

Consistency and
Availability

ACID rule Yes No Yes Yes
Transactions Yes No Yes Yes
JOINs Yes, with pre-

defi ned rela-
tionships

No Yes Yes

Indices Yes Supports single
and compound
indices on every
level of the JSON

Does not support
indices at all,
uses projections
for optimization

Supports single
and compound
indices on all
columns

Replication Yes Yes Yes Yes
Sharding Yes Yes Yes Yes

As we can see from Table 1 we have been researching for the best solution
among databases that store the data in different format – JSON, columns, tables
and rows and now for the latest example – Neo4j - uses nodes and edges and is
optimized to store data that is related in some way or even have hierarchy. The

55

data on which we are making the performance study have several tables, which
have foreign keys to the other tables, so this will be viable data sample to be used
for the graph store. This solution also adhere to the ACID properties and sup-
ports indices, which leads us to the hypothesis that Neo4j will be reliable and fast
enough, but probably not as fast as Oracle and even Vertica when making DML
queries (insert, update, delete) and would be similar to MongoDB in this regard.
It, however, would be much more effi cient when it comes to OLAP processing
due to the optimization of the graph structure toward the relationships.

3 Experiment setup

In this section the main aspects of the experiment such as the hardware
and software, the database schema, the benchmark, and the measuring tools
are discussed. Only a part of the original database schema is presented, as it is
proprietary information.

3.1 Setup description

In order for the comparison to be valid the same setup as in the original
performance study [6] is used. For completeness, we have included a brief outline
bellow.

Hardware setup. The DBMSs were run as virtual machines on VMWare
ESXi, each equipped with 2 CPU cores (2.4GHz each), 6 GB of RAM and 16 GB
of storage.

Fig. 2. Database

56

Database setup. No specifi c tweaks have been performed on each database
to improve performance, except the ones, which are implicit or completely trivial:

 For Oracle, Oracle 11g SE One was used with implicit indices on all of
the surrogate keys, as well as explicit indices on all of the foreign keys.

 HP Vertica Community Edition was used as the Vertica instance with the
compulsory super projection on each table.

 The latest version of MongoDB (2.6.1) was installed on server with
indices on the same columns as the ones in Oracle.

 The latest version of Neo4j (2.3) was installed on server with indices on
the same columns as the ones in Oracle.

Database schema. The same schema as the one used in previous research [4]
(Figure 2) is employed here as well – three dimension tables and one fact table.
The data used is from a travelling agency and concerns autobus trips. It includes
autobus data (~ 50 records), station data (~ 5000 records), trips data (~ 100000
records), and stops data (~ 1750000 records), which have been transferred to
Neo4j without any changes.

3.2 Benchmark

In order for the results to be comparable, we will use the same set of queries,
used in the previous articles [5], [6] and the same hardware. Of course, since
the queries were originally written in SQL and Neo4j does not support SQL
for querying data, they had to be rewritten in Cypher – one of the native query
languages of Neo4j. Neo4j also provides REST APIs to manipulate the data or
to retrieve it, but we have decided that using the Cypher language will be more
close to the research done in the previous works. The Cypher language is not
that different from the SQL language, when it comes to the simple queries and
has the same basic clauses, but a slightly different syntax. A select query has the
following basic syntax:

MATCH (alias:TABLE) WHERE conditions RETURN alias.col1, alias.col2;
A delete statement has the following form:
MATCH (alias:TABLE) WHERE alias.ID = 1 DELETE alias;
An update statement looks like this:
MATCH (alias:TABLE) WHERE alias.column = ‘value’ SET alias.column2

= ‘value’ RETURN alias;
Those statements, although a little different than the SQL syntax have similar

logic and elements. However, what is the most interesting in the graph stores
and the reason why we have chosen such a store are the relations. In this type
of database, the relationships are links between nodes (records), which makes
the execution of the queries more effi cient. In the common case of a query with
joins executed on a relational database, the query is scanning Cartesian product

57

of the tables and then it is fi ltering only the necessary records. In the case of the
graph store, the nodes that are not connected to nodes that should be visited are
not scanned; therefore the query does not need a full scan of the nodes to get the
result of a query. Another thing that is important to be noted is that because of the
afore mentioned feature of the graph store the execution time of the queries is not
as dependent on the number of records as it is in the relational model.

When we need to make use of the relations between two nodes, we should
use the following syntax:

MATCH (alias:TABLE)-[:RELATION]->(alias2:TABLE2) WHERE
statements

RETURN alias.col1, alias2.col2;
The relation between the two nodes is named RELATION and unlike in the

relational model, where the name of the foreign key is not important and it is
used more for the data to be consistent, in Neo4j behind the name RELATION
is the actual relation between the nodes and it is making the link (edge) between
the two nodes.

4 Performance comparison

Aqua Fold’s Aqua Data Studio was used to measure the response time and
the fi gures were generated using Shield UI. All queries have been run multiple
times and the results were averaged so that any differences are smoothened. It
should be noted that for response times of less than 1 second the measured results
varied signifi cantly on Neo4j.

4.1 General queries performance analysis

Figure 3-5, which contain the results for the DML statements and selects,
show that the patterns of the results for Oracle, Vertica and Neo4j are on par,
except some minor difference in the case of the insert in stations and delete of
an autobus in Vertica’s case, which can be attributed to a measurement error.
In comparison MongoDB is signifi cantly behind in almost all DML statements.
Unlike the case of Oracle and Vertica it is worth noting that both MongoDB and
Neo4j offer different execution times if the statement is rerun and while with
MongoDB we have not seen any pattern, Neo4j shows a clear declination with
the number of subsequent reruns.

58

Fig. 3. Simple inserts and updates

The rest of the fl ight consists of simple select statements. We see a very
similar pattern, which matches the one we saw in Vertica in the previous study
[6]. The results show a signifi cant degradation in performance. As expected high
selectivity is not the best querying scenario for a graph database as Neo4j. It
should also be noted that the last two queries were not performed because of the
database being too memory hungry to allow its execution. Each try resulted in a
JVM OutOfMemory exception, something, which did not happen with any of the
other solutions. This leads us to believe that Neo4j has higher memory require-
ments, needs more performance tweaking in regards to server confi guration than
the rest of the studied DBMSs.

59

Fig. 4. Simple deletes and selects

4.2 Analytical queries performance analysis

We ran the analytical queries (fl ight two and three – Figure 5) several times
and averaged the results. Unlike MongoDB, Neo4j performed on par with
Vertica and was signifi cantly faster than Oracle. On some queries it was even
considerably faster than Vertica, which shows the best performance so far. This is
no doubt connected with the higher expressiveness of the Cypher query language,
which supports native joining operations unlike MongoDB’s JavaScript dialect.
In the second fl ight Neo4j matched the performance of Vertica query for query
with even some slightly better results.

60

Fig. 5. Flight 2 and 3 results

What really are interesting are the results of the third fl ight. These are in the
last two cases signifi cantly better than both Oracle and Vertica and in the fi rst
one, much slower than both. The rationale behind these observations most likely
lies in the selectivity, which we already saw presents an issue for Neo4j. Each
of the three queries returns three groups with varying number of records. This
combined with some clever caching can explain the differences in the execution
times between the queries of the fl ight. What can be worrying is that in contrast to
all other three databases – Oracle, Vertica, and MongoDB there is no consistency
in the results of this test set.

The forth fl ight of queries was not performed as due to high consumption of
memory the relationship between the Trips and the Stops could not be created.
Each try as with the simple select failed with JVM OutOfMemory exception.
Without the relationship the query leads to the same exception and we have rea-
sons to believe that it would be unreasonably high, as we have run some tests
without relationships for the other smaller tables, which were taking considerably
more time than the fi nal results shown above in the charts.

5 Conclusion

The overall impression of the graph store Neo4j is good – it is very easy to
setup and load data; however there were some confi guration issues with poor
memory management during the data loading and querying tests. One of its

61

native languages – Cypher - is easy to learn, straightforward and is expressive
enough to substitute the well-known and widely used SQL. When it comes to
the performance results, as expected, it is pretty much on par with Oracle and
Vertica, it is even faster than Vertica on some analytical queries, which is the best
DBMS we have tested so far. Neo4j provides a great balance with fast simple
inserts, updates and deletes and great speeds for analytical loads. What seems to
be one of the few problems with Neo4j was the high selectivity, thus if it were not
for the aforementioned issues with stability and memory consumption, it would
have been the best store in our performance study. In conclusion, although it
might be a very potent option for resource rich environment, we would still rather
recommend sticking to Vertica as it is the more accomplished product. However,
with the maturing of the technology, Neo4j deserves to be followed closely and
considered when choosing an analytical database. As a natural continuation of
our performance study of the different types of stores is the recently developed
array databases, which we intend to study in future research.

Acknowledgment. This paper is supported by Sofi a University “St. Kliment
Ohriski” SRF under Contract 36/2015.

References
1. Abadi, D.J. et al.: Column-oriented database systems. Proc. VLDB. 1664–1665 (2009).
2. Abadi, D.J., Madden, S.R.: Column-Stores vs . Row-Stores : How Different Are They Really?

SIGMOD. pp. 967–980 (2008).
3. Batra, S., Tyagi, C.: Comparative analysis of Relational and graph databases. IJSCE Int. J. Soft

Comput. Eng. 2, 2, 509–512 (2012).
4. Hristov Hr., K. Kaloyanova A graph representation of query cache in OLAP environment,

Proceedings of the 7-th ISGT International Conference, pp. 108-119, Sofi a, (2013).
5. Kaloyanova K., Improving Data Integration for Dara Warehouse: A Data Mining Approach,

Proceedings of the International Workshop “Computer Science And Edication”, pp. 39-44,
Borovetz-Sofi a, (2005).

6. Kyurkchiev, H., Kaloyanova, K.: Performance Study of Analytical Queries of Oracle and
Vertica. Proceedings of the 7th ISGT International Conference. pp. 127 – 139 , Sofi a (2013).

7. Kyurkchiev, H., Mitreva, E.: Performance Study of SQL and NoSQL Solutions for Analytical
Loads. 1–9.

8. Lamb, A. et al.: The Vertica Analytic Database : C-Store 7 Years Later. Proceedings of the
VLDB Endowment. pp. 1790–1801 (2012).

9. Mitreva, E., Georgiev, V.: Using Document Store for 3D Virtual Collections. Proc. DiPP.
(2015).

10. Mitreva, E., Kaloyanova, K.: NoSQL Solutions to Handle Big Data. Proc. Dr. Conf. MIE.
77–86 (2013).

11. Scholz, J.: Coping with Dynamic, Unstructured Data Sets – NoSQL: a buzzword or a savior?
Johannes Scholz. May, 1–9 (2011).

62

12. Stonebraker, M. et al.: C-store: a column-oriented DBMS. Proceedings of the 31st VLDB
Conference. pp. 553–564 (2005).

13. TreeHouse: Should you go Beyond Relational Databases?, http://blog.teamtreehouse.com/
should-you-go-beyond-relational-databases.

14. Neo4j documenation, http://neo4j.com/.
15. The Vertica ® Analytic Database Technical Overview White Paper. (2010).

63

A Framework for RUP and PMI Artifacts

Kalinka Kaloyanova1, Elitza Koleva1

1Faculty of Mathematics and Informatics, Sofi a University, 5 James Bourchier blvd.,
1164, Sofi a, Bulgaria

 kkaloyanova@fmi.uni-sofi a.bg, elitza.koleva@gmail.com

Abstract. The paper explores the possibilities of an integration of best practices,
guidelines and document templates of Rational Unifi ed Process and PMI
methodology and provides a framework for software project management using an
optimal set of documents, based on both methodologies.

Keywords: Project Management, Rational Unifi ed Process (RUP), Software Development

1. Introduction

Software development is a process that involves management of a set of
activities and required resources to achieve a desired result. To reach that goal, the
development team can choose from a variety of software development processes
that are usually based on several basic models for software development -
sequential, iterative and agile. The software development process is also a subject
of many kinds of uncertainty that are more related to project management rather
than the development process itself. Therefore the elements involved in the
process of the development of software products can be seen in two dimensions
- the software development process and the management process. To produce a
quality product in time and budget there should be an appropriate combination of
these two dimensions.

Project Management Institute (PMI) provides a methodology that supports
a wide range of projects in different areas. The Project Management Body of
Knowledge (PMBOK) Guide [10], developed by Project Management Institute
ensures a set of best practices, tools and techniques that are successfully used
for project management in a variety of industries. When project management
concerns software area, the software process is important, as well.

In this paper we explore the possibilities of integrating two widely used
methodologies – Rational Unifi ed Process (RUP) for software development and
the PMI methodology for project management. Although several comparisons
of RUP, PMI and other methodologies have been done [2],[3],[7], as the
methodologies have changed during the years, a new parallel is needed.

The purpose of the article is to reconcile the best practices, guidelines
and document templates of RUP and latest PMBOK version and to focus on
creating a framework of RUP artifacts and documents from PMI methodology
that pretends to provide an optimal predefi ned set of documents for software

64

project management. The framework has a practical value to both – software
development teams and students, who explore these methodologies, mainly the
students in Information Systems and Project Management areas [5], [6].

2. PMI Framework

The Project Management Body of Knowledge is organized as a Guide that
describes the different Project Management (PM) processes and their interactions.
The processes are grouped in two dimensions: into fi ve categories known as
Process Groups and several categories known as Knowledge Areas. In the last 5th
edition of PMBOK the number of Knowledge Areas is extended up to ten and the
number of the processes is forty seven [9].

2.1 Process groups

Every project starts with processes from the Initiating Process Group that
defi ne a new project or a new phase of a project. The next Planning Process
Group supports processes that aim to establish the scope of the project, refi ne the
objectives, and defi ne the course of action required to attain the objectives. The
main goal of the processes from Executing Process Group is to complete the work
defi ned in the project management plan and to ensure that the product satisfi es the
project specifi cations. The processes of the Monitoring and Controlling Process
Group ensure that the project managers track, review and regulate the progress
and performance, identify areas in which changes to the plan are required and
initiate the corresponding changes. And fi nally, the Closing Process Group
fi nalizes all activities across all Process Groups to formally close the project or а
phase of the project [9].

PMBOK does not prescribe a precisely defi ned lifecycle for projects. Instead
it specifi es that the project lifecycle should be divided into phases based on the
nature of the project and its area of application. During each of these phases the
Process Groups are used, as appropriate, to ensure the successful completion of
the project in a controlled manner. If it is necessary processes are repeated within
each phase until phase completion criteria is satisfi ed [9].

It is possible a Process Group to be a one-time event, but most often they are
overlapping activities that occur in different phases of the project and basically
the output of one process becomes either a project deliverable or an input to
another process.

2.2 Knowledge Areas

The processes are also grouped in ten Knowledge Areas by their nature. Each
Knowledge Area represents a set of similar concepts and activities and forms a
specifi c project management fi eld [9]:

65

 Project Integration Management
 Project Scope Management
 Project Time Management
 Project Cost Management
 Project Quality Management
 Project Human Resources Management
 Project Communication Management
 Project Risk Management
 Project Procurement Management
 Project Stakeholder Management

The PMBOK also describes a set of documents that should be maintained
with the project management processes to support the development of the project.
Every project starts with signing a Project Charter that formally authorizes
the existence of the project and also authorizes the project manager to apply
organizational resources in the project development process.

The Project Plan presents more details about the project with Scope
Statement, Work Breakdown Structure, Schedule, Cost Estimates, etc. Also Work
Results, Change Requests, Lessons Learned and other documents are created
and updated periodically to ensure that the project is developed in a controlled
and predictable manner as well as that the product created corresponds to the
stakeholders’ requirements.

As the framework is wide and fl exible it does not provide strict document
templates. Although some sources [4] provide samples of templates, principally
the form and the content of the documents are specifi c and depend on the
application domain of the project.

Therefore the incorporation of an organizational project management with a
specifi c software development process requires certain efforts for integration of
artifacts, work products and documents from these two sources.

The next section will present an overview of a specifi c software development
process and its corresponding artifacts.

3. Rational Unifi ed Process

The Rational Unifi ed Process is a software engineering process that provides
a disciplined approach for software development [9].

 RUP is an iterative, use-case driven and risk-driven process [1]. Each of
these characteristics has a specifi c implementation here. In RUP the software
development lifecycle is divided in phases and iterations that gradually produce
executable versions of the application until the acceptance criteria is satisfi ed and
the product is fully developed [11], [12].

66

Here functional requirements are expressed in the form of use cases that
describe scenarios of using the designed system by users. RUP also puts a focus
on risk reduction by tackling risk as soon as possible in the software development
process, which includes prioritizing and building the important functionality
before building the less important ones.

Generally, RUP implements software development in two main dimensions
as it is shown on Fig.1:

 The horizontal dimension represents time and shows the lifecycle of the
process as it unfolds.

 The vertical dimension represents core process disciplines, which
logically group software engineering activities by their nature [3].

Fig. 1. Rational Unifi ed Process [10]

3.1 RUP Phases

The lifecycle of any RUP project is divided into four phases – Inception,
Elaboration, Construction and Transition.

The focus of Inception phase is to defi ne the project scope. During the next
Elaboration phase the project scope is refi ned, an executable architecture for the
application is built, and risk assessment is performed. Based upon the baselined
software architecture in the Construction phase most of the application’s
capabilities are developed. And fi nally, the goal of the Transition phase is to
ensure that the application is available to the end-user community, which includes
testing and preparation for release. Each phase has precisely defi ned criteria for
completion and ends up with a major milestone. RUP phases can be further
divided into iterations [8].

67

3.2 RUP Disciplines

RUP captures several software development best practices in a form suitable
for a wide range of projects and organizations: adaption of the process, iteratively
value demonstration, continuously focus on quality; balance between competing
stakeholder priorities, collaboration across teams, etc. [8].

Based on the six best practices RUP organizes the activities and the supporting
documentation involved in the development process in nine disciplines that
basically describe who is doing what, how and when within the full development
team. There are six main disciplines and three supporting disciplines that
maintain the development process. The main disciplines are Business modeling,
Requirements, Analysis and design, Implementation, Test and Deployment. The
supporting disciplines are Project management, Environment and Confi guration
and Change management. Each discipline is expressed in terms of roles, activities,
artifacts and workfl ows [10].

Within RUP, each discipline is expressed in terms of roles, activities,
and artifacts. Every role defi nes who performs the task - the behavior and
responsibilities of an individual, or a group of individuals, responsible for
activities and artifacts. On the other hand, an activity is a task for which a role is
responsible and may be asked to perform. It describes the steps required to create
or update one or many artifacts or what the activity achieves [3].

3.3 RUP Artifacts

RUP specifi es a set of artifacts that support the development process. Artifacts are
either fi nal or intermediate work products that are produced and used during a
project to capture and convey project information. The artifacts serve as inputs/
outputs of the activities. An artifact can be a document, a model or a model
element. RUP provides a wide range of document templates that can either be
used directly by the organizations or can be adapted to the specifi c needs of the
project [11], [12].

4. Rational Unifi ed Process & PMI Compatibility

4.1 Concepts Compatibility

As a framework RUP is extremely effective for guiding the software
development process, however it is a heavy and complicated process that requires
the maintenance of a wide range of documents. Although it provides some
management practices it is far from covering all aspects of project management.
On the other hand the PMBOK Guide provides a set of best practices covering
all aspects of project management, but the methodology of PMI is not concrete

68

and therefore it cannot be directly implemented. It rather provides a basic
framework of management practices that can be successfully upgraded with a
specifi c software development methodology. In this context, the PMBOK can
provide the perspective of managing the scope and project life cycle, while RUP
could provide a more technology-oriented perspective for managing the scope
and product life cycle.

To create a framework of RUP artifact and documents from PMI methodology
that provides an optimal set of documents for software project management we
fi rst have to:

 Explore the PMBOK practices that are covered by RUP
 Point out the PMBOK practices that can enrich the RUP
 Find out the RUP artifacts that are essential for the success of the project

The project management practices in RUP are mainly covered by the
workfl ows in the PM discipline. The PM discipline provides a framework for
managing software-intensive projects, in terms of practical guidelines for
planning, staffi ng, executing, assessing risk and monitoring projects.

The PM discipline focuses mainly on the important aspects of an iterative
development process such as risk management, planning an iterative project,
through the whole lifecycle and for a particular iteration and monitoring progress
of an iterative project.

 The workfl ows, roles, activities, and artifacts in RUP that parallel the
knowledge areas of the PMBOK reside in more than just the project management
discipline.

4.2 PM practices from PMBOK that are not covered by RUP

Although RUP contains some concepts related to people management it
does not cover all aspects of managing people such as hiring, training, coaching
staff members, etc. Also the process does not provide a precise control on budget
management such as planning, estimating, monitoring and controlling the cost of
the product. RUP does not cover any of the issues regarding managing contacts
with suppliers and customers and does not provide any techniques for managing
communications in the project in general. Accordingly RUP does fully cover
various fi elds of project management that could be critical for the success of the
project such as Project Cost Management, Project Human Resource Management,
Project Communications Management, Project Procurement Management and
Project Stakeholder Management.

4.3 Integration of RUP artifacts and PMBOK documents

 Based on above parallel of the two frameworks we suggest a possible

69

reconciliation of essential RUP artifacts and documents of the PMI methodology
and present an optimal set of documents for software project management.

The documents are grouped in two categories – a list of documents required
for the development of any software project (Table 1) and a supplementary list
of documents that if applicable could be extremely useful and bring value to the
software development lifecycle (Table 2).

Table 1. List of documents required for the development of any software project formed as
integration of RUP artifacts and PMBOK documents at a project level.

PMI
RUP Initiating Planning Executing Closing

Monitoring and Control

In
ce

pt
io

n

1. Business Case
2. Project Charter
3. Project Statement of

Work
4. Vison
5. Glossary
6. Use Case

Specifi cation
7. Supplementary

Specifi cation
8. Software

Development Plan
9. Test Plan
10. Analysis Model
11. Deployment Model
12. Use Case Model
13. Development Case

1. Project Management Plan
2. Quality Management Plan
3. Requirements Management Plan
4. Risk Management Plan
5. Communication Management Plan
6. Cost Management Plan
7. Procurement Management Plan
8. Schedule Management Plan
9. Scope Management Plan
10. Work Breakdown Structure
11. Stakeholder Management Plan
12. Milestone List
13. Resource Requirements
14. Change Management Plan
15. Master schedule
16. Risk Register

El
ab

or
at

io
n

Ite
ra

tio
n 17. Confi guration Management Plan

18. Data Model
19. Design Model
20. Domain Model
21. Test Model
22. Software Architecture
23. Software Requirements Specifi cation
24. Integration Built Plan
25. Test Suite
26. Implementation Model
27. Deployment Plan

1. Resource Cal-
endar

2. Duration Esti-
mate

3. Data migra-
tion specifi ca-
tion/ Imple-
mentation
and Migration
Plan

Co
ns

tru
ct

io
n

4. Test
Automation
Architecture

5. Test Evaluation
Summary

6. Test Case
7. User Support

Material
8. Employee

Annual Review
9. Activity List

Tr
an

sit
io

n

10. Status
Assessment

1. Lessons
Learned

2. Post
Project
Review

3. Transition
out plan

70

Table 2. List of supplementary documents formed as integration of RUP artifacts and PMBOK
documents at a project level.

PMI
RUP Initiating Planning Executing Closing

Monitoring and Control

In
ce

pt
io

n

Ite
ra

tio
n

1. Stakeholder Register
2. Feasibility Study
3. Statement of work
4. Stakeholder

Request
5. Project specifi c

Guidelines
6. Project Specifi c

Templates
7. Problem Resolution

Plan
8. Measurement Plan

1. Project Acceptance /
Acceptance Criteria

2. Human Resource Plan
3. Process Improvement

Plan
4. Cost Baseline
5. Funding Requirements
6. Project Calendar
7. Meeting Agenda
8. Meeting Minutes

El
ab

or
at

io
n

9. Bill of Materials
10. Navigation Map
11. Manual Styleguide
12. Confi guration Audit
13. Storyboard

C
on

st
ru

ct
io

n

1. Test Interface
Specifi cation

Tr
an

si
tio

n

1. Formal
Acceptance
and closure

Each document of the PMI methodology is in one of the following relations
with one (or more) of the RUP artifacts:

 Fully overlap
 Partially overlap
 There is no analogue in the corresponding methodology

In bold are marked the documents that fully overlap, in italic are marked

71

the documents of PMI methodology that have no analogue in RUP, and the RUP
artifacts that have no analogue in PMI methodology are underlined.

The decision what subset of documents from the supplementary list should
be maintained for a specifi c project should be made by the development team
based on the characteristics of the project such as size, type, and complexity.

As shown in Table 1 and Table 2, most documents are maintained in the
Initiating and Planning Process Groups. This is understandable as they largely
correspond to RUP phases Inception and Elaboration. However, in the other
process groups there are important elements such as Test Evaluation Summary,
Status Assessment, Lessons Learned, etc.

Due to the iterative nature of the development process documents should
be updated periodically. The tables present the documents grouped by phase (in
terms of RUP) and process group in which they are fi rstly created. The content of
the tables does not pretend to be all-embracing.

Table 3 presents another possible reconciliation of essential documents used
in RUP and PMI methodology - at an iteration level. The table also includes
documents for monitoring and control since these documents are basically used
in all phases/iterations during the project life cycle.

Table 3. Integration of essential RUP artifacts and PMBOK documents at an iteration level.

Initiation Planning Executing Closing Monitoring and Control

1. Next Iteration
Plan

2. Work Order

1. Iteration Assessment
2. Status Assessment
3. Change Request
4. Change Log
5. Corrective Action
6. Performance Report
7. Root Cause Analysis
8. Issue Log

Conclusion

Based on the overview of the main concepts of RUP and PMI framework,
it can be concluded that both standards share similar practices and concepts
concerning project management that are simply described by different terms. They
do not contradict to each other. On the contrary, as highlighted in this paper RUP
and PMI methodologies rather complement each other since PMBOK provides
a basic framework of project management practices that can be successfully
coordinated with a specifi c software development methodology as RUP.

The article proposes a framework containing essential RUP artifacts and

72

documents from the PMI methodology that provides an optimal set of documents
to guide and support the software project management. In the proposed recon-
ciliation PMBOK documents provide instruments for management of key project
assets, including human resources, stakeholders’ engagement, communications
and suppliers in the project. The PMBOK practices also allow more precise con-
trol of the budget, schedule, scope and project planning in general. In addition,
the PMI methodology provides an in-depth risk analysis, as well as some really
good practices for retrospection, extraction of lessons learned and constant reas-
sessment of project activities. These practices can signifi cantly enrich RUP as a
process that provides detailed, software-specifi c guidelines for all software devel-
opment processes. Based on the proposed framework a small software product
has been developed to support with proper templates the courses “Information
Systems Analysis and Design” and “Project Management” at Sofi a University
undergraduate program “Information Systems”.

Even though the proposed frame integrates two of the most commonly
used methodologies of RUP and PMI it could also be adapted to other software
development processes or separate stages of these processes.

Acknowledgment. This paper is supported by Sofi a University “St. Kliment
Ohridski” SRF under Contract 36/2015.

References
1. Bruegge B., Allen H. Dutoit: Object-Oriented Software Engineering Using UML, Patterns, and

Java, Pearson Education, (2008)
2. Callegari, D.A, & Bastos, R. M, Project Management and Software Development Processes:

Integrating RUP and PMBOK. White paper, (2007)
3. Charbonneau S., Software Project Management - A Mapping between RUP and the PMBOK

(http://www.xelaration.com/documents/software_project_management_a_mapping_between_
rup_and_the_pmbok.pdf), (2004)

4. Free Project Management Templates (http://www.projectmanagementdocs.com)
5. Kaloyanova K., Information Systems Analysis and Design Course with Projects Based on Real

Customers Requirements, Proceedings of the 8th Mediterranean Conference on Information
Systems, Verona, Italy;. Paper 31; http://aisel.aisnet.org/mcis2014/31, (2014)

6. Leybourne, S.A., Warburton, R., Kanabar, V., “Is Project Management the New Management
2.0?”, Organisational Project Management, Vol. 1,No. 1, pp.16-36, (2014)

7. Napoli, J. P.; Kaloyanova, K. (2011) “An Integrated Approach for RUP, EA, SOA and BPM
Implementation” In: CompSysTech ‘11-12th International Conference on Computer Systems
and Technologies,Vienna, Austria, (2011)

8. Philippe Kruchten, The Rational Unifi ed Process - An Introduction, Second Edition, Addison-
Wesley, (2000)

9. Project Management Institute (PMI), A Guide to the Project Management Body of Knowledge
(PMBOK), PMBOK Guide 5th edition, (2013)

10. RUP Fundamentals Presentation, https://era.nih.gov/docs/rup_fundamentals.htm
11. RUP for Large Projects - Rational Method Composer Version 7.5.1, IBM (2010)
12. RUP for Small Projects - Rational Method Composer Version 7.5.1, IBM (2010)

73

Possible improvements in the Big Data management with
InnoDB Memcached integration

Svetoslav Savov*1, Dimitar Vassilev2,3

1 – Technical University, 8 St.Kliment Ohridski Blvd, Sofi a 1756, Bulgaria
2 – AgroBioInstitute, 8 Dragan Tsankov Blvd, Sofi a 1164, Bulgaria

3 – Faculty of Mathematics and Informatics, Sofi a University “St. Kliment Ohridski”,
5 James Bourchier Str, Sofi a 1164, Bulgaria

* – corresponding author: svetlio_81@yahoo.com

Abstract: Big Data is a compound term that describes different sources of
voluminous structured and unstructured data. The corresponding data sets are
usually so enormous that it is a great challenge to manage (to gather, store, analyse,
share, query, search and visualize) them in an acceptable period of time. On the
other hand the users nowadays expect to get the information they are looking for in
real time, without considerable delays. Sometimes the available hardware power is
not enough, it is diffi cult to obtain the results in a proper time frame and innovative
software solutions must be applied in order to meet the users‘ expectations.

One of the possible approaches is to store the data in MySQL databases and manage
it through the InnoDB Memcached integration. The improvement is based on the
direct access of the data through the fast Memcached protocol skipping the SQL
query parser, the query optimizer and the overhead caused by the query execution.
Combing it with the InnoDB stable and reliable functionality and the option to still
run complex queries through SQL signifi cantly benefi ts the database administrators
and the applications‘ developers.

This study is focused on the appraoch how to setup the InnoDB integration with
the Memcached daemon plugin. The solution is tested with sample data and
compared with the standard query work fl ow through MySQL. The pros and cons
are highlighted.

Keywords: Big Data, MySQL, InnoDB Memcached integration

1. Introduction

What is considered as Big Data? There are different defi nitions of the Big
Data term. A popular defi nition says that it is extremely large data sets that may be
analysed to reveal patterns, trends, and associations related to human behaviour
and communication.

Big Data is a compound term that describes different sources of voluminous
structured and unstructured data. The corresponding data sets are usually so
enormous that it is a great challenge to manage (to gather, store, analyse, share,

74

query, search and visualize) them in an acceptable period of time. On the other
hand the users nowadays expect to get the information they are looking for in real
time, without considerable delays.[1]

One of the possible approaches is to store the data in MySQL databases
[2] and manage it through the InnoDB integration with Memcached [3],[4]. The
improvement is based on the direct access of the data through the fast memcached
protocol skipping the SQL query parser, the query optimized and the overhead
caused by the query execution. Combing it with the InnoDB stable and reliable
functionality and the option to still run complex queries through SQL signifi cantly
benefi ts the database administrators and the applications developers.

This article will be focused on the way to setup the InnoDB integration with
the Memcached daemon plugin. The solution will be tested with sample data and
compared with the standard query work fl ow through MySQL. At the end pros
and cons will be highlighted.

2. 3Vs model

Big Data can be represented with the 3Vs model [5].

Fig.1. 3 Vs of Big Data

The characteristics are as follows:

75

Volume - Many factors should be taken into consideration when we analyse
the recent increase in the volume of data transmitted all over the world. For
example the data recorded during the years from different types of informational
transactions, the unstructured data from social media platforms, the enormous
amounts of records from smart sensors and machine-to-machine communication.
Several years ago saving such volume of data has been a storage challenge.
Nowadays, after the increase of the storage capacity and decrease of the related
costs the focus is shifted towards the way to properly determine relevance within
large data volumes and gain a certain value of it.

Velocity - During the last years the speed of the data streaming has been
signifi cantly increased. The huge volume of data should be handled within a
timely manner. Some of the data streams should be managed in nearly real time.
The main challenge that most applications‘ developers face is to deal quickly
enough with the data velocity.

Variety - Today there are many different types of data formats: Structured data
stored in traditional databases, logs from software activity (web logs, transactions
logs, activity logs) and smart sensors, Internet of Things (IoT) appliances activity
log, social networks data (media - videos, photos, online messaging services),
Mobile Applications data, customers‘ private and billing data, content created
from business applications, data from scientifi c researches, news feeds, search
engines results‘ analytics, unstructured text documents, email messages, video,
audio and fi nancial transactions. It is still a struggle for most organizations to
manage and merge all these different varieties of data.

3. MySQL InnoDB integration

There are different solutions for the storage and the management of the Big
Data. A popular one is MySQL. You may wonder why?

MySQL is a leading database solution for web based applications. It is
the most popular and widely used open-source RDBMS (relational database
management system). It is already integrated in many solutions that manage
and analyse Big Data. Its syntax is well known by most DBA, programmers and
system administrators. The project is supported by a large community and there
are many drivers for communication with other database systems. It comes with
native support for most programming languages and is compatible with different
operating systems. MySQL provides powerful replication mechanisms which can
be of a great value for the Big Data management. Although there are questions
about the future open-source nature of MySQL there is a very infl uential
organization behind the project. Last but not least, MySQL has advanced security
mechanisms and access privileges. It is considerably fast, stable, secure and
reliable RDBMS.

There are several reasons to use the MySQL InnoDB Memcached integration.

76

Through it you can achieve a better performance – memcached works in the same
process space as the MySQL server allowing direct access (read/write) to the data
without going through the SQL layer and avoiding the overhead of standard MySQL
queries. Structured as well as unstructured data can be handled. Multiple column
values can be set as a single memcached item value. Automatic transfer between
memory and disk is supported. The developers can still use regular MySQL queries
for more advanced requests. The data is protected against memory crashes by
regular commits and the storage on the disk in a MySQL database.

Fig.2. MySQL InnoDB integration

The integration of the Memcached InnoDB plugin is relatively simple.
You should have MySQL 5.6 or later installed on your server. The Memcached
daemon should be integrated in the MySQL server [6].

The commands used in this article are native for Centos. While the syntax
and the fi les’ locations slightly differ for other Linux distributions the approach
is pretty much the same.

First, you should install the libevent library, which is required by Memcached:

 -bash-4.1# yum install libevent

Then import the necessarily sql data and install the Memcached plugin so it
can directly interact with the MySQL server:

77

 -bash-4.1# mysql -uroot -p

Enter password:
mysql> SOURCE /usr/share/mysql/innodb_memcached_confi g.sql;
mysql> INSTALL PLUGIN daemon_memcached SONAME „libmemcached.

so“;
The plugin activation can be verifi ed through the following MySQL statement:
mysql> select * from information_schema.plugins where plugin_name like

‘%memcached%’\G
*************************** 1. row ***************************
 PLUGIN_NAME: daemon_memcached
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: DAEMON
 PLUGIN_TYPE_VERSION: 50624.0
 PLUGIN_LIBRARY: libmemcached.so
PLUGIN_LIBRARY_VERSION: 1.4
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Memcached Daemon
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
1 row in set (0.00 sec)

Tables are set: cache_policies, confi g_options and containers. The last is
used for the InnoDB Memcached mapping :

mysql> use innodb_memcache;
mysql> describe containers;

Field Type Null Key Default Extra
name varchar(50) NO PRI NULL
db_schema varchar(250) NO NULL
db_table varchar(250) NO NULL
key_columns varchar(250) NO NULL
value_columns varchar(250) NO NULL
fl ags varchar(250) NO NULL
cas_column varchar(250) YES NULL
expire_time_column varchar(250) YES NULL
unique_idx_name_on_key varchar(250) NO NULL

 Table 1. Cache_policies and confi g_optioins
9 rows in set (0.00 sec)

78

mysql> select * from containers;

name db_
schema

db_table value_
columns

key_
columns

fl ags cas_
column

expire_time_
column

unique_idx_
name_on_key

aaa test demo_test c1 c2 c3 c4 c5 PRIMARY

Table 2. Containers
The description of the table’s columns is as follows:
 name: This is the name that is like the primary key for the memcache

data collection. If you have a value of default for name, then this will
be the default entry that is used. Otherwise it uses the fi rst entry in the
container table. You can also specify this name value in the NoSQL
statement.

 db_schema: The InnoDB database name that you will use to store the
data.

 db_table: The InnoDB database table name that you will use to store the
data.

 key_columns: The column that you will use for the key value lookup.
Represents the alphanumerical value which will be the key for accessing
the value of the item in the Memcached protocol.

 value_columns: Data will be pulled from and/or stored to these column/
columns of data. You use a separator value (such as a pipe „|“ symbol) to
separate the columns. The actual payload is kept in this column.

 fl ags: This column stores memcache fl ags, which is an integer that is
used to mark rows for memcache operations. For example, it could be a
fl ag whether or not to use compression.

 cas_column: Unique identifi er of each item. Used for storing memcache
compare-and-swap values.

 expire_time_column: Expiration time in seconds.
 unique_idx_name_on_key: This is the name of the unique index that

you will use for the key column, and you should use the primary key for
the table. You should not use an auto-incrementing index, as you can’t
insert into an auto-incrementing key.

The default port for the memcached communication is 11211. It is set to
work on localhost. The telnet command can be used to establish a connection and
verify the expected behavior. Use the standard set and get requests. The syntax
is as follows:

set [key] [fl ag] [expiration] [length in bytes]
[value]

79

get [value]
-bash-4.1# telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
set testkey 0 100 10
mytest1234
STORED
get testkey
VALUE testkey 0 10
mytest1234
END
To verify that the new key value pair is stored in the database as well run the

following query:
-bash-4.1# mysql -uroot -p -e “select * from test.demo_test where c1 like

‘testkey’;”
Enter password:
+---------+-------------+------+------+----------------+
| c1 | c2 | c3 | c4 | c5 |
+---------+-------------+------+------+----------------+
|testkey|mytest1234| 0 | 2 |1442153272 |
+----------+------------+------+------+----------------+

4. Benchmark the InnoDB Memcached integration

In order to test the performance improvement you can run scripts like the
following ones:

Memcached

-bash-4.1# time php test_memcached.php
real 0m1.717s

-bash-4.1# cat test_memcached.php
<?php
$memcache_obj = new Memcache;
$memcache_obj->connect(‚localhost‘, 11211) or die („Could not connect“);
for ($x = 0; $x <= 10000; $x++) {
 $key=“mykey“ . $x;
 $random = substr(md5(rand()), 0, 7);
 $memcache_obj->set($key, $random) or die („Failed to save data at the

80

server“);
}
?>

MySQL

-bash-4.1# time php test_mysql.php

real 0m2.109s

-bash-4.1# cat test_mysql.php
<?php
$servername = „localhost“;
$username = „user“;
$password = „pass“;
$dbname = „test“;
// Create connection
$conn = mysqli_connect($servername, $username, $password, $dbname);
// Check connection
if (!$conn) {
 die(„Connection failed: „ . mysqli_connect_error());
}
for ($x = 0; $x <= 10000; $x++) {
 $key=“mykey“ . $x;
 $random = substr(md5(rand()), 0, 7);
 $sql = „UPDATE demo_test SET c2=‘$random‘ WHERE c1=‘$key‘“;
 mysqli_query($conn, $sql);
}
mysqli_close($conn);
?>

Both scripts insert 10000 key value pairs in a MySQL database. The fi rst
script completes the task through Memcache while the second uses the standard
approach with MySQL.

5. Conclusion

The Memcached InnoDB integration has certain benefi ts. Some of the Pros
and Cons are:

• Latency – the direct access to the InnoDB engine with simple memcached
commands signifi cantly speeds up the execution of the corresponding

81

query. The query through the SQL engine takes more time since it should
be parsed, the execution should be fi rst optimized and then completed.

• Throughput - the faster execution of the query through the memcached
plugin (no parsing, no optimization - accessing a single row by an index)
allows to complete more queries for a defi ned period of time.

• Scalability – with the standard MySQL approach the scalability can
be achieved either by switching to MySQL Cluster that has a built-in
auto-sharding functionality or by implementing the sharding on the
application level. Memcached is designed to work as distributed cache
and offers a sharding feature through the libraries (libmemcached for
example) that support the connection to the database.

• MemCached does not use an authentication mechanism by default
so it is not recommended to be used for sensitive data. Alternatively,
additional Simple Authentication and Security Layer authentication
should be implemented.

Acknowledgments. This work has been supported by the National Science Fund
of Bulgaria within the “Methods for Data Analysis and Knowledge Discovery in Big
Sequencing Datasets” Project, Contract DFNI-I02/7 of 12 December 2014.

References
[1] McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J. and Barton, D., 2012. Big data. The

management revolution. Harvard Bus Rev, 90(10), pp.61-67.
[2] MySQL AB, 1995. MySQL: the world’s most popular open source database.
[3] Frühwirt, P., Kieseberg, P., Schrittwieser, S., Huber, M. and Weippl, E., 2012. InnoDB database

forensics: reconstructing data manipulation queries from redo logs. In Availability, Reliability
and Security (ARES), 2012 Seventh International Conference on (pp. 625-633). IEEE.

[4] Oracle, 1997-2015. MySQL 5.7 Reference Manual [Online]
(https://dev.mysql.com/doc/refman/5.7/en/innodb-memcached.html)
[5] Zikopoulos, P. and Eaton, C., 2011. Understanding big data: Analytics for enterprise class

hadoop and streaming data. McGraw-Hill Osborne Media.
[6] Sun, C., 2012. New Enhancements for InnoDB Memcached. Transactions on InnoDB. Oracle

blog [Online]
(https://blogs.oracle.com/mysqlinnodb/entry/new_enhancements_for_innodb_memcached)

82

PhyloEdit: a web-based GUI for visualization and analysis
of evolutionary trees

Zhenya Duylgerova1, Irena Avdjieva2, Deyan Peychev2, Dimitar Vassilev *1,2

1 – Faculty of Mathematics and Informatics, Sofi a University “St. Kliment Ohridski”, 5 James
Bourchier Str, Sofi a 1164, Bulgaria

2 – Bioinformatics group, AgroBioInstitute, 8 Dragan Tsankov Blvd, Sofi a 1164, Bulgaria
* – Corresponding author: jim6329@gmail.com

Abstract
Evolution is the cornerstone of contemporary biology and unites all its fi elds under
one theoretical concept. Evolutionary biology studies the evolutionary history and
relationships among living organisms. These relationships are based on similarities
and differences between biological entities and are graphically represented as
phylogenetic trees. Today, reconstruction, refi ning, and analysis of phylogenetic
trees relies extensively on sequence alignments and benefi ts greatly from
computational methods and algorithms. Graphical representation of phylogenetic
trees is an inseparable part of evolutionary analysis and there are many software
applications designed to visualize trees. The majority of them, however, are limited
in either functionality or accessibility. This is why the current study proposes a new
visualization tool that is web-based, open-source, and, most importantly, provides
additional information about the genes in the phylogenetic trees.

1. Introduction

Evolutionary biology studies the descent and the origin of species (and their
genes). Current researches in this fi eld cover diverse topics and incorporate ideas
from molecular genetics, systematics, phylogenetics, bioinformatics, and other,
to study the evolutionary history and relationships among living organisms.
These relationships are discovered through phylogenetic inference methods that
evaluate observed heritable traits, such as DNA sequences or morphology under
a model of evolution of these traits [1].

The graphical result of evolutionary analyses is a phylogeny (also known as a
phylogenetic tree). A phylogenetic tree shows inferred evolutionary relationships
among various biological entities, based upon similarities and differences in their
physical or genetic characteristics. It represents an undirected, acyclic, bifurcating
graph with a distinct, albeit sometimes virtual, starting point. Phylogenetic trees
(Figure 1) describe the “probable” evolutionary relationships between entities
that correspond to the leaves (external nodes) of the tree. Entities can be species,

83

genes or any operational taxonomic units (OTUs), even unknown or multiple
species. Internal tree nodes represent hypothetical common ancestors of the
descending leaves [1], [2], [3].

Evolutionary biology, like many other science fi elds, strongly relies on
computational methods and algorithms. There are various bioinformatics
toolsets used in evolutionary analyses that include in silico methods developed
to reconstruct, analyze, and visualize evolutionary events. Computationally,
phylogenetic trees are presented in different fi le formats (Newick [4], PhyloXML
[5], Nexus [6], etc.) and stored in phylogenetic (PhylomeDB [7], TreeBase [8],
etc.) or general biological repositories (Ensembl [9], NCBI [10], etc.). Today,
there are numerous visualization tools designed to read the phylogenetic tree
structure from fi les and graphically represent it to users. These tools, however,
seldom have any other functionality, such as, for example, visualizing additional
information for the OTUs or storing/sharing trees. Also, most of these tools are
desktop applications which make them dependable on users’ operational system
and hardware resources, or proprietary software [11].

Regarding the abovementioned limitations of current software, the goal
of this research is to develop a platform-undependable, web-based application
which allows visualization, interpretation, supplementary data addition, storage
and sharing of phylogenetic trees.

2. Materials and methods

2.1. Phylogenetic trees

The application was designed to be used with data in Newick (Newick
notation or New Hampshire) tree format, which is one of the most common
phylogenetic formats and is incorporated in most tree reconstruction software
packages. Trees in Newick format are represented as one-line strings using
nested parentheses and commas. The tree starts with a parenthesis and ends with
a semicolon. Interior nodes are represented by a pair of matched parentheses.
Between them are representations of the nodes that are immediately descended
from that node, separated by commas. Leaves can be left empty or represented
by their names, which can be any string of printable characters except blanks,
colons, semicolons, parentheses, and square brackets. Branch lengths can be
incorporated into a tree by putting a real number, with or without decimal point,
after a node and preceded by a colon. This represents the length of the branch
immediately below that node. Typically, a tree’s representation is rooted on an
internal node and it is rare (but legal) to root a tree on a leaf node. When an
unrooted tree is represented in Newick notation, an arbitrary node is chosen as
its root [4].

84

The test data input for this project was retrieved from the 19th release of the
Ensembl Plants database [9]. It consists of 18330 gene phylogenetic trees in a
single fl at fi le dump in Ensembl Multi Format (emf). In addition to the Newick
string representing the tree itself, this format also includes additional information
about each gene (Figure 2).

2.2. User interface

Both anonymous and registered users can use the application. Registered
users have to provide a valid e-mail, username and a password to create an
account. They are assigned a unique identifi cation number (ID) during registration
and are be able to view, import, edit, browse and exchange phylogenetic trees and
supplement data, while anonymous users’ abilities are limited to browsing and
viewing.

 Phylogenetic trees also receive unique IDs after being uploaded. The trees
and the metadata associated with them are editable only by the users who have
uploaded them and changes can be made by other users only after the initial
uploader’s authorization. Phylogenetic trees are described as Newick strings and
one or more parameters in the form of metadata can be attributed to each leaf.

2.3. Technological background

Regarding the functionality and specifi cations of the tool, a PHP-based
software application was developed implying the following practices:

 Object-oriented programming (OOP) – a programming paradigm based
on the concept of “objects” (data) in the form of fi elds (attributes); and
code in the form of procedures (methods). An object’s procedures can
access and often modify the data fi elds of the object with which they are
associated [12].

 Model-View-Controller (MVC) – a software architectural pattern for
implementing user interfaces that divides a given software application
into three interconnected parts to separate internal representations of
information from the ways that information is presented to or accepted
from the user [13]. Traditionally used for desktop graphical user
interface.

 Data access layer (DAL) and a simplifi ed Object-relational mapping
model that allows representing the input data as PHP objects and classes
[14].

 Smarty – a web template system that allows PHP programmers to defi ne
custom functions that can be accessed using Smarty tags, later processed
and substituted with other code [15].

85

3. Results

After determining the structure of the application and creation the test
database, the approach to developing the software is straightforward. First,
queries to the application trigger a confi gurational script. It loads all the necessary
libraries and models, and creates instances of the classes AdoDB [16] and Smarty.
The confi guration fi le is located in /inc/confi g.inc. php. All processes follow the
same mechanism: the user makes a HTTP query to the server through the graphic
user interface (GUI). Based on the query parameters, the corresponding controller
invokes the suitable functions of the model, supplies the view with the processed
data and retrieves a resulting HTML. To achieve this process the following tasks
were fulfi lled:

1) All necessary ORM (Object-relational mapping) models, classes and
controllers were developed;

2) All views and their corresponding interfaces were designed;
3) All external libraries needed for the system functionalities (Smarty,

AdoDB, PhyloCanvas, gettext) were integrated;
4) The PhyloCanvas [17] library was modifi ed according to the project

special requirements

3.1. Phylogenetic tree visualization:

The visualization of a current tree is done by the PhyloCanvas library in
the Tree/view.tpl view. To achieve this, a HTML object, labelled with the ID
„phylocanvas“, is created. The parameter for this HTML object is the ID of the
PHP object from the Tree model.

The script sends an AJAX query to the Tree controller and thus retrieves the
Newick string for the current tree. An example of the resulting visualization is
shown of fi gure 3

For larger trees the PhyloCanvas functionality allows zooming in and out,
collapsing and expanding subtrees at a given internal node and exporting trees/
subtrees as images or leaf labels as text.

3.2. Editing leaf-associated metadata:

The library uses a HTML 5 Canvas, where each leaf is a separate object.
On mouse click over a leaf node, an AJAX query is sent to the controller which
retrieves all supplementary data associated with the current leaf – in general, this
includes information about the gene (retrieved from the local database or form
Ensembl) and available functional annotations or predictions.

The GUI shown in response to the query can also allow edition of the data,
provided that the current user is authorized to do so.

86

3.3. Multilinguialism and Gettext integration

To aid the user experience, the system interface is designed to be easily
translated into multiple languages. A suitable solution to this issue is the
integration of the application with Gettext library [18]. It is an internationalization
and localization system commonly used for writing multilingual programs on
Unix-like computer operating systems.

4. Discussion:

The resulting product, PhyloEdit (http://phyloedit.org/index.php), is a web-
based, platform-independent, open-source GUI, able to view, store, share, and,
to an extent, edit phylogenetic trees and supplemental data associated with them.
The open-source software is one of the main advantages of this application and
it will, ideally, wrap around itself a community of researchers and developers to
further support and add new functionalities to it. This perspective would make
PhyloEdit a popular and useful tool for scholars and scientists in the fi eld of
evolutionary analysis.

PhyloEdit relies on standard hosting technologies which make it fl exible and
adjustable to the volume of data and users working with it. Initially designed
to use a shared hosting services, it can be conveniently transferred to a more
resourceful service, if needed.

Compared to similar web-applications, PhyloEdit provides an extended
functionality including, but not limited to, sharing information between users
on different levels, integration with the Ensembl database and, simultaneously,
storing information independently from it, integration with available functional
annotations and ability to predict function of unannotated genes, and more.

Last, but not least, PhyloEdit is accessible to anyone. The project code can be
found at the public repository GitHub [19] on the following address:

https://github.com/arimano/plyloedit

5. Conclusion

The current project successfully developed a model GUI for visualization,
storage and analysis of evolutionary data. The application architecture is
adjustable to additional functionalities and services. The main perspective of the
conceptual model and its web-application is further development of its ability to
predict functional annotations based on semantic models, as well as addition of
other available phylogenetic data formats.

Acknowledgments. This work has been supported by the National Science Fund
of Bulgaria within the “Methods for Data Analysis and Knowledge Discovery in Big
Sequencing Datasets” Project, Contract DFNI-I02/7 of 12 December 2014.

87

References
[1] Barton N H, D E G Briggs, J A Eisen, D B Goldstein, N H Patel (2007). Evolution. Cold Spring

Harbor LP
[2] Edwards A W F and L L Cavalli-Sforza (1964). Reconstruction of evolutionary trees. eds.

Vernon Hilton Heywood and J McNeill. Phenetic and Phylogenetic Classifi cation 6(6): 67-76.
[3] Hodge T and M Cope (2000). A myosin family tree. J Cell Sci 113 (19): 3353–4.
[4] Archie J, W H Day, J Felsenstein, W Maddison, C Meacham, E J Rohlf, D Swofford (1986).

The Newick tree format. More information: http://evolution. genetics. washington. edu/phylip/
newicktree. html.

[5] Han M V and C M Zmasek (2009). PhyloXML: XML for evolutionary biology and comparative
genomics. BMC Bioinformatics (United Kingdom: BioMed Central) 10: 356

[6] Maddison DR, D L Swofford, W P Maddison (1997). NEXUS: An extensible fi le format for
systematic information. Systematic Biology 46 (4): 590–621

[7] Huerta-Cepas J, A Bueno, J Dopazo, T Gabaldón. (2008). PhylomeDB: a database for genome-
wide collections of gene phylogenies.Nucleic acids research, 36(suppl 1), D491-D496.

[8] Piel W H, M J Donoghue, M J Sanderson, L U T Netherlands (2000). TreeBASE: a database of
phylogenetic information. In Proceedings of the 2nd International Workshop of Species 2000.

[9] Kersey P J, J Allen, M Christensen, P Davis, L J Falin, C Grabmueller, D Seth, T Hughes, J
Humphrey, A Kerhornou, J Khobova, N Langridge, M McDowall, U Maheswari, G Maslen, M
Nuhn, C K Ong, M Paulini, H Pedro, I Toneva, M A Tuli, B Walts, G Williams, D Wilson, K
Youens-Clark, M K Monaco, J Stein, X Wei, D Ware, D M Bolser, K L Howe, E Kulesha, D
Lawson, D M Staines (2014). Ensembl Genomes 2013: scaling up access to genome-wide data.
Nucleic acids research, 42 (D1): D546-D552.

[10] Coordinators, N. R. (2015). Database resources of the national center for biotechnology
information. Nucleic acids research, 43(Database issue), D6.

[11] Felsenstein, J, J Archie, W H E Day, W Maddison, C Meacham, F J Rohlf, D Swofford (1986).
Society for the Study of Evolution meeting, Durham, New Hampshire, US http://evolution.
genetics.washington.edu/phylip/newicktree.html

[12] Kindler E and I Krivy (2011). Object-Oriented Simulation of systems with sophisticated
control. International Journal of General Systems pp 313–343.

[13] Reenskaug T and J Coplien (2009). The DCI Architecture: A New Vision of Object-Oriented
Programming.

[14] Mitchell S (2010). Teach Yourself ASP.NET 4 in 24 Hours 1st edition. Pearson Education, Inc.
[15] Ohrt M, U Tews (2001-2011).Smarty - the compiling PHP template engine. New Digital

Group, Inc (http://www.smarty.net)
[16] Regad D, M Newnham (2014). ADOdb - Database Abstraction Layer for PHP (http://adodb.

sourceforge.net/)
[17] Goater R (2015). PhyloCanvas tree-drawing library. Centre for Genomic Pathogen Surveillance,

WTSI (http://phylocanvas.org)
[18] Ueno D (2015). GNU gettext. Free Software Foundation, Inc (https://www.gnu.org/software/

gettext/)
[19] Dabbish L, C Stuart, J Tsay, J Herbsleb (2012). Social coding in GitHub: transparency and

collaboration in an open software repository. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work (pp. 1277-1286). ACM.

88

Figures and legends of fi gures

Figure 1: The tree structure incudes nodes (represented in the fi gure as circles) and branches (lines
connecting nodes). External nodes (leaves) represent the actual OTUs – in this case, virus genomes.
Internal nodes indicate putative ancestors for the sampled viruses. Trees A and B are rooted which
suggests the location of the ultimate common ancestor of all sampled viruses. Knowing this gives
the tree an order of branching events. Estimated branch lengths (numbers above branches in tree
A) indicate nucleotide substitutions per site and correspond to the evolutionary distance between
events. A scale bar for branch lengths is seen at the bottom of each tree. There are three types of
phylogenetic tree formats, all describing the same tree: A) classical (rectangular); B) polar (circular)
- big visual impact but generally have reduced readability; and C) radial – used when the rooting
of the tree is not known.

89

Figure 2: A single tree in Ensembl Plants EMF fi le.

Figure 3: Visualization of a phylogenetic tree in PhyloEdit.

90

CWE-119 in Z-Notation

 Vladimir Dimitrov

Faculty of Mathematics and Informatics, University of Sofi a,
5 James Bourchier Blvd., 1164 Sofi a, Bulgaria

cht@fmi.uni-sofi a.bg

Abstract. Software weaknesses are described in formatted text. There is no widely
accepted formal notation for that purpose. This paper shows how Z-notation can be
used for formal specifi cation of CWE-119.

Key words: Z-notation, CWE, formal specifi cation.

1 Introduction

So-called weaknesses, introduced during the program development phase,
are leading problem in Computer security. A weakness becomes vulnerability
when a hacker attacks the software using successfully this weakness.

Some defi nitions of used above terms, taken from [1], are listed below:
• “A1. What is CWE? What is a “software weakness”?
Targeted at both the development community and the community of

security practitioners, Common Weakness Enumeration (CWE™) is a formal
list or dictionary of common software weaknesses that can occur in software’s
architecture, design, code or implementation that can lead to exploitable security
vulnerabilities. CWE was created to serve as a common language for describing
software security weaknesses; serve as a standard measuring stick for software
security tools targeting these weaknesses; and to provide a common baseline
standard for weakness identifi cation, mitigation, and prevention efforts.

Software weaknesses are fl aws, faults, bugs, vulnerabilities, and other errors
in software implementation, code, design, or architecture that if left unaddressed
could result in systems and networks being vulnerable to attack. Example software
weaknesses include: buffer overfl ows, format strings, etc.; structure and validity
problems; common special element manipulations; channel and path errors;
handler errors; user interface errors; pathname traversal and equivalence errors;
authentication errors; resource management errors; insuffi cient verifi cation of
data; code evaluation and injection; and randomness and predictability.”

• “A2. What is the difference between a software vulnerability and software
weakness?

Software weaknesses are errors that can lead to software vulnerabilities. A
software vulnerability, such as those enumerated on the Common Vulnerabilities

91

and Exposures (CVE®) List, is a mistake in software that can be directly used by
a hacker to gain access to a system or network.”

• “A7. What is the relationship between CWE and CAPEC?
While CWE is a list of software weakness types, Common Attack Pattern

Enumeration and Classifi cation (CAPEC™) is a list of the most common methods
attackers use to exploit vulnerabilities resulting from CWEs. Used together,
CWE and CAPEC provide understanding and guidance to software development
personnel of all levels as to where and how their software is likely to be attacked,
thereby equipping them with the information they need to help them build more
secure software.”

• “A8. What is the relationship between CWE and CVE?
MITRE began working on the issue of categorizing software weaknesses as

early 1999 when it launched the Common Vulnerabilities and Exposures (CVE®)
List. As part of building CVE, MITRE’s CVE Team developed a preliminary
classifi cation and categorization of vulnerabilities, attacks, faults, and other
concepts beginning in 2005 to help defi ne common software weaknesses.
However, while suffi cient for CVE those groupings were too rough to be used to
identify and categorize the functionality offered within the offerings of the code
security assessment industry. The CWE List was created to better address those
additional needs.”

• “A1. What is CVE?
CVE is a list of information security vulnerabilities and exposures that aims

to provide common names for publicly known cyber security issues. The goal of
CVE is to make it easier to share data across separate vulnerability capabilities
(tools, repositories, and services) with this “common enumeration.””

• “A8. What is a “vulnerability”?
An information security vulnerability is a mistake in software that can

be directly used by a hacker to gain access to a system or network. See the
Terminology page for a complete explanation of how this term is used on the
CVE Web site.”

• “A9. What is an “exposure”?
An information security exposure is a mistake in software that allows access

to information or capabilities that can be used by a hacker as a stepping-stone
into a system or network. See the Terminology page for a complete explanation of
how this term is used on the CVE Web site.”

• “What is an “attack pattern”?
An attack pattern is an abstraction mechanism for helping describe how an

attack against vulnerable systems or networks is executed. Each pattern defi nes
a challenge that an attacker may face, provides a description of the common
technique(s) used to meet the challenge, and presents recommended methods
for mitigating an actual attack. Attack patterns help categorize attacks in a
meaningful way in an effort to provide a coherent way of teaching designers

92

and developers how their systems may be attacked and how they can effectively
defend them. The CAPEC List provides a formal list of known attack patterns.”

In the databases CWE, CVE and CAPEC: the weaknesses, vulnerabilities
and attacks are structured, but not formalized. This leads to misinterpretation of
the text.

This paper is an initial attempt to CWEs formalization. Z-notation [1, 2] is
well-known standard notation, suitable for that purpose. The paper focuses on
CWE-119.

2 CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer

The description of CWE-119, taken from the database, is:
“Description
Description Summary
The software performs operations on a memory buffer, but it can read from or

write to a memory location that is outside of the intended boundary of the buffer.
Extended Description
Certain languages allow direct addressing of memory locations and do not

automatically ensure that these locations are valid for the memory buffer that is
being referenced. This can cause read or write operations to be performed on
memory locations that may be associated with other variables, data structures,
or internal program data.

As a result, an attacker may be able to execute arbitrary code, alter the
intended control fl ow, read sensitive information, or cause the system to crash.

Alternate Terms
Memory Corruption:
The generic term “memory corruption” is often used to describe the

consequences of writing to memory outside the bounds of a buffer, when the root
cause is something other than a sequential copies of excessive data from a fi xed
starting location (i.e., classic buffer overfl ows or CWE-120). This may include
issues such as incorrect pointer arithmetic, accessing invalid pointers due to
incomplete initialization or memory release, etc.”

For more details visit http://cwe.mitre.org/data/defi nitions/119.html.

3 Formal Description of CWE-119

The basic subject of CWE-119 is the memory. It is a sequence of bytes. The
basic type is the byte.

[Byte]

93

Memory address space starts from 0 and ends to some max address.

| maxAddress: ℕ

Memory is fi nite sequence of bytes – possibly empty sequence. The fi nite
sequences elements in Z-notation are numbered starting from 1, but computer
memory bytes are indexed starting from 0.

There are two operations with the memory: read and write that a program can
perform. First one is read.

Second one is write.

i? ∈ dom contents
contents' = (1..i?) ◁ contents ⁀ 〈 w?〉 ⁀ ((i?+2)..#contents) ◁ contents

A program performs in memory on a buffer. The buffer is specifi ed with its
address space.

94

Every program run performs on a given buffer. The property bad run is
CWE-119, i.e. read or write outside the buffer.

4 Conclusion

CWE-119, following this description, is an operation that accesses the
memory outside the buffer space. This operation can be part of any other program
operation.

CWE-119 specifi cation is enough abstract and formal in comparison with its
textual representation. On the other hand, the CWE-119 description is at very low
level – the memory. Therefore, the level of the specifi cation is not very high, but
CWE-119 is formalized.

The more general question is “How suitable is the Z-notation for formal
specifi cation of CWEs?” More general conclusion to do from one example is not
correct – more research is needed.

How the specifi cation can be used? Z-notation supporting tools can extract
automatically from the specifi cation pre- and post-conditions. Formal verifi cation
tools can use these conditions to check the software for CWE-119. However, the
devil is in the details – the problem is how to link the abstract buffer space with
the real one of the programs. There are some ideas in that direction, but more
research is needed.

This research is a result of collaboration with NIST.

5 References
1. The MITRE Corporation, www.mitre.org.
2. “ISO/IEC 13568:2002”. Information Technology — Z Formal Specifi cation Notation —

Syntax, Type System and Semantics. ISO. 2002-07-01. 196 pp.
3. “ISO/IEC 13568:2002/Cor.1:2007”. Information Technology — Z Formal Specifi cation

Notation — Syntax, Type System and Semantics — Technical corrigendum 1 (PDF). ISO.
2007-07-15. 12 pp.

95

 The Need to Formalize the Software Bugs

Vladimir Dimitrov

Faculty of Mathematics and Informatics, University of Sofi a,
5 James Bourchier Blvd., 1164 Sofi a, Bulgaria

cht@fmi.uni-sofi a.bg

Abstract. This paper motivates the need for software bug formalization. It is based on MITRE
classifi cation.

Key words: software bugs, formal specifi cation.

1 Introduction

Knowing what makes a software systems vulnerable to attacks is critical, as
software vulnerabilities hurt security, reliability, and availability of the system
as a whole. In addition, understanding how an adversary operates is essential to
effective cyber security.

The term “software bug” [1] applies to the following concepts:
• Weakness: A type of mistake in software that, in proper conditions,

could contribute to the introduction of vulnerabilities within that
software. This term applies to mistakes regardless of whether they occur
in implementation, design, or other phases of the SDLC.” [2]

• Vulnerability: “An occurrence of a weakness (or multiple weaknesses)
within software, in which the weakness can be used by a party to cause
the software to modify or access unintended data, interrupt proper
execution, or perform incorrect actions that were not specifi cally granted
to the party who uses the weakness.” [3]

• Attack: A well-defi ned set of actions that, if successful, would result in
either damage to an asset, or undesirable operation. [4] (An attacker has
to fi nd and exploit a weakness, exposed by a vulnerability, and realize
the vulnerability.

These are important concepts that are related but different. A weakness is a
static presence existing in software systems -- it might stay in software and never
cause any problems until it is exploited by an attacker, and when the attacker
fi nds out the weakness(es) and exploit it (them), the vulnerability of this software
is exposed [4].

96

2 Common Vulnerabilities and Exposures (CVE)

CVE is a dictionary of security vulnerabilities. It was established in 1999
in response to lack of standardization of names of vulnerabilities: different
repositories could refer to the same vulnerability by a different name, resulting in
diffi culty in comparing software security tools. CVE provides standard identifi ers
for security vulnerabilities, and help in fi nding information about a vulnerability,
including ways of, and available products for, eliminating the vulnerability. It
can also help in determining whether particular tools are adequate for detecting
attacks that are based on particular vulnerabilities[1].

After discovering a potential security vulnerability, a CVE Numbering
Authority (CNA) can assign to it a CVE identifi er [2]. Then the CVE Editor
posts the information on the CVE List. The Primary CNA is MITRE Corporation.
Other CNAs are software vendors, (for example, Apple Inc. and Adobe Systems
Incorporated), third-party coordinators, (for example, CERT/CC), or researchers
(for example, Core Security Technologies). The CVE Editor is MITRE
Corporation.

3 Common Weaknesses Enumeration (CWE)

Common Weakness Enumeration (CWE) is a collection of descriptions of
software weakness types stored as .xml, .xsd and .pdf documents. There are four
major types of CWE-IDs:

1) Category
2) Compound Element
3) View
4) Weakness.
The weaknesses covered by CWE have weakness IDs. Category and

Compound Element are aggregations of weaknesses. Category aggregates types
of weaknesses, and Compound Element aggregates a group of several events that
together can result in a successful attack. View IDs are “assigned to predefi ned
perspectives with which one might look at the weaknesses in CWE.” [2]

CWE was established for those who create software, analyze software for
security fl aws, and provide tools and services for fi nding and defending against
security fl aws in software [1]. The CWE Compatibility and Effectiveness Program
is based on six requirements:

1) “CWE Searchable,”
2) “CWE Output,”
3) “Mapping Accuracy,”
4) “CWE Documentation,”
5) “CWE Coverage,”
6) “CWE Test Results.”

97

4 Common Attack Pattern Enumeration and Classifi cation
(CAPEC)

Common Attack Pattern Enumeration and Classifi cation (CAPEC) is a
comprehensive dictionary and classifi cation taxonomy of known attacks that can
be used by analysts, developers, testers, and educators to advance community
understanding and enhance defenses [3].

CAPEC is actually a catalog of attack patterns along with a comprehensive
schema and classifi cation taxonomy created to assist in the building of secure
software. Attack patterns examples: HTTP response splitting, SQL injection,
XSS in HTTP query strings, Session fi xation, Phishing, Filter failure through
buffer overfl ow, Removing or short-circuiting guard logic, Lifting data embedded
in client distributions, Subvert code-signing facilities, Refl ection attack in an
authentication protocol, Cause web server misclassifi cation, Rainbow table
password cracking, Forced deadlock, Cache poisoning, Restful privilege
escalation [5].

5 Problems with CWE, CVE, and CAPEC: Non-Precise
Descriptions

CWE, CVE, and CAPEC are considerable efforts, providing foundational
knowledge about software weaknesses, vulnerabilities, and attacks. However
they are not suffi cient, accurate and precise enough to serve as common
measuring sticks and provide common base for software developers and security
practitioners. There is luck of precise descriptions of attacks that lead to realization
of vulnerabilities, exposed by software weaknesses.

CWE defi nitions have ambiguities, entangle phases, and do not match well
with the classes reported by test tools. For example, the description summary of
CWE-119 includes text such as “intended boundary”, which is too vague. It does
not indicate that it is the boundary given by the formal semantics.

CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer - “The software performs operations on a memory buffer, but
it can read from or write to a memory location that is outside of the intended
boundary of the buffer.”

While, to mitigate the vagueness of the defi nition as much as possible, our
tentative defi nition of CWE-119 is: The software can access through a buffer a
memory location not allocated to that buffer [6].

CVE defi nitions need to describe unambiguously and fully describe the
involved weakness (es) exposure. For example, CVE-160 description and Related
Weaknesses parts do not provide information on possible chains of weaknesses
that lead to the vulnerability realization.

98

CVE-160: Heartbleed - “The (1) TLS and (2) DTLS implementations in
OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets,
which allows remote attackers to obtain sensitive information from process
memory via crafted packets that trigger a buffer over-read, as demonstrated by
reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.”

CAPEC defi nitions also need formalization. For example, the CAPEC-47
description does not show the dynamics of the activities leading to the realization
of the attack.

CAPEC-47: Buffer Overfl ow via Parameter Expansion - “In this attack,
the target software is given input that the attacker knows will be modifi ed and
expanded in size during processing. This attack relies on the target software
failing to anticipate that the expanded data may exceed some internal limit,
thereby creating a buffer overfl ow.”

This research would like to explore formalization of CWEs, CVEs, and
CAPECs.

6 Formalization

What is formal specifi cation? In [7] it is defi ned as:
“Formal specifi cations use mathematical notation to describe in a precise

way the properties which an information system must have, without unduly
constraining the way in which these properties are achieved. They describe
what the system must do without saying how it is to be done. This abstraction
makes formal specifi cations useful in the process of developing a computer
system, because they allow questions about what the system does to be answered
confi dently, without the need to disentangle the information from a mass of
detailed program code, or to speculate about the meaning of phrases in an
imprecisely-worded prose description.

A formal specifi cation can serve as a single, reliable reference point for
those who investigate the customer’s needs, those who implement programs to
satisfy those needs, those who test the results, and those who write instruction
manuals for the system. Because it is independent of the program code, a formal
specifi cation of a system can be completed early in its development. Although
it might need to be changed as the design team gains in understanding and the
perceived needs of the customer evolve, it can be a valuable means of promoting
a common understanding among all those concerned with the system.”

Candidate tools for formal specifi cation of software bugs are Z-Notation [7],
CSP [8] and UML [9]. In the next following a motivation for this choice is given.

Z-notation is a standard notation standardized by ISO. It is high level, based
on mathematics notation. Z-notation is applicable on any level of abstraction.
It is useful for software requirement specifi cation and code verifi cation. The

99

problem with it is the limited set of tools supporting the notation – mainly at
academia. Z-notation can be used for CWE and CVE specifi cation (weaknesses
and vulnerabilities).

Communicating Sequential Processes (CSP) is well-designed algebra. It is
useful for distributed application specifi cation and verifi cation. It is behavioral
in nature and can be used for CAPEC specifi cation (attacks). Its problem is like
that of Z-notation.

An alternative of Z-notation and CSP is UML. This notation is well
supported in industry. Activity diagrams can be used for CAPEC specifi cation,
class diagrams and object diagrams for CWE and CVE can be used. Even more,
special kind of CWE, CVE and CAPEC can be developed; code for software bug
tests can be automatically generated. The problem is that all these possibilities
must be carefully investigated.

7 Conclusion

Some preliminary results in above mentioned directions have been done and
soon will be published, but more research must be done.

8 References
1. MITRE. “CVE Common Vulnerabilities and Exposure.” http://cve.mitre.org
2. MITRE. “CWE Common Weakness Enumeration.” http://cwe.mitre.org
3. MITRE. “Common Attack Pattern Enumeration and Classifi cation”, https://capec.mitre.org
4. Wu, Y., “Using Semantic Templates to Study Vulnerabilities Recorded in Large Software

Repositories”, Dissertation, October 2011, Omaha, Nebraska.
5. Wu, Y., R. A. Gandhi, and H. Siy. “Using semantic templates to study vulnerabilities recorded

in large software repositories.” 2010 ICSE Workshop on Software Engineering for Secure
Systems, SESS ‘10, pages 22-28, New York, NY, USA, 2010. ACM.

6. R. Gandhi, H. Siy, Y. Wu. “Studying Software Vulnerabilities.” CrossTalk, The Journal of
Defense Software Engineering, September/October 2010.

7. Spivey, J. M. “The Z Notation: A reference manual”, International Series in Computer Science
(2nd ed.). Prentice Hall, 1992.

8. Hoare, C. A. R. (2004). Communicating Sequential Processes. Prentice Hall International,
1985.

9. Unifi ed Modeling Language (UML), http://www.uml.org.

100

Semantic Templates and Software Fault Patterns –
an Overview

Vladimir Dimitrov

Faculty of Mathematics and Informatics, University of Sofi a,
5 James Bourchier Blvd., 1164 Sofi a, Bulgaria

cht@fmi.uni-sofi a.bg

Abstract. Semantic templates and Software fault patterns are overviewed as tools
for software bugs specifi cation tools. Further research on the topic is discussed.

Key words: software bugs, semantic templates, software fault patterns.

1 Introduction

The term “software bug” [1] applies to the following concepts:
• Weakness is a type of mistake in software that, in proper conditions,

could contribute to the introduction of vulnerabilities within that
software. This term applies to mistakes regardless of whether they occur
in implementation, design, or other phases of the SDLC.” [2]

• Vulnerability is “An occurrence of a weakness (or multiple weaknesses)
within software, in which the weakness can be used by a party to cause
the software to modify or access unintended data, interrupt proper
execution, or perform incorrect actions that were not specifi cally granted
to the party who uses the weakness.” [3]

• Attack: is a well-defi ned set of actions that, if successful, would result in
either damage to an asset, or undesirable operation [4] (An attacker has
to fi nd and exploit a weakness, exposed by a vulnerability, and realize
the vulnerability.

These are important concepts that are related but different. A weakness is a
static presence existing in software systems -- it might stay in software and never
cause any problems until it is exploited by an attacker, and when the attacker
fi nds out the weakness (es) and exploit it (them), the vulnerability of this software
is exposed [4].

CVE is a dictionary of security vulnerabilities. CVE provides standard
identifi ers for security vulnerabilities, and help in fi nding information about
a vulnerability, including ways of, and available products for, eliminating the
vulnerability. It can also help in determining whether particular tools are adequate
for detecting attacks that are based on particular vulnerabilities [1].

101

Common Weakness Enumeration (CWE) is a collection of descriptions of
software weakness types stored as .xml, .xsd and .pdf documents. CWE was
established for those who create software, analyze software for security fl aws,
and provide tools and services for fi nding and defending against security fl aws
in software [1].

Common Attack Pattern Enumeration and Classifi cation (CAPEC) is a
comprehensive dictionary and classifi cation taxonomy of known attacks that can
be used by analysts, developers, testers, and educators to advance community
understanding and enhance defenses [3].

2 Semantic Templates

A Semantic Template is a human and machine understandable representation that
contains the following four elements [5]:

1) Software faults that lead to a weakness;
2) Resources that a weakness affects;
3) Weakness characteristics;
4) Consequences/failures resulting from the weakness.

Fig. 1. Buffer Overfl ow Semantic Template.

102

The required information pieces are either expressed together within a single
CWE entry or spread across multiple entries. Such complexity makes it diffi cult to
trace the information expressed in the CWE to the information about a discovered
vulnerability from multiple sources. Therefore, to facilitate CWE use in the study
of vulnerabilities, easy-to-understand templates for each conceptually distinct
weakness type has been developed. These templates can then be readily applied
to study project-specifi c vulnerability information from project repositories. For
example, Fig. 1 shows the Semantic Template for Buffer Overfl ow, which is an
aggregation of information collected from 42 CWEs. In this Buffer Overfl ow
Semantic Template, the four groups of relevant information were carefully
collected and synthesized with “is-a” relationship inside of each group and “can-
precede”, “occurs-in” between the groups so that the lifecycle of a weakness from
the starting point (software fault) to the end (consequences) is clearly presented.

The Semantic Templates also can provide intuitive visualization capabilities
for the collected vulnerability information such as the CVE vulnerability
descriptions, change history in the open source code repository, source code
versions (before and after the fi x), and related CAPECs [6]. Semantic Templates
were shown to be helpful to programmers in constructing mental models of
software vulnerabilities by an experiment described in [7]. In this experiment,
30 Computer Science students from a senior-level undergraduate Software
Engineering course were selected to study six sets of vulnerability-related
material with or without Semantic Templates in a pre-post randomized two-group
design. The experimental results revealed that the group with the aid of Semantic
Templates could analyze vulnerabilities with shorter time and higher recall on
CWE identifi cation accuracy.

3 Software Fault Patterns

Software Fault Patterns (SFPs) was developed by KDM Analytics Inc. By
identifying and developing white box defi nitions for SFPs as a formalization
process, they could be integrated into a standards-based tool analysis approach,
benefi ting both real-time embedded and enterprise software assurance systems.
Those identifi ed SFPs will be common to more than one CWE and can be used
further to defi ne CWEs [8].

The SFP is targeted at preventing cyber-attacks by collecting and managing
knowledge about exploitable weaknesses and building more comprehensive
prevention, detection and mitigation solutions. With the knowledge extracted from
CWE taxonomy, three transformations were executed to extract common patterns
and white-box knowledge, redefi ne existing weaknesses as specializations of the
common patterns, and then invariant core and variation points are identifi ed to
redefi ne each SFP to represent further weakness specializations [8].

103

KDM Analytics defi nes an SFP as a common pattern with one or more
associated pattern rules (conditions), representing a family of faulty computations.
The SFP structure is organized by the primary SFP defi nition, which refers to
the entire secondary cluster, and is arranged into invariant core and variation
points [8]. SFPs can map to multiple CWEs in such a way that each CWE in the
family can be defi ned as a specialization of the SFP with its specifi c variations
on the identifi ed parameters. To date, 21 primary clusters, which include totally
62 secondary clusters, and 36 unique SFPs have been identifi ed. 632 CWEs have
been categorized while only 310 of them are identifi ed as discernible CWEs.
Identifi ed SFP defi nitions could lead to the development of more accurate testing
tools and improve developer education and training. They also provide benefi ts
for a possible future formalization, since for each CWE, only the variation
extension to a formalized SFP is required.

As the proof of recognition of the SFP research work, CWE-888: Software
Fault Pattern (SFP) Clusters was incorporated by MITRE as a view into the CWE
dictionary.

Both Semantic Templates and SFPs are designed to help understand and
automate the vulnerability study. While Semantic Templates emphasize mental
model construction from the human perspective, with the explanation of the four
main elements of a vulnerability’s lifecycle, while SFP’s approach focuses on the
“foot-holds”, which are places in the code that present the necessary conditions
for vulnerabilities, with the emphasis on the computation side to aid the test cases
generator’s work.

4 The Use of Semantic Templates and Software Fault Patterns

One idea is to utilize Semantic Templates and Software Fault Patterns for
software bug specifi cation

For example, Fig. 2 demonstrates how the Buffer Overfl ow Semantic
Template helps separate the distinct phases of software faults, weakness,
resource/location, and consequence between which “can precede” and “occurs
in” relationship exist. In addition, the fi gure contains how the Buffer Overfl ow
SFP can be used to factor out parameters, such as resource and location.

104

Fig. 2. Buffer Overfl ow Semantic Template and Software Fault Pattern.

Using this schema, accomplish the following tasks are accomplished:
 Task 1: Formally describe the vulnerabilities as chains of exploited

weaknesses, corresponding to Yan Wu’s Buffer Overfl ow and Injection
Semantic Templates [4].

 Task 2: Formally describe the involved CWEs utilizing the corresponding
SFPs.

However, the attempt to use this formalization approach failed midway, as
we realized we needed to specify not only the static aspect of the weaknesses and
the possible chains, but also the dynamic aspect of the attack.

For example, the Heartbleed vulnerability had been investigated [7],
which was discovered on April 7, 2014 in OpenSSL, the most widely deployed
cryptographic function on the web. This devastating vulnerability is currently
defi ned under CVE-2014-0160 and possible chains of CWEs are described:

 both in CWE-130 and CWE-126 as: “Heartbleed bug receives an
inconsistent length parameter (CWE-130) enabling an out-of-bounds
read (CWE-126), returning memory that could include private
cryptographic keys and other sensitive data.”

 in “How to Prevent the next Heartbleed” (http://www.dwheeler.com/
essays/heartbleed.html) as: “The key weakness can be classifi ed as a
buffer over-read (CWE-126) in the heap, which could happen because
of improper input validation (CWE-20) of a heartbeat request message.”

Note: CWE-126 is a special case of an “out-of-bounds read” (CWE-125),
which itself is a special case of “improper restriction of operations within the
bounds of a memory buffer” aka “improper restriction” (CWE-119).
Chain := +{ Software-Fault Weakness Consequence }

Note: The attacker can repeat this attack multiple times

105

and get different sets of bytes from memory as well – so
it is a very important attack in that regard.

Software-Fault : = CWE-20 | CWE-130

Weakness := CWE-126

CWE-125 := (CWE-126 | …)

CWE-119 := (CWE-125 | …)

Consequence := (CWE-xxx | CWE-yyy | …)

Note: What CWE-xxx, CWE-yyy, etc. would cover leakage of
sensitive data (user names passwords, encryption keys,
instant messages emails, business documents, etc.?)

Resource := CWE-12x should be Heap based over-read (CWE-
122 is over-write)

CWE-119 := (CWE-12x | …)

SFP8 Faulty Buffer Access -> heap-based buffer: as for
CWE-126, with buffer location on the Heap. [8]

5 Conclusion

Our very fi rst goal is to formalize one or two software vulnerabilities to expose
the opportunities and challenges of formalization:
1. Develop a method for formal description of software attacks, exploited

vulnerabilities, and involved CWEs.
2. Describe formally attacks exploiting some intriguing vulnerabilities: for

example, Heartbleed or ShellShock.
3. Refi ne the involved CWEs, CVEs, and CAPECs defi nitions, so that they

precisely and unambiguously described.
Note: This work closely related to the NIST Software Assurance Metrics and

Tool Evaluation (SAMATE) project, which is dedicated to improving software
assurance by developing methods to enable software tool evaluations, measuring
the effectiveness of tools and techniques, and identifying gaps in tools and
methods. The scope of the SAMATE project is broad: ranging from operating
systems to fi rewalls, SCADA to web applications, source code security analyzers
to correct-by-construction methods. Among the project objectives, the body

106

of knowledge in software weaknesses is the foundation of most research and
application activities.

From Yan, Yacoov, Irena’s Crosstalk paper [6]:
“To provoke further thinking and discussions throughout the Software

Assurance community and beyond, we pose the following questions:
• What other formal methods can be used to help formalize CWEs with

required accuracy and precision and at the same time allow for further
extensions?

• To what granularity should CWEs be formalized? Finer granularity
means more fl exibility (especially when new weaknesses are identifi ed,
the extracted commonalities can reduce the re-invent work) but more
effort to create them; Coarser granularity indicates the easy-to-use
weakness items while we need to re-invent the wheel every time.

• How can the formalized CWEs be used and in which domains? For
education and training? To prevent vulnerabilities? To integrate into
software IDEs, test tools, and tools that generate test tools?

• How can an automatic system be constructed to record newly identifi ed
vulnerabilities and classify them by CWEs? With better formalization
and fi ner granularity of CWE defi nitions (which also means limited
dictionary for weaknesses, better taxonomy of vulnerabilities), text
mining could be the potential technique to mapping CVEs to CWEs at
least semi-automatically. “

In response to the above query, we decided to focus on the main fact that
a vulnerability is a realization of a weakness of the software. This gives us the
following two aspects:
1. A realization of a vulnerability happens through and attack or attacks, t.e.

there is the dynamic aspect.
2. The exploited weakness itself is a property of the software, t.e. this is the

static aspect.
The description of the dynamics of the attack can be done with CSP [8],

while the property of the software (static) can be described with Z-notation [7].
Following the Semantic Templates idea, we explore in detail Yan Wu’s

dissertation, “Using Semantic Templates to Study Vulnerabilities Recorded in
Large Software Repositories” [4]. The idea there is to build a database with
knowledge about the vulnerabilities using the available repositories. In other
words, fi rst the repositories are annotated according the software template. Then,
in each part of the template, semantic nets are organized with 3 kinds of arrows.
She has reached only the idea that one vulnerability can be represented by several
weaknesses in each component of the template. However, the problems are much
more. and this rode is very diffi cult as for example, language problems will start
interfering -- with two words, “artifi cial intellect” for example, the leading idea

107

is that Semantic Templates can be extracted automatically or semi-automatically
from their natural language descriptions, but how clear and descriptive are these
descriptions is an open question to do that. There are available instruments, but
we doubt this is the proper direction to follow.

Let us look at the fi rst task: Describe vulnerabilities as chains of weaknesses.
What Yan does is connecting a given vulnerability with a concrete (root) weakness
and from there develops the template. This means she misses the attack. While
indeed, the attack is performed following a scheme, it is dynamic and rather
the vulnerability is a successfully conducted attack, and not a property of the
software. The latter is a weakness of the software.

We think that the vulnerabilities have to be des cribed as attacks and not as
chains of weaknesses.

If it is needed to describe the relationships between the weaknesses, as it is in
Yan’s dissertation, it is better to use the UML notation [9]. Diagrams are preferred
nowadays. Even, UML can be specialized to defi ne a diagram that refl ects the
relationships between the weaknesses. The dynamics of the vulnerabilities can
also be presented with diagrams.

Anyway, we are talking about software and using the UML terminology, we
need the three models: classes, states, and interactions. The static aspect of the
relationships between the weaknesses can be presented with a class diagram or a
specialized such. The dynamics in time of a separate weakness can be presented
with a state diagram. The attacks and the connections between the weaknesses
can be described with activity diagrams and other kinds of diagrams from the
interactions model. Note that there are no good tools for re-engineering but there
is work done in this direction.

6 References
1. MITRE. “CVE Common Vulnerabilities and Exposure.” http://cve.mitre.org
2. MITRE. “CWE Common Weakness Enumeration.” http://cwe.mitre.org
3. MITRE. “Common Attack Pattern Enumeration and Classifi cation”, https://capec.mitre.org
4. Wu, Y., “Using Semantic Templates to Study Vulnerabilities Recorded in Large Software

Repositories”, Dissertation, October 2011, Omaha, Nebraska.
5. Wu, Y., R. A. Gandhi, and H. Siy. “Using semantic templates to study vulnerabilities recorded

in large software repositories.” 2010 ICSE Workshop on Software Engineering for Secure
Systems, SESS ‘10, pages 22-28, New York, NY, USA, 2010. ACM.

6. R. Gandhi, H. Siy, Y. Wu. “Studying Software Vulnerabilities.” CrossTalk, The Journal of
Defense Software Engineering, September/October 2010.

7. Spivey, J. M. “The Z Notation: A reference manual”, International Series in Computer Science
(2nd ed.). Prentice Hall, 1992.

8. Hoare, C. A. R. (2004). Communicating Sequential Processes. Prentice Hall International,
1985.

9. Unifi ed Modeling Language (UML), http://www.uml.org.

108

Personalisation of learning environment for delivery of
electronic services and electronic content

Daniela Orozova1, Magdalina Todorova2

1 Burgas Free University, Faculty of Computer Science and Engineering,
62 San Stefano Str., Burgas 8001, Bulgaria

orozova@bfu.bg
2 “St. Kliment Ohridski” University of Sofi a, Faculty of Mathematics and Informatics,

Sofi a 1164, Bulgaria
todorova_magda@hotmail.com

Abstract. This article presents the key results of our work in the area of
personalization of the electronic educational environment. The goal of effective
design of mobile electronic content is achieved by developing SCORM packages
of the course learning content. The delivery of electronic services and electronic
content is based on autonomous software agents.

Keywords: Learning environment, Sharable Content Object Reference Model,
Personal assistants, Data mining tools.

1 Virtual learning environment architecture

Integrating tools in the learning process used by the learners as a personal
virtual space on an everyday basis is a way to engage their attention. The virtual
learning environment is a context-dependent environment, through which an
effective, supported by current information and communication technologies
educational process is realized. The aim of the learning environment is to integrate
the real learning process with the designed virtual world in an “intelligent”
manner. The learning environments have to provide the following options: active
and interactive participation; team work; searching for and sharing information;
discussion and presentation; generating new knowledge; supporting learners’ and
tutors’ activities; connection with experts, and last but not least personalization
of the learning.

The learning environment infrastructure includes:
 Building elements of the environment: identities populating the

environment. These can be: learners, tutors, administrators, personal
assistants, digital libraries, electronic services, etc.

 Connections – the connections existing between the structural elements,
which ensure their operating as a whole within the learning environment.

The context-dependence characterizes the behavior of the different identities

109

populating the environment. The concept of context-dependence is characterized
by two main attributes [1]:

– Personalization – in the sense of planned adapting of the learning
content with regards to the particular learners. Personalization can be
viewed from different points of view, as a basis for any of them is a
corresponding classifi cation system. To this end, an individual user
profi le is maintained for each learner.

– Adaptability – shifting the learning process according to changes in
the environment. In order to ensure such a quality, user modelling is
performed. Regular measuring and evaluation of different indicators,
showing the learning progress and acquisition development, is ensured.
The model receives information from the environment on whether the
learner has completed a given topic.

2 Presenting learning content

In order to effectively develop learning content, which to ensure its mobility
integration and reusability of the components in different learning situations, the
learning content has to be based on a predefi ned standard. To this end, research
was conducted on the main concepts and grounding behind Sharable Content
Object Reference Model (SCORM) – a collection of standards and specifi cations
for web-based electronic educational technology. What was done was: choice
of appropriate environments for creating and testing SCORM packages;
systematization and schematization of the content of each course learning
material.

2.1 SCORM Content Model

The SCORM Content Model describes the components used in designing
learning content of learning objects. It also defi nes how the smaller learning
objects are combined into bigger ones. It consists of assets, Sharable Content
Object (SCO), activities and their combinations.

 Asset
Assets are the basic structure unit of a learning object. They give an electronic

representation of data: text, images, sound, etc., which can be delivered by a web-
client to the learners. Several assets can be combined to make a new asset. The
assets can be described by metadata in order to be searched for and found in
repositories, as well as to be reused and easily serviced.

 Sharable Content Object
SCO is a set of assets which comprise a united learning resource using

110

SCORM Run-Time Environment to communicate with the Learning Management
System (LMS). The SCO is the lowest level of a learning resource, which is
monitored by an LMS through SCORM Data Model. In order to increase the
possibility to be reused, a given SCO has to be context independent. Thus it
can be used in different learning items, and it can serve different purposes. In
addition, a learning activity can combine more than one SCO, forming an item
of a higher level.

The SCOs are relatively small units, which can be used in a multiple
occasions in the learning context. SCORM does not impose a defi nite volume of
these elements.

 Activities
A learning activity is a unit of instructions. A given activity can provide a

learning object (SCO or asset), as well as can consist of several sub-activities.
Activities that have no sub-activities are associated with learning resource (SCO
or Asset), which presents relevant material of the learner. Activities which have
sub-activities are clusters or parent activities.

 Content Organization
Content organization shows the relations among the activities while forming

structural units. Sequences of units (Asset or SCO) can be applied on actions
and groups of activities. Activities and relations between them are described
in these sequences. The learning management system is responsible for the
interpretation of the information, which is described in the content organization,
and for applying it on the learning objects during the performance. In SCORM,
the information about activity sequences is external for the learning objects. The
LMS is responsible for providing the learning objects in the predefi ned order.

 Content Aggregation
Content aggregation can be used as an action or process towards developing

functionally interrelated object set, which to be applied in an educational activity.

2.2 SCORM Content Packaging

The aim of the packaging is to offer standardized means of learning content
exchange among different system or tools. It also provides space for describing
the structure and expected behavior of the content. The IMS Content Packaging
specifi cation ensures a common input-output format which can be supported by
any system. Each packet consists of two main components:

– an XML document which describes the structure content and the related
resources in the package, which are called manifest fi les (imsmanifest.xml). The

111

manifest can be described as a part of a course, internal course, set of courses
or just some content which has to transferred from one system to another. The
package always consists of a main manifest fi le which, in turn, can contain one or
more manifest fi les. The main one describes the package, all the rest describe the
content at the level at which they are positioned.

– content which describes the physical fi les of the package. The package has
to be stand-alone, i.e. when it is non-archived, it must contain all the information
needed for education. The package represents a learning unit. This unit can be a
course or a part of a course which is delivered independently. When a package is
delivered at a specifi c place, it has to allow for being divided into smaller items
and re-joining these again. The organization of the structure may be viewed as
a structure map of the learning objects, called “activity tree”. It describes the
activities and guides the learner via an activity hierarchy using learning objects.

Thus an object can be comprised of a number of components. If an object
is designed to communicate with the LMS, it is an SCO. Otherwise it is simply
an asset. The collection of object components creates resources, which can be
addressed by the structure. This collection of objects and the structure defi ne the
content organization.

uch a packet for e-learning, based on the SCORM standard, is developed for
each course. The content has to be divided into separate topics. In turn, the topics
must be split into sub-topics, which in their turn to be split into even smaller
items. According to the SCORM standard, these assets are associated with
learning objects and can be reused and involved in the assessment of the learning
outcomes through testing. Based on these units, an activity tree is designed. Part
of this description in the case of the course Data Bases is shown in fi g. 1.

The tests in these packages are structured in such a way so each question
to be associated with a SCO of the respective topic. The idea is to evaluate the
degree to which the learning material is acquired, and to navigate accordingly
so in case of a wrong answer to lead the learner to the respective content. The
content of all topics of the courses is structured and the schemes used correspond
to the SCORM 2004 standard, which allows supporting navigation and sequence
of activities. The tests are based on the standard Common Cartridge [3].

112

Fig. 1. A sample scheme of the SCORM packet of the course “Data Bases”.

3 Personal assistant

The “personal assistant” is an element of the context-dependent educational
environment which delivers e-services and e-content. It is realized as an
autonomous software agent based on Java virtual machine, in which the open
develelopment environment Java Agent DEvelopment Framework (JADE)
is integrated to develop intelligent agents [4]. The library BDI4JADE [5] is
used, which implements Belief-Desire-Intention (BDI) architecture in JADE
environment. BDI is a classic architecture for intelligent agents. It uses a human
activity model for representing limited rationality based on: belief (environment
model), desires (agent tasks which have not been transformed into particular
intentions yet) and agent intentions which equal its existing engagements,
including toward itself [2].

113

The process of functioning of the “personal assistant” as a BDI agent includes
the following components [6]:

 Belief is the information available to the agent regarding the current
state of its environment. This information comes from the administrative
database of the respective higher educational institution, the exam
session schedule, exam results, and other elements which belong to
cause-effect relations.

 Belief assessing function accepts the information from the environment
sensors of the agent as input; in this case this is the information about the
formative assessment of the learner, forthcoming exams, and changes in
the regulatory database, and forms the new set of beliefs on that basis,
as shown on fi g 2.

Fig. 2 “Personal assistant” environment

 Options generating function: based on the received information, the
agent generates different possible actions, e.g. in case of forthcoming
exam, informs the student via message, in case of fail mark, checks the
next exam session schedule, etc.

 Current desires are the possible actions of the agent. Agent intentions
are related in advance to the programmed behavioral models which
correspond to the cause-effect relations in the real life. They are not yet
concrete intentions.

 Filtering function is the one which represents the agent process of
“consideration” and which identifi es its intentions based on its current
beliefs and desires. These are predefi ned programme rules which control
the agent intentions. For example, in case of fail mark, the student to
be informed about dates and hours for consultations, the exam session
schedule to be checked for retaking the exam, or not to take any actions.
What is planned in addition is implementing a means for self-paced
learning. Thus, when particular actions are systematically ignored, they
are not be activated.

114

 Current intentions are the state which the agent has promised to achieve.
After fi ltering, the wishes are transformed into intentions, which are
equivalent to the agent tasks.

 The function for choice of action defi nes what action the agent should
take based on its current intentions. After revising the current intention,
an action plan is chosen.

4 Integrating Data Mining tools in virtual learning environments

In the last years, we witness a wide use of Data Mining techniques for
analysis and prediction in diverse real-life situations. Our efforts are dedicated
to integrating Data mining tools and e-learning systems, towards personalization
and adaptation of the latter to specifi c needs.

The learning environment is viewed in layers and respective functions, as
shown in fi g. 3.

Based on the data collected by working with different users in a virtual
learning environment, applying Data Mining tools can help making decisions
such as:

 developing optimized learning environments with options for
personalized acquisition of key knowledge, skills and competencies;

 looking for tendencies regarding developing and supporting the
e-learning processes;

Fig. 3. New learning environment.

 optimizing the techniques for choosing test elements and relevant

115

infl uence on learner’s activity;
 identifying types of learners and offering appropriate continuation of

education;
 taking into consideration learners who may not cope with the education;
 analyzing the degree of knowledge acquisition and loss for different

periods of time and different types of tasks, as well as comparison of the
corresponding indicators in the years.

 Integrating the e-learning systems and Data mining tools is needed for the
process of personalization of distance learning courses. Based on the results,
additional measures for course analysis and adaptation can be introduced. This,
in turn, is a way towards improving the quality of education.

On the other hand, through analyzing the user profi le data, means to evaluating
a number of personal qualities which infl uence learning can be proposed. Such
qualities are: curiosity – the desire to improve and change things which are
generally accepted as norm; connection – the ability to fi nd relations between
data which have nothing in common at fi rst sight; persistence – is the ability to
continue looking for better solutions even if satisfactory ones have been found;
complexity – the ability to work with a lot of information; etc.

Adapting and personalizing learning lay the foundation for solutions using
learning environments. Learners’ interest, their active role in the process of
knowledge acquisition and skill development can be infl uenced to a great extent
by the quality of the learning environment used.

References
1. Stoyanov, S.: Context-Aware and Adaptable eLearning Systems, Internal Report, Software

Technology Research Laboratory, De Montfort University, Leicester, U K (2012)
2. Stoyanov, S., Valkanov, V., Popchev, I., Stoyanova-Doycheva, A., Doychev, E.: A Model of

Context-Aware Agent Architecture, Comptes rendus de l‘Académie bulgare des Sciences, Vol.
67, No 4, pp. 487-496 (2014)

3. Common Cartridge, http://www.imsglobal.org/commoncartridge.html
4. JADE, http://jade.tilab.com/
5. BDI4JADE, http://www.inf.ufrgs.br/prosoft/bdi4jade/
6. Rao, A. S., Georgeff, M. P.: 1995, BDI-agents: from theory to practice, in ‘Proceedings of the

First Intl. Conference on Multiagent Systems’, San Francisco (1995)

116

Traffi c Prioritization System Based on Embedded
Components

Ioannis Patias, Vasil Georgiev

Faculty of Mathematics and Informatics
University of Sofi a St.Kliment Ohridski“

Corresponding author: ioannis.patias@gmail.com

Abstract
Millions of people benefi ting from Mass Urban Public Transport, traveling by
bus every day. Widely speaking in our day’s time is always important to be able
to get the bus in exact timing. Especially for the people in cities there is another
challenge, resulting form the frequent use of long routes travelling in city area,
crossing the city one side through the other. In this case even if the frequency of
the buses is good, the overall time still remains long. The proposed solution is a
Bus Prioritization System Based on Arduino Microcontroller. The solution consists
of a detection sub-system, with a bus component, using transmitter, and a receiver
placed on the traffi c light, and a traffi c light sub-system. We minimize the time
waist on waiting on traffi c lights with this prioritization system, with minimum
cost, and give an affordable solution. Such a system is a useful instrument for any
public transport system.

Keywords: Information systems, embedded systems, transportation control

I. Introduction

The term Intelligent Transport Systems (ITS) refers to a wide range of
applications. The most basic ones include simple traffi c signal control and
management systems, automatic number plate recognition with speed cameras,
security CCTV systems. The more advanced applications can integrate real-time
traffi c and vehicle data and can regulate the traffi c in real-time with using such
historical data.

Although ITS may refer to all modes of transport, EU Directive 2010/40/EU
(7 July 2010) defi nes ITS as systems in which information and communication
technologies are applied in the fi eld of road transport, including infrastructure,
vehicles and users, and in traffi c management and mobility management, as well
as for interfaces with other modes of transport1. ITSs are important in increasing
safety and also manage Europe’s growing emission and congestion problems.
They make transport safer, more effi cient and more sustainable.

On the other side in other countries, like the United States, the increased
interest in the area of ITSs is rather motivated by an increasing focus on homeland

117

security. Many of the proposed ITS systems also involve surveillance of the
roadways, which is a priority of homeland security23.

When talking about ITS, there is e a wide range of technologies applied4. Those
technologies include:

 data processing, management and archiving technologies
 detection technologies
 communication technologies
 information dissemination technologies
 location referencing and positioning technologies
 traffi c control and vehicle control technologies
 electronic payment technologies
 surveillance and enforcement technologies
Bus Prioritization System (BPS) or Transit Signal Priority (TSP) is an ITS

aiming to reduce the time waist on traffi c lights for Mass Urban Public Transport
vehicles. Although are most often related with buses, they also are applied in
trams, rails, etc. In terms of technologies BRS involve traffi c control, and
detection technologies.

There are two categories of BPS. The so-called active BPS is a system based
on detecting Mass Urban Public Transport vehicles as they approach the traffi c
light and adjusting the traffi c light’s timing dynamically, and thus create “green
wave”, meaning uninterrupted traffi c along the bus line route. It is important
to mention here that implemented this way the system can also be used for the
emergency vehicles, so from now on when we are talking about buses we always
mean also emergency vehicles. Passive BPS called those systems, which are built
with specialized hardware and try to optimize the traffi c lights timing by using
historical data, and this effect applies to all vehicles along a route.

The proposed here BPS is based on Arduino microcontroller, and is a typical
active BPS. It consists of a detection system with a transmitter placed on-board
on the bus and receivers placed on the traffi c lights. Once the bus transmitter
signal received the traffi c light sub-system performs the appropriate traffi c light
timing. The adjustments realized by the Arduino based microcontroller are:

 Extended Green Interval
That means we have extension of the green light interval, when we have a

signal from an approaching bus. Once the detection system with the transmitter
placed on-board on the bus and the receiver placed on the traffi c lights generate a
signal the green light is extended with time allowing the bus to reduction its delay
for the traffi c light.

 Earlier Green Light
We shorten the red light duration, whenever a bus arrives at a red light. Those

changes are not applied immediately, to avoid confl icting situations.

118

The system has two different operation levels, for the respective use. One
is for Mass Urban Public Transport management, providing the interface to re-
program the traffi c lights timing, and another is the normal use.

II. Problem Defi nition

To purpose is to develop a Bus Prioritization System (BPS) Based on Arduino
Microcontroller. The main objectives of this system are to create conditions for
greater mobility for the citizens and visitors of the city using an isolated vehicle
actuated system. By reducing the time of the buses waiting in traffi c lights to
increase the capacity of urban transport systems. And fi nally, to increase the
number of passengers on public transport and increase the market share of public
transport, with an affordable cost.

III. Literature Review

The idea of a post-desktop model of human-computer interaction, where we
have integration of information processing into everyday objects and activities is
called Ubiquitous Computing5. In many cases the end-user uses more than one
distributed systems and devices even simultaneously, without even being aware
of their existence. The implementation of this concept is not that easy. But the
overall dividend is great. Our life would be quite easier if all objects in the world
surrounding us get equipped with identifying devices.

The most widely used identifying devices are the ones using Radio-Frequency
Identifi cation (RFID). RFID tags, or electronic labels are used with objects to be
monitored or tracked. The technology can be applied to any object, animal, or
people. We can identify and track the objects by using radio waves or sensing
signals. There are tags, which can be tracked with range of tens or hundreds of
meters. The syntax of RFID tags contains two major parts at least. The fi rst is
storing and processing information integrated circuit, which is also modulating
and demodulating a radio-frequency (RF) signal. The second part consists of an
antenna, used for receiving and transmitting the radio signals.

There are active, semi-active, and passive RFID tags. Tags can store up data
and consist of microchip, and antenna, and also battery for the cases of active and
semi-passive tags. All the components can be enclosed in plastic, or silicon. In
general RFID tags help us in our everyday activities, since they are not expensive,
and at the same time they can apply in almost any object.

The use of RFID enriches the options of systems used for giving priority to
buses. The concrete needs determine the most appropriate measures to be used.
A feasibility study should be implemented prior to the concrete measures to be
used can be defi ned.

There are various ways of giving priority to buses, which could be broadly
categorized as6:

119

 physical measures,
 traffi c signal priorities, and
 integrated measures.
Physical measures can include with and contra-fl ow lanes, bus only lanes

or even streets. Traffi c signal priorities method’s typical example is the BPS.
Integrated measures are those, which combine traffi c signal measures with
physical measures. The latest is applicable in cases where none of the fi rst two
systems alone is effective.

Focusing on the traffi c signal priorities method, there are different systems
implementations. Those differentiations usually called traffi c signal control
systems and strategies7, and are categorized in:

 Isolated systems
In isolated systems the controlled by signal traffi c light is located and

operates independently, this is why the term isolated traffi c light is used. Traffi c
light’s signals can also be linked to a Control Centre, but only for fault monitoring
purposes, not for management. Isolated system can further be divided into fi xed
time or vehicle actuated (VA).

 Co-ordinated systems
Co-ordinated systems, are so called because they co-ordinate the operations

at a traffi c light, with the operations at one or more neighboring traffi c lights. All
traffi c lights have to be connected to a centralized system implementing a Control
Center system. Co-ordinated under Control Center systems can be further divided
into traffi c responsive or fi xed time.

VA systems rely on detectors placed on traffi c lights. When a bus approaches
to the traffi c light, and once it is detected the traffi c light performs the appropriate
timing. A bus approaching a traffi c light with red light sends to the controller a
demand for a green light. The demand is then served by the controller, which
can apply different timing cycles. After serving any signals and with no more
incoming ones, the controller will continue the preprogrammed mode/s.

The VA system can give priority both to buses, and any other special purpose
and/or emergency vehicle. Also the VA systems can serve different priority levels
requests. This means that special purpose vehicles can transmit a higher priority
level “priority request”, and thus be served with privilege.

IV. The BPS System

BPS architecture

Using the terminology, introduced in the previous section, our proposal, the
Arduino microcontroller BPS, is a typical isolated VA system.

120

Figure 1: BPS Flow Chart Diagram

As we can see in the fi gure above, once a bus approaches to the traffi c light,
it sends a “priority request”. In order to increase system’s fl exibility we can defi ne
more than one priority levels. For instance, one is for the buses, and the other for
special purpose vehicles.

Our system implements all the above-mentioned, divided in the following
modules:
1. detection sub-system, with:

a. bus component, using transmitter, and
b. receiver placed on the traffi c light, and

2. traffi c lights timing sub-system.

BPS operation

When a bus approaches a junction, the traffi c lights receiver captures an
RFID signal sent by the bus transmitter. The receivers should be placed so to focus
on signal captured at about 30m distance. This way we can simulate Expected
Time of Arrival (ETA) functionality. Meaning we cover variations of effective
Extended Green Interval or Earlier Green Light traffi c light timing adjustments.

The priority requests are converted as follows:
Case 1 (Extended Green Interval):
Every traffi c lights timing sub-system when receives a priority request, and

currently is on green light mode, extends the green light interval (additionally to

121

the normal green interval).
Case 2 (Earlier Green Light):
When the traffi c lights timing sub-system receives a priority request, and

currently is on red light mode, the red light duration is shortened. This shortened
duration cannot be applied immediately, in order to avoid confl icting situations.

There is one more intermediate case, when a priority request arrives on a
yellow sign. We have to check what the next signal is and respectively to apply
Case1, when the next light is to be green, or Case2 when we expect red light. The
described sequence of signals and operations in shown in the next fi gure.

Figure 2: BPS System-level Sequence Diagram

V. Hardware Component Description

Bus component (transmitter):
(designed to have range of around 60 meters, when supported by antenna and

has direct view)

Traffi c Light Receiver:
(to be placed so that can provide direct view to the bus component)

122

Traffi c light timing sub-system:
(simplifi ed demo version with light emitting diodes (LEDs), showing both

traffi c lights and pedestrian crossings lights)

Simplifi ed algorithm

LOOP () {
Read the RFID reader
If
The PRIORITY goes high
Then decode the ID
 If
 The ID is for HIGH_PRIORITY_VEHICLE
 Then Enable the HIGH_PRIORITY module
 Else if
 The ID is for LOW_PRIORITY_VEHICLE
 Then Enable the LOW_PRIORITY module
Else
Enable the NORMAL_TIMING module
}

VI. Conclusions

The BPS presented can really help passengers. Although implemented with
an affordable for any municipality budget, still is a reliable solution that can
answer to the main objectives of the citizens and visitors of any city. It can reduce
the time of the buses waiting in traffi c lights, and so to increase the capacity of
urban transport systems. We can implement the system at any traffi c light, since
it requires no infrastructural changes or upgrades. The system so described can

123

increase the number of passengers on public transport and thus the market share
of public transport, with an affordable cost.

References
1 DIRECTIVE 2010/40/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF
2 Torin Monahan, “WAR ROOMS” OF THE STREET: SURVEILLANCE PRACTICES IN

TRANSPORTATION CONTROL CENTERS, http://publicsurveillance.com/papers/war_
rooms.pdf, The Communication Review, 10: 367–389, 2007

3 http://www.its.dot.gov/landing/strategicplan2015.htm
4 ROAD NETWORK OPERATIONS & INTELLIGENT TRANSPORT SYSTEMS http://rno-

its.piarc.org/en
5 Kai Hwang, Geoffrey C. Fox, and Jack J. Dongarra, “Distributed and Cloud Computing From

Parallel Processing to the Internet of Things”, 2012 Elsevier.
6 https://www.gov.uk/government/uploads/system/uploads/attachment_data/fi le/329973/ltn-1-

97__Keeping-buses-moving.pdf
7 http://content.tfl .gov.uk/interaction-of-buses-and-signals-at-road-crossings.pdf

124

 Transformation and modernization of PRINTS database

Anatoliy Dimitrov1*, Teresa Attwood2, Ognyan Kulev1, Dimitar Vassilev2,3

1 - Faculty of Mathematics and Informatics, Sofi a University “St. Kliment Ohridski”,
5 James Bourchier Str, Sofi a 1164, Bulgaria

2 - Faculty of Life Sciences, The University of Manchester, Carys Bannister Building,
Dover Street, Manchester M13 9PL, UK

3 - Bioinformatics group, AgroBioInstitute, 8 Dragan Tsankov Blvd, Sofi a 1164, Bulgaria

* - Corresponding author: tollodim@gmail.com

Abstract: The PRINTS database is an important resource in bioinformatics and
one of the most popular protein databases in the world. At the beginning of the
project, PRINTS data was contained in a large text fi le with more than one million
rows. The aim of the current project was to modernize PRINTS by parsing the
information from the text fi le and storing it in a state-of-the-art relational database.
In addition to that, tools would have been provided for work with the new database
such as web interface and Linux command line scripts. The project accomplished
successfully its goal as the current paper show in further details.

Keywords: PRINTS, Bioinformatics, Text Parsing, Relational Databases

1 Introduction

Protein Sequences, Motifs and Families

The large number of protein sequences has created valuable information
which needs to be rationalised in order to expedite protein sequence and structure
analysis. The protein motif takes an important part in this rationalisation. It is
formed by the three-dimensional arrangement of amino acids, which may not be
adjacent.

Homologous protein sequences have similar 3D structure, and carry out
related molecular functions—this is the most fundamental premise of protein
sequence analysis. This understanding has facilitated the grouping of proteins
descending from clear common ancestry into homologous sequence groups
known as protein families [1].

Introduction to PRINTS

PRINTS is a collection of patterns of protein motifs called ‘fi ngerprints’. A
fi ngerprint is defi ned as a group of motifs excised from conserved regions of a
sequence alignment, whose diagnostic power or potency is refi ned by iterative

125

database scanning [2]. Furthermore, fi ngerprinting offers a powerful approach
to the analysis of protein sequences: it inherently offers improved diagnostic
reliability over single-motif methods by virtue of the mutual context provided-
by motif neighbours [2].

Purpose of the project

Much of the knowledge in biological databases is stored in plain text (easily
consumed by humans, but essentially opaque to computers), and many records are
incomplete or contain ‘grey’, putative information [3]. Because of that, PRINTS
was a typical resource storing information in plain text before its modernisation.

This paper describes the work on modernising PRINTS. More specifi cally, the
following tasks were executed:

• Migration from a text fi le to a relational database as main data source.
• Development of tools for working with the data, including Web-based

and command-line tools.
The purpose of this project was to align PRINTS with the current technologies

for storing and representing information. This involved a process of transformation
and modernisation, at the basis of which lies the creation of a relational database.
Along with that, tools for accessing and managing the information in a fast and
effi cient way were provided.

PRINTS, just as any other existing IT resource, needs to follow current
technology trends in order to grow and remain useful to the users. However, it
takes some time to catch up technologically and, meanwhile, the modernisation
gap increases. Thus, in the case of PRINTS, the main data source for the public
database was, and still is, a plain text fi le using a custom tag system for identifying
specifi c data fi elds within each database record. There are numerous disadvantages
of working with such fi le. First, it is hard to manage the information, especially
due to the large fi le size (more than one million text lines). Writing and reading
information was both diffi cult and prone to errors. Second, working with a single
text fi le as data source was a bottleneck for performance, because the speed to
write in/read from it was much lower compared to a modern database, where
caching, indices and other performance features exist.

The modernisation approach described in this article is rather general and
universally applicable, even though all specifi cs of PRINTS have been taken
into consideration. Thus, this same approach could be applied to other similar
information resources that need to be refreshed and powered by a relational
database. Undoubtedly, many such resources still exist, and the current work may
allow them to follow a fast and straightforward process towards modernisation.

The modernisation of PRINTS involved the following tasks:

126

• Understanding PRINTS and its data;
• Design of the new PRINTS database;
• Parsing the old PRINTS data fi le;
• Creation of a CRUD (Create Retrieve Update Delete) application for the

new PRINTS database;
• Provision of additional tools for working with the data.

2 Materials and methods

Understanding the specifi cs of the PRINTS project and the meaning of its data

Before we could begin any work on the data transformation, it was important
to acquire a good understanding of the PRINTS data. Based on this understanding,
we could begin to normalise the data, in order to create the new database tables.

While parsing PRINTS we extracted information for more than 2,100
fi ngerprints. A fi ngerprint is a group of conserved motifs used to characterise a
protein family; its diagnostic power is refi ned by iterative scanning of a SWISS-
PROT/TrEMBL composite [4]. Usually the motifs do not overlap, but are separated
along a sequence, though they may be contiguous in 3D-space. Fingerprints
encode protein folds and functionalities more fl exibly and powerfully than single
motifs, full diagnostic potency deriving from the mutual context provided by
motif neighbours.

The PRINTS data were stored in more than one million text lines, which
had to be automatically processed and parsed. Each fi ngerprint and its associated
information followed one after another: the fi rst line of each record containing the
General Code for the entry, preceded by the specifi c tag, ‘gc;’. Each subsequent
line included information related to the same fi ngerprint until a new ‘gc;’ was
reached.

Database format

Here’s an example of the fi ngerprint GLABLOOD from the old text fi le:
gc; GLABLOOD
gx; PR00001
gn; COMPOUND(3)
ga; 12-JUL-1991; UPDATE 27-JUN-1999
gt; Coagulation factor GLA domain signature
gp; PRINTS; PR00002 GLABONE
gp; INTERPRO; IPR002383
gp; PROSITE; PS00011 GLU_CARBOXYLATION
gp; PFAM; PF00594 gla
gp; PDB; 1APO; 2PF2

127

gp; SCOP; 1APO; 2PF2
gp; CATH; 1APO; 2PF2
bb;
gr; 1. SORIANO-GARCIA, M., CHANG, H.P., TULINSKY, A.,

RAVICHANDRAN, K.G.
gr; AND SKRZYPCZAK-JANKUN, E.
gr; Structure of calcium prothrombin fragment 1 including the conformation
gr; of the Gla domain.
gr; BIOCHEMISTRY 28 6805-6810 (1989).
gr;
gr; 2. CHURCH, W.R., MESSIER, T., HOWARD, P.R., AMIRAL, J.,

MEYER, D.
gr; AND MANN, K.G.
gr; A conserved epitope on several human vitamin K-dependent proteins.
gr; J.BIOL.CHEM. 263 6259-6267 (1988).
Each line from the text starts with a custom, unique identifi er which holds

specifi c information about the fi ngerprint. In the above example the identifi ers
have the following meaning:

 gc – name of the fi ngerprint;
 gx – accession number;
 gn – number of motifs. The COMPOUND keyword is always present

and the number of motifs is in the parenthesis;
 ga – creation and update date;
 gt – title;
 gp – cross references within PRINTS and to other protein databases;
 gr – literature references.
These are some identifi ers in the beginning of each fi ngerprint text. To avoid

shifting the focus of the article, we will mention the remaining ones only when
needed. Once we got acquainted with all identifi ers, the text format was relatively
clear to understand. Unfortunately, there were no available libraries for working
with this format for any popular programming language which meant that a
custom parser had to be created for the current project.

The initial time spent on studying and understanding the PRINTS data was
well invested, which was proven by the minimal number of redesigns of the
database.

Problems and challenges

After studying carefully the old PRINTS data structure, it was decided that
the most effi cient way to parse the data was on a line-by-line basis. The principal
reasons for this decision were two-fold:

128

 In its original format, PRINTS data were divided on the same principle,
i.e. line by line, with unique indents/tags at the beginning of each line.

 Lines could be split into parts and matched in accordance with the known
indents. In contrast, if multiple lines were processed simultaneously,
regular expressions were necessary, which would slow down the process
and also make it more error-prone.

However, the line-by-line parsing method introduced a few problems in the
context of processing PRINTS:
1. In one case, the exact meaning of the current indent depends on the previous

one. This was the case with ‘special lines’, which were introduced after the
original PRINTS data-fi le format was specifi ed, specifi cally in order to be
able to record accession numbers (rather than simply identifi ers) of proteins
matched by each fi ngerprint. In this case, the tag ‘KA’ simply denotes the
matched protein accession number, regardless of whether it is a true-positive
(tp) match or a partial true-positive (st) match.

2. One line could contain more than one logical grouping of information, i.e. table
row in the future relational database. For example, the line for database cross-
references ‘gp; PRINTS; PR00209 GLIADIN; PR00208 GLIADGLUTEN;
PR00210 GLUTENIN’ contains 3 separate cross-references:
a. PR00209 GLIADIN;
b. PR00208 GLIADGLUTEN;
c. PR00210 GLUTENIN.

3. Each line could contain additional denotations for logically separating
information. For example, in the line ‘gp; PRINTS; PR00002 GLABONE’,
PRINTS means a cross-reference from the PRINTS database. INTERPRO
would denote the InterPro database; and so on.

4. One line could contain different groupings of information, i.e. different table
rows in the future relational database. For example, line ‘ga; 16-NOV-1995;
UPDATE 05-MAR-2010’ denotes fi rst the creation date, and then the update
date.

5. One atomic piece of information could be spread over multiple lines. This
was probably the biggest problem with the current line-by-line parsing
method. As per the PRINTS excerpt above, the ‘gr;’ tag defi nes literature
references. In the fi rst literature entry, the title is spread over two lines on the
third and fourth sequential lines. In the second literature reference, however,
the title was found only on the third line.
These problems were the biggest challenges for the parsing and for the whole

project, because the success of the project depended on their correct resolution.
The remaining tasks, i.e. the design of the database and the creation of the tools,
were relatively trivial and did not impose signifi cant challenges, and hence are
only briefl y mentioned in the current paper.

129

3 Results and discussion

Parsing the data and loading the information into the database

In order to parse the data from the text fi le, we decided to write a custom
program in Python. The reason to choose Python as the main programming
language for the parser was its strong support for text processing and wide
acceptance in the scientifi c community.

Preparation of the text for parsing

To tackle the fi rst parsing problem, we also used the Perl programming
language, partly for educational purposes and partly for expediting the task. The
problem, as described above, concerned the protein sequence accession-number
fi eld, denoted with the KA tag, which could refer either to true positives (tp)
or true partial-positives (st), depending on the preceding text line. Here is an
example:

tp; O04691_METGY Q40933_PSEMZ Q38697_ASAEU B9H8M2_
POPTR

KA; O04691 D1 Q40933 M1 Q38697 M1 B9H8M2 M1
tp; Q39775_GNEGN
KA; Q39775 M1
bb;
sn; Codes involving 5 elements
st; LEGB_GOSHI 11S3_HELAN Q647H1_ARAHY Q9SQH7_ARAHY
KA; P09800 M1 P19084 M1 Q647H1 M1 Q9SQH7 M1
To eliminate this fi rst major problem, we decided to replace the KA tag with

a different tag (K1), where the accession number referred to true-partial positives.
Perl is perfectly suited for the task because of its simplicity and powerful regular
expression support. The Perl code opens the prints42_0.kdat fi le and performs a
replacement based on the regular expression:

“s#(„^st.*\n)KA\;#$1K1;#g;”, which means:
– Search and replace globally all matches.
– Match a new line that starts with “st” and is followed by a new line that

starts with “KA”.
– Reference the line that starts with “st” and preserve it as is in the

replacement.
– Replace KA with K1 on the second line.
This fi xed the fi rst problem and made the text better suited for line-by-line

processing, with unique tags for all related parts of information.
For convenience, we also made another simple replacement. In front of every

130

fi ngerprint (i.e., for each gc; tag), with the help of a simple text editor, we inserted
a custom string:

‘‘---custom_delimiter_for_fi ngerprint---“
This was necessary to preserve the structure of the fi ngerprint intact when

splitting the text into separate fi ngerprints.
Python, our main programming language of choice, required a string for its

split function. That specifi c string had to be later removed from the split text.
Thus, if we took some existing text as the delimiter, such as gc, this would be
removed in the split text and hence leave the fi rst line of each fi ngerprint without
a tag, which would interfere with the logic for line-by-line processing.

With the preliminary tasks done, we could begin the essential parsing of
PRINTS.

Parsing PRINTS with Python

The Python parser begins by reading the whole text fi le and then splitting it
into parts. Each part represents one fi ngerprint. As mentioned, Python’s built-in
split method will be mainly used in the current project. In its fi rst occurrence,
the fi le’s content is split into parts by the custom delimiter created previously,
“---custom_delimiter_for_fi ngerprint---“.

Another useful method for separating text in Python is partition. This divides
text into parts using a given separation, and returns a 3-tuple containing the part
before the separator, the separator itself, and the part after the separator.

In PRINTS, we used partition to create a tuple for each line with the tag and
its content. The separator was “;”, which could be removed as unnecessary. To
accomplish the desired text partitioning, our code iterated through each PRINTS
data line (represented by l) like this:

tag, sep, contents = l.partition(‘;’)

After that, the values for tag and contents were appended to a new multi-
dimensional list, called lines. This specifi c list would be used for the essential
data matching, and iteration would be performed through it (for l in lines…).

The most simple value assignment was for tags such as that for fi ngerprint
identifi ers, denoted by gc. If the fi rst part of the line was the “gc” tag, the second
part of the line contained only the value of the fi ngerprint identifi er, which could
be assigned directly.

However, most tags required more complex processing. If the fi rst part of
the line was “gn”, then we performed a regular expression search and looked for
whole numbers after the string COMPOUND. When matched, only the whole
numbers would be captured and assigned to the variable “no_motifs” used for
number of motifs.

131

For other information, such as literature references, denoted by the “gr” tag,
we used a different approach. The literature reference fi eld could contain more
than one reference, and any part of this reference (author, title or source) could be
spread over more than one line. Hence, a new list, called reference, was created
for each “gr” line and processed later, after the iteration of the fi ngerprint lines
was over.

In the original PRINTS fi le, a new (blank) line occurs between each literature
reference. Thus, we separated each reference with the re.split method (similar to
the simple split, but using regular expressions for the delimiter). In order to do
that, all the reference lines were fi rst merged, using the join method. After that a
few specifi cs found in every literature reference were taken into consideration:
– The fi rst line always contained the author(s) and could be immediately

assigned, hence removed from the temporary list and from further processing.
– The last line was always the journal/book name, and could be treated

similarly.
– The middle line(s) was always the title. It could be immediately assigned

only if there were three lines in total in the temporary list. Any other cases
required additional processing.
If there were more than three lines, we used an important peculiarity of the

literature reference: authors are always written with capital letters. Thus, if the
line contained any lower-case letters, it was considered part of the title. Otherwise,
that line was part of the author list.

Continuing further with the parser code and going back to processing the
tags, in some cases, we used Python dictionaries for storing the information: for
example, the true partial-positive values, denoted by “st”. Once the number of
elements had been captured, it was attached to the true partial-positive values.
For this purpose, a dictionary tpp_number_of_elements was used. Keys in this
dictionary were the true partial-positive values, with the values being taken from
the last known number of elements.

The full code of the parser is available in the GitHub repository:
https://github.com/terry81/prints/blob/master/fi nal.py

Creating a relational database

There was never a doubt that the new version of PRINTS should be stored
in a database. Alternatives, such as using mark-up languages (e.g., XML) and
storing the information in plain text fi le, were ruled out as slower, less effi cient,
less consistent and more prone to anomalies.

While the easiest option would have been to use a NoSQL database (each
fi ngerprint could be represented as a document), a relational management system
was chosen for the following reasons:

132

 There were clear relations between the parts of each fi ngerprint. These
relations were important for the sanity checks and integrity of the information.

 Each fi ngerprint had the same structure and could populate the same tables.
 The current and expected volume of PRINTS information was within the

optimal size for a traditional relational database.
Regarding the choice of Relational Database Management System (RDBMS),

PostgreSQL was preferred over MySQL die to:
 Fast performance and powerful features were needed.
 Open Source license to be in accordance with the best practices for scientifi c

projects.
 The price should be low, and preferably free.
 The chosen RDBMS should be familiar to the scientifi c community.

Design of the PRINTS database
When designing the PRINTS database, we took into consideration the basic

fact that all data were about and related to protein fi ngerprints. Thus, the basic
database table was termed ‘fi ngerprint’. All other tables were related to fi ngerprint
with primary – foreign key relations.

Figure 1 illustrates all PRINTS tables, with their columns and relations. To
create the diagram, we used the software DBVisualizer [5].

Figure 1. Tables in the new relational database

133

Standard practices were followed in the database design, namely:
1. Unique, automatically incremented primary key for each table.
2. Tables were connected with primary – foreign key relations.
3. Strict data types were enforced wherever possible.
Thus, a large number of possible mistakes, especially when inserting parsed

information, were avoided and the database schema was optimal with regard to
performance.

Inserting the parsed data in the new database

To insert the parsed data into the new database, we used the same Python
script mentioned previously (https://github.com/terry81/prints/blob/master/fi nal.
py).

For interacting with the PostgreSQL database, we chose the popular
Psycopg2 Python module (https://pypi.python.org/pypi/psycopg2), which
provided excellent methods for inserting and retrieving information.

For inserting information, we Psycopg2’s methods: once the fi ngerprint
had been inserted, its identifi er (ID) was recorded under fi ngerprint_id. From
this point on, fi ngerprint_id, the primary key of the fi ngerprint table was used
for inserting values in the rest of the tables. The rest of the PRINTS data were
similarly inserted without presenting any fundamental challenges.

Providing a CRUD functionality

The ability to manage the PRINTS data effi ciently was top priority of the
new re-design, because the principal problem with the old data format was that
the text fi le was hard to manage. For this purpose, we decided to implement a
CRUD (Create Retrieve Update Delete) Web application. This application had to
be fast, easy to maintain, compliant with the best practices, and free.

These requirements could be best met with a PHP Web application based
on the Yii framework [6]. Yii is among the top PHP frameworks, with a long
history, a solid support track-record, and open source licence (Berkeley Software
Distribution license). Yii has a modern design, which follows the Model, View,
Controller (MVC) principles [7], as illustrated in Figure 2. This allows fast initial
setup, easy maintenance and future extension. In the context of PRINTS, the
MVC concept meant that each database table would have a separate controller,
model and view – ten in total.

134

Figure 2. Relations between the components of MVC

Integrating PRINTS with the Yii web framework

To build the Web application for PRINTS with Yii we followed these steps:
1. Generated a new standard Web application with Yii and connected it to the

new database.
2. With the help of the Giix extension (http://www.yiiframework.com/

extension/giix/), we generated almost automatically all the views, controllers
and models for the application.

3. We started customising the code in accordance with the requirements of the
new functionality and appearance of the Web application.
Thanks to the use of Yii and its automation features, the development time

for trivial tasks was reduced and efforts could be concentrated on the essential
part of the development.

The most basic requirement of the new Web interface was to make it
compatible with or similar to the existing one for the old PRINTS database. This
would allow the use of previous proven functionality, look and feel, making the
transition easier for existing PRINTS users. Generally, this meant two things:

– Preserve the order of the fi ngerprints elements on the.
– Preserve the formatting of the old data, including the spaces between

every fi ngerprint detail.

135

– Preserving the alignment of text within rows of data tables (e.g., such
as those found in the Composite Feature Index) was critical for human
readability (e.g., to be able to compare values). For this purpose, we
used mono-spaced fonts in addition to some programming.

Making the new interface resemble the previous one was a challenge because
of the database redesign, the differences coming from the MVC concept and Yii.
The fi ngerprint view (i.e., Web page) in the new MVC design had to be the focal
point for all the PRINTS information. This meant having to integrate most of the
functionality of all ten views into a single view – that of the fi ngerprint. The full
code of the fi ngerprint view can be found in the git repository:

https://github.com/terry81/prints/blob/master/public_html/protected/views/
fi ngerprint/view.php

To preserve the fi xed-width text, we used regular expressions in a way
that spaces were used for padding and preserving the column alignment. The
following example (fi gure 3) illustrates how particular data tables had to appear
within the Web page:

Figure 3. Screenshot from the new web page for PRINTS

To accomplish the above alignment in the Summary and Composite
Fingerprint Index, we had to make some replacements, based on regular

136

expressions. The code inserts a number of blank spaces with respect to the
number of original characters (digits in this case). The fewer the digits, the more
padding was needed, and the more blank spaces were inserted. Thus, for a single
digit in the Summary information, three blank spaces (in HTML) were
placed; for two digits – two blank spaces; and for three digits – one blank space.
Similarly, for the Composite Fingerprint Index, padding was added in all the
columns to ensure that information was properly aligned.

The rest of the PHP code in the GitHub repository shows other techniques
used for the visualisation and the data.

Providing additional tools for working with the PRINTS database

Alongside the intuitive and easy-to-use Web application, we decided to
provide additional tools for working with PRINTS: in particular, we needed more
powerful and faster tools for managing the PRINTS data. That’s how we decided
to use the Python code for the initial parsing and extend it further.

The most important additional tool was one to parse new fi ngerprints created
in the old text format. To this end, we created the add_fp.py script (https://github.
com/terry81/prints/blob/master/add_fp.py), which took one argument passed on
the command line – the text fi le of the new fi ngerprint. The code was exactly
the same as the original parser, only the original parser had the fi le with all the
fi ngerprints (prints42_0_adapted.kdat) hard-coded. For convenience, we also
created another script to delete fi ngerprints based on their identifi ers – delete_
fp.py (https://github.com/terry81/prints/blob/master/delete_fp.py). This script
also accepted one argument – the fi ngerprint identifi er – and went through the
table relations, bottom to top, deleting all dependencies such that a fi ngerprint
would be completely removed.

Of course, there also remained the option to use the PostgreSQL terminal.
This provided the most powerful features based on the standard Structured Query
Language (SQL). However, this requires SQL skills, and would be used only for
the most advanced data-management needs.

4 Conclusion

To complete the project, we planned to thoroughly check and test all the
provided tools. Along with such testing, the database integrity would be double
checked to ensure that there were no discrepancies with the old database.

It was a huge step to move from a simple text fi le to a relational database
with interactive tools connected to it. However, with the new features, power
and complexity came many possibilities for problems. For this reason, it was
critical to understand that once the essential phase of the modernisation process

137

was completed, substantial ongoing support should be provided. Only this would
validate the whole point of modernising PRINTS.

To facilitate the future support and development of PRINTS, we avoided using
any exotic technologies, but instead relied on proven solutions and programming
techniques. Along with this philosophy, we described and documented the full
modernisation process was in detail.

References
[1] Linial, M. & Loewenstein, Y., 2008. Connect the dots: exposing hidden protein family

connections. ECCB, Volume 24, p. 193–i199.
[2] Attwood T.K., M. A. a. D.-S., 1994. PRINTS a database of protein motif fi ngerprints. Nucleic

Acids Research, 22(17), pp. 3590 -3596.
[3] Stockinger H, T. A. S. N. C. R. C. P. C.-M., 2008. Experience using web services for biological

sequence analysis. Briefi ngs in Bioinformatics, 9(6), pp. 493-505.
[4] Coletta, A. & Farhan, R., n.d. PRINTS. [Online] (http://www.bioinf.manchester.ac.uk/

dbbrowser/PRINTS/index.php)
[5] DbVis Software AB, 2010. DbVisualizer: The Universal Database Tool, Stockholm, Sweden

[Online] (https://www.dbvis.com/)
[6] Winesett, J., 2012. Web Application Development with Yii and PHP. Packt Publishing Ltd.

(http://www.yiiframework.com)
[7] Krasner, G.E. and Pope, S.T., 1988. A description of the model-view-controller user interface

paradigm in the smalltalk-80 system. Journal of object oriented programming, 1(3), pp.26-49.

Aknowledgments This project has been supported by the National Science Fund
of Bulgaria within the “Methods for Data Analysis and Knowledge Discovery in Big
Sequencing Dataset” project under contract DFNI02/7 of 12.12.2014.

138

Software protection integrating registration number and
anti-debugging protections

Magdalina Todorova1, Daniela Orozova2

1 “St. Kliment Ohridski” University of Sofi a, Faculty of Mathematics and Informatics,
Sofi a 1164, Bulgaria

todorova_magda@hotmail.com

2 Burgas Free University, Faculty of Computer Science and Engineering,
62 San Stefano Str., Burgas 8001, Bulgaria

orozova@bfu.bg

Abstract. The article is dedicated to a description of a method of software protection
integrating registration number and anti-debugging protections. The means of
generalized nets are used to achieve that. The registration number is defi ned by
a randomly generated generalized net with a tree-like structure whose nodes are
generalized nets also. The anti-debugging protection is realized via embedding
software, which traverses the generalized net providing the registration number,
into the protected software.

Keywords: Software Protection, Аnti-debugging, Registration Number Protection.

1 Introduction

The popular means used by crackers to break code can be divided into three
groups as follows: debuggers (SoftICE, TRW2000, Syser, OllyDbg, Rasta Ring
0 Debugger, HyperDBG, LinICE, BugChecker, etc.), disassemblers (WinDasm,
Sourcer, IDA Pro, PEDasm, CRACKER, etc.) and decompilers (Mocha
Decompiler, Java Decompiler, JAD Decompiler, JEB Decompiler, Android App
Decompiler, etc.). Respectively, the most common ways and means of protection
of the programming code from breaking are anti-debugging, anti-disassembly
and anti-decompiling [1, 2, 3].

The method proposed here can be classifi ed as an anti-debugging one.
However, instead of blocking the tools for debugging the fragment which
compares the registration number (key, code), it gets more complicated. The
complication is realized by using generalized nets (GNs) [4]. The choice of
a GN is determined by the fact that these nets are a useful tool for modelling
and simulating parallel processes. By means of GSs hierarchical data structures
can easily be modelled and processed. They are not popular with the software

139

specialists, but are well-studied from a mathematical point of view [4]. Software
tools for effi cient interpretation of generalized net models are developed [5, 6, 7].

2 Description of the protection method

The described method embeds software which realizes parallel traversing of
a generalized net, into the code of the protected software. The GN used for this
purpose has a tree-like structure. The nodes of the tree are oriented multigraphs
presented by GNs (fi g. 2). This GN defi nes the key of a particular instance of the
protected software.

The programming code to be embedded is designed by iteration of the
developed tree layer by layer from the leaves towards the root. The GNs at a given
layer are executed in parallel. The execution of each GN which is positioned in a
node is also in parallel.

In order to build the tree in fi g. 2, two sets of generalized networks are
developed: G1 and G2, of the same type as shown in fi g. 1.

Fig. 1. Simple GN with 4 Input and 1 Output Places

The nets have four input places, denoted as In1, In2, In3 and In4 in the fi gure,
and one output place Out. A net of this type starts functioning when each of its
4 input places receives a token. The characteristic of the token in place Ini is
denoted by hi and is related to the value 0 or 1 (i = 1, ..., 4) during the different
executions of the net. Thus, the sequence of token characteristic values {h1, h2,
h3, h4} in the input places of the net can be interpreted as a 4-bit registration
number. For the purposes of simplifi cation, instead of “value of the characteristic
of the token”, we will use also “characteristic of the token”. As a result of the GN
execution, a token is received in the output place Out.

The set G1 consists of such GNs which complete their execution at code 1 in
case of exactly one 4-element variation of elements 0 and 1 with repetition which
is given as a sequence of input values of the token characteristics in input places
In1, In2, In3 and In4, respectively. In this case, a single token with characteristic
value of 1 gets to their output place Out. This unique variation defi nes the correct

140

registration number of the respective net. In the cases of all the other 15 4-element
variations of elements 0 and 1 with repetition, given as sequences of input values
of the token characteristics in input places In1, In2, In3 and In4, these nets complete
their execution so that a single token with characteristic value of 0 gets to their
output place Out (which we also note as: their execution ends at code 0).

An example of such GN is given in fi g. 4. This GN completes execution
at code 1 only in the case of variation {1, 1, 0, 1} of the elements 0 and 1. The
variation is given as a sequence of input values of the token characteristics in the
respective places In1, In2, In3 and In4.

The set G2 consists of GNs which, in the case of exactly one 4-element
variation of elements 0 and 1 with repetition given as a sequence of input values
of the token characteristics in input places In1, In2, In3 and In4, respectively, end
their execution so that a single token with characteristic value of 0 gets to their
output place Out (their execution ends at code 0). This unique variation defi nes
the correct registration number of the respective GN. In the cases of all the other
15 4-element variations of elements 0 and 1 with repetition, given as sequences of
input values of the token characteristics in input places In1, In2, In3 and In4, these
nets complete their execution at code 1.

An example of such net is given in fi g. 5. It completes its execution at code 0
only in case of variation {0, 1, 1, 1} of the elements 0 and 1, given as a sequence
of input values of token characteristics in input places In1, In2, In3 and In4.

As the execution of any GN belonging to G1 ends by code 1 (true), in case
of a single 4-element variation of the elements 0 and 1 with repetition, it makes
sense to choose as a protection tool a random net of this set. Let us denote the
selected network with GN1. However, it is obvious that this choice does not solve
the task as fi nding the registration number will be done by manual checking of 24

4-element variations of the elements 0 and 1 with repetition. According to [8], an
acceptable length of the registry number is 128. In order to increase the registry
number length, we will upgrade the GN. To make this, a random GN, belonging
to G1 or to G2, is chosen for each input place of the GN1. If the value of the correct
registration number in a place of GN1 is 1, is chosen a random GN, belonging to
G1. If the value of the correct registration number in a place of GN1 is 0, is chosen
a random GN, belonging to G2. The output of the chosen GN merges with the
respective input place of the GN1. After the fi rst upgrade, we have a GN with 16
input places which represents the tree (fi g. 2).

141

Fig. 2. Upgrading the GN1 in its 4 input places

The sequence of correct registry numbers of the nets GN2, GN3, GN4 and
GN5 defi nes the correct registration number of the tree-like GN.

Example. Let the GN in fi g. 4 is chosen to protect the code. This GN
completes execution by code 1 only in case of registration number {1, 1, 0, 1}
given as a sequence of characteristics of the tokens in the input places In1, In2,
In3 and In4. The GN is denoted as GNe. In order to realize a GN with 7 input
places, we upgrade GNe in place In1 by GNe, as shown in fi g. 3. Note that the
registry number in place In1 of GNe has value of 1. In the case of this upgrade,
the resulting GN will end its execution by a token with characteristic (code) 1 in
place Out only in the case of the registration number – the variation {1, 1, 0, 1, 1,
0, 1}, given as a sequence of values of the characteristics of the tokens in places
{In5, In6, In7, In8, In2, In3, In4}. In the case of the other variations, it will end at a
token with characteristic (code) 0. Similarly, the GN from fi g. 3 can be upgraded
in places In2 and In4 by random GNs belonging to set G1 as they refer to code 1.
The GNs belonging to G1 are not suitable for upgrading place In3 as they complete
their execution at code 0 at Out for 15 4-element variations of the elements 0 and
1 with repetition. In this case, a suitable GN is one belonging to G2.

142

Fig. 3. Upgrading GNe by GNe in place In1

The upgrading process can continue in the same manner. At the next level of
upgrade, a GN with 64 input places will be produced; at the next: with 256, etc.
The choice of a length of the registration number depends on the particular case
of applying the protection method.

Choosing the appropriate level of security depends on the answers of the
following questions: What is the price of the software to be protected? How
long it should be protected for? What are the predicted resources available to the
crackers, who would try to break the protection? [8].

An important point in applying the GN developed for software protection
is its correctness. Part 4 of the article presents verifi cation of the developed GN
which is to be integrated into the protected software.

3 Examples of GNs belonging to sets G1 and G2, which are used by the
method of software protection

This part is dedicated to two examples of GNs belonging to G1 and G2,
respectively, which were used for describing the method of software protection.

Example of a GN belonging to G1. The GN presented in fi g. 4 has 4
transitions denoted by T1, T2, T3 and T4. It completes its execution after completing
transition T4. The only possibility to complete transition T4 so that Out to contain
a token with characteristic 1 is in case of one token with characteristic 1 in each
place In1, In2 and In4, and a token with characteristic 0 in place In3. In case of all
other values of the characteristics of the tokens in the input places of the GN, the
execution of the latter will end at a state of token with characteristic of 0 in place
Out.

143

Fig. 4. An example of a GN which completes its execution at a token with code 1 in Out only in
case of input tokens with characteristics {1, 1, 0, 1} in the respective input places {In1, In2, In3 and

In4}

Defi nitions of the transitions of the GN are given below. The capacity of each
GN arcs is 1. Let us note again that the tokens in places In1, In2, In3 and In4 are
denoted by h1, h2, h3 and h4, respectively.

Transition T1 is executed if there is one token in each of its input places In1
and In2. It is defi ned as follows:

T1 = <{In1, In2}, {P1, P2}, t11, t12, r1, M1, (In1, In2)>, and

where
W1: h1 i s1  h2 i s 1

As a result of the transition execution, if W1 holds, the token from place In1
transfers into place P1, the tokens from place In2 transfers into place P2 and both
tokens keep their characteristics. Otherwise (¬W1 holds), the token from place

144

In1 transfers into place P2, the tokens from place In2 transfers into place P1 and
both tokens receive new characteristics with values of 0.

Transition T2 is defi ned as follows:
T2 = <{P1, In3, P3}, {P3}, t21, t22, r2, M2, (P1, In3)>, and

where
W2: The characteristic of the token in P1 is 1  h3 is 1

T2 is executed if there is one token in each of its input places P1 and In3. As
a result of the transition execution, if W2 holds, the token from place P1 transfers
to place P3 and keeps its characteristic. Otherwise (¬W2 holds), the token from
place In3 transfers to place P3 and receives a characteristic with value of 0.

Transition T3 is executed if there is a token in its input place In4. As a result
of its execution, the token from place In4 transfers into place P4 and keeps its
characteristics. It is defi ned as follows:

T3 = <{In4}, {P4}, t31, t32, r3, M3, (In4)>, and

Transition T4 is executed if there is a token in each input place P2 and P4. Its
priority is lower that this of transition T2. It is defi ned as follows:

T4 = <{P2, P4}, {Out}, t41, t42, r4, M4, (P2, P4)>, and

where
W3: The characteristic of the token in P2 is 1 
 The characteristic of the token in P3 is 0 
 h4 is 1

As a result of the transition execution, if W3 holds, the token from place P4

transfers to place Out and receives characteristic of 1. Otherwise, the token from
place P2 transfers to place Out and receives characteristic of 0.

Example for a GN belonging to G2: the GN presented at fi g. 5 has 5
transitions (T1, T2, T3, T4 and T5).

145

Fig. 5. Example for a GN, which completes its execution by code 0 only in case of values of the
characteristics of the tokens {0, 1, 1, 1} in places {In1, In2, In3, In4}

This GN completes its execution after completing transition T5. The only
possibility for execution of transition T5 so that Out contains a token with
characteristic of 0 is if there is one token with characteristic of 1 in each place
In2, In3 and In4, and there is a token with characteristic of 0 in place In1. In case
of any of the other 15 possible values of the characteristics of the tokens in input
places of the GN, the execution of the latter will end at a state of token with
characteristic of 1 in place Out.

The defi nitions of the transitions of a GN follow. The capacity of each
transition arc of a GN is 1. The characteristics of the tokens in places In1, In2, In3
and In4 are, again, respectively h1, h2, h3 and h4.

Transition T1 is executed when there is a token in its input place In1. As a
result of its execution, the token in In1 splits into two tokens which transfer in
places P1 and P2. The characteristics of the new tokens are the same as this of the
token in In1. T1 is defi ned as follows:

T1 = <{In1}, {P1, P2}, t11, t12, r1, *, (In1)>, and

146

Transition T2 is executed if there is a token in each of its input places P1 and
P3. It is defi ned as follows:

T2 = <{P1, P3}, {P5}, t21, t22, r2, *, (P1, P3)>, and

where
W1: The characteristic of the token in P1 is 0 
 The characteristic of the token in P3 is 1
As a result of the transition execution, if W1 holds, the token from place P1

transfers to place P5 and keeps its characteristic. Otherwise, the token from place
P3 transfers to place P5 and a characteristic with value 0 is received.

Transition T3 is executed if there is a token in each input place In2, In3 and
In4. It is defi ned as follows:

T3 = <{In2, In3, In4}, {P3, P4}, t31, t32, r3, *, (In2, In3, In4)>, and

where
W2: h2 is 1  h3 is 1  h4 is 1

As a result of the transition execution, if W2 holds, the tokens from places In2
and In3 transfer into places P3 and P4, respectively, and keep their characteristics.
Otherwise, the tokens from places In2 and In3 transfer into places P4 and P3,
respectively, and receive characteristics with values of 0. The token in place In4
does not transfer.

Transition T4 is defi ned as follows:
T4 = <{P2, P4}, {P6}, t41, t42, r4, *, (P2, P4)>, and

where
W3: The characteristic of the token in P4 is 1 
 The characteristic of the token in P2 is 0
As a result of the transition execution, if W3 holds, the token from place P4

transfers to place P6 and keeps its characteristic. Otherwise, the token from place
P2 transfers to place P6 and receives characteristic of 0.

147

Lastly, the transition T5 is defi ned as follows:
T5 = <{P5, P6}, {Out}, t51, t52, r5, *, (P5, P6)>, and

where
W4: The characteristic of the token in P5 is 0 
 The characteristic of the token in P6 is 1
As a result of the execution of transition T5, if W4 holds, the token from

place P5 transfers to place Out and receives characteristic of 0. Otherwise, the
token from place P6 transfers to place Out and receives characteristic of 1.

Next part of the article is dedicated to verifi cation of the defi ned above GNs.

4 Verifi cation of the designed for protection generalized net

Let the GN which will realize the software protection (we denote it as
GNprot) be chosen to have the following characteristics:

k input places (k is the power of 2) – In1, In2, …, Ink,
m internal places P1, P2, …, Pm and
1 output place Out.
Its development was described in Part 2. Verifying GNprot means to prove

that there is exactly one k-element variation of the elements 0 and 1 with repetition
given as a sequence of input values of the characteristics of the tokens in In1, In2,
…, Ink, which ends its execution at receiving a token with characteristic of 1
in its output place Out. In the case of the other one k-element variations of the
elements 0 and 1 with repetition, what holds is that the execution of GNprot ends
at receiving a token with characteristic of 0 in its output place Out.

Firstly, all GNs belonging to the sets G1 and G2 are verifi ed. To this end, it
must be proven that a random net belonging to the set G1 ends its execution at
code 1 in the case of a single 4-element variation of the elements 0 and 1 with
repetition, whereas in the remaining 15 4-element variations of 0 and 1 of with
repetition it is true that the execution of the net ends at code 0.

It must also be proven that a random net belonging to the set G2 ends its
execution at code 0 in the case of a single 4-element variation of the elements of
0 and 1 with repetition, whereas in the remaining 15 variations it is true that the
execution of the net ends at code 1.

Next, structural induction is applied on the layers of upgrade.
Verifi cation of the GNs belonging to the sets G1 and G2 is realized by tracking

the transitions of the tokens between the places of these GNs. Examples of
verifi cation of the nets in fi g. 4 and fi g. 5 follow below.

148

Verifi cation of the net in fi g. 4

It will be proven that the execution of the net ends at code 1 only in case of
input characteristics {1, 1, 0, 1} of the tokens in respective places {In1, In2, In3,
In4}.

In order to do that, the changes in the characteristics of the tokens in places
{In1, In2, In3, In4, P1, P2, P3, P4, Out} of the net will be tracked for all possible
input values of the initial characteristics h1, h2, h3 and h4. The lack of a token in the
respective place of the GN will be denoted by “-“.

Let {In1, In2, In3, In4, P1, P2, P3, P4, Out} = {1, 1, 0, 1, -, -, -, -, -}. Execution
is possible for the transitions T1 and T3. After their execution in parallel, the
characteristics of the tokens in the net are of the following kind: {-, -, 0, -, 1, 1, -,
1, -}. At this stage, execution of transitions T2 and T4 is possible. As T4 is of lower
priority, transition T2 is executed. The result after that (¬W2 holds) is: {-, -, -, -,
1, 1, 0, 1, -}. In the end, after executing transition T4 (W3 holds), the result is: {-,
-, -, -, 1, 1, 0, -, 1}, i.e. the execution ends at code 1.

In case of input characteristics: {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0,
1, 1}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {0, 1, 1, 1}, {1, 0, 0, 0}, {1, 0, 0, 1},
{1, 0, 1, 0},{1, 0, 1, 1} of the tokens in places {In1, In2, In3, In4} the execution of
the GN ends by code 0, as ¬W3 holds (After executing T1, the characteristic of
the token in place P2 is 0).

In case of input characteristics: {1, 1, 0, 0} and {1, 1, 1, 0} of the tokens in
places {In1, In2, In3, In4} the execution of the GN ends by code 0, as ¬W3 holds
(After executing T3 the characteristic of the token in place P4 is 0).

In case of an input characteristic: {1, 1, 1, 1} of the tokens in places {In1, In2,
In3, In4} the execution of the GN ends by code 0, as ¬W3 holds. (After executing
T2 the characteristic of the token in place P3 is 1).

Verifi cation of the net in fi g. 5

It will be proven that the execution of the net ends at code 0 only in case of
input characteristics {0, 1, 1, 1} of the tokens in respective places {In1, In2, In3,
In4}.

In order to do that, the changes in the characteristics of the tokens in places
{In1, In2, In3, In4, P1, P2, P3, P4, P5, P6, Out} of the net will be tracked for all
possible input values of the initial characteristics h1, h2, h3 and h4. Again, the lack
of a token in the respective place of the GN will be denoted by “-“.

Let {In1, In2, In3, In4, P1, P2, P3, P4, P5, P6, Out} = {0, 1, 1, 1, -, -, -, -, -, -, -}.
Execution is possible for the transitions T1 and T3. As a result of their parallel
execution, the characteristics of the tokens in the net become of the following
kind: {-, -, -, 1, 0, 0, 1, 1, -, -, -}. Next, execution of transitions T2 and T4 is
possible. As a result of their parallel execution, the characteristics of the tokens in

149

the net become of the following kind: {-, -, -, 1, -,0, 1, -, 0, 1,-}. After executing
transition T5, the characteristics of the tokens of the net become of the kind: {-, -,
-, 1, -, 0, 1, -, -, 1, 0}.

In case of input characteristics: {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1,
1}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1,
0, 1, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}, {1, 1, 1, 0}, {1, 1, 1, 1} of the tokens in places
{In1, In2, In3, In4}, the execution of the GN ends by code 1, as ¬W4 holds. (After
executing T4 the characteristic of the token in place P6 is 0).

Verifi cation of the whole GN

Structural induction is applied on the layers of upgrade.

Base case: (level 1; k = 4)

As the GN at level 1 is a random net belonging to G1, the condition against
which it is verifi ed holds.

Inductive case (induction hypothesis):

Let the following holds for the GN resulting after n-th upgrade (with n layers)
and possessing k/4 input places:

 only one k/4-element variation of the elements 0 and 1 with repetition
{h1, h2, …, hk/4}, which, when set as an input value of the characteristics of the
tokens in {In1, In2, …, Ink/4} leads to completion of the GN execution at a token
with characteristic 1 in output place. The GN execution ends at a token with
characteristic 0 in output place in case of all remaining k/4-element variations of
the elements 0 and 1 with repetition. We denote this net by GNk/4.

Let GNk is a net resulting of upgrading GNk/4 once by the nets GNk/4,i, i = 1, 2,
…, k/4. This GN will be GNprot. The net GNk/4,i (i = 1, 2, …, k/4) belongs to the
set G1 if hi equals 1, or to G2 if hi equals 0. For each net belonging to G1 is true that
its execution ends at code 1 in case of a single 4-element variation of the elements
0 and 1 with repetition, and at 0 in case of all 15 remaining 4-element variations
of the elements 0 and 1 with repetition. Also, for each net belonging to G2 is true
that its execution ends at code 0 in case of a single 4-element variation of the
elements 0 and 1 with repetition, and at 1 in case of all 15 remaining 4-element
variations of the elements 0 and 1 with repetition. Therefore, for each net GNk/4,i
(i = 1, 2, …, k/4) one of these two characteristics is true, i.e.

 only one 4-element variation of the elements 0 and 1 with repetition
{hi,1, hi,2, hi,3, hi,4}, i = 1, 2, …, k/4, which, when set as an input value of the
characteristics of the tokens in the input places of GNk/4,i, leads to completing the
execution of GNk/4,i at a token in the output place with code hi.

Then, {h1,1, h1,2, h1,3, h1,4 h2,1, h2,2, h2,3, h2,4, ..., hk/4,1, hk/4,2, hk/4,3, hk/4,4} is the one
and only k-element variation of the elements 0 and 1 with repetition, which, when

150

set as an input value of the characteristics of the tokens in the input places of
GNk/4,i, their execution is completed and returns the sequence of the characteristics
of the tokens in the input places {h1, h2, …, hk/4}. After applying the induction
hypothesis, the statement about GNk with k input place is true.

5 Reliability of the method

Method reliability is determined by its correctness and by the length of the
period of delaying the process of making the software freely available.

Method correctness is determined by the correctness of the defi ned GN,
through which the correctness of the registration number is checked, as well as
by the correctness of GN traversing by layers from the leaves to the root.

Experiments on the extent to which the popular methods of breaking protection
will work in the case of this method have not been conducted yet. However, if
the codebreaker is not familiar with the described method of programming code
protection, the only way to fi nd out the access code is by completely exhausting
all possible values of the registration number. In case of a registration number
with length k, k ≥ 256, the number of different registration numbers is no less
than 2256.

6 Conclusion

The suggested method of software protection realizes complicated protection
based on parallel traversing of a tree realized via a GN whose nodes are GNs.
The main advantage of this method in comparison to the other anti-debugging
methods are the tools of making the debugging more complicated: a large number
of transitions included in the GN; parallel traversing of the tree-like GN structure;
parallel execution of GNs at each node of the tree; a high level of multi-threading
realized by the transitions of the GN.

151

References
1. Shields, T.: Anti-Debugging – A Developers View, Tech. rep. Veracode Inc., USA, 2009, http://

www.secnews.pl/wp-content/ uploads/2011/05/whitepaper_antidebugging.pdf
2. Kim, D., Kwak, J., Ryou, J.: DWroidDump: Executable Code Extraction from Android

Applications for Malware Analysis, International Journal of Distributed Sensor Networks,
Volume 2015, Article ID 379682, http://dx.doi.org/10.1155/2015/379682

3. Gagnon, M., Taylor, S., Ghosh, A.: Software protection through anti-debugging, IEEE Security
and Privacy, Vol. 5, 2007, pp. 82—84 (2007)

4. Atanassov, K.: On Generalized Nets Theory, Prof. Marin Drinov Academic Publishing House,
Sofi a (2007)

5. Trifonov T., Georgiev, K.: GNTicker – A software tool for effi cient interpretation of generalized
net models, Issues in Intuitionistic Fuzzy Sets and Generalized Nets, Vol. 3, Warsaw (2005)

6. Dimitrov, D. G..: GN IDE – A Software Tool for Simulation with Generalized Nets. Proceedings
of Tenth Int. Workshop on Generalized Nets, pp. 70--75, Sofi a (2009)

7. Dimitrov, D. G.: A Graphical Environment for Modeling and Simulation with Generalized
Nets. Annual of “Informatics” Section, Union of Scientists in Bulgaria, Vol. 3, 2010, pp. 51--66
(In Bulgarian)

8. Schneier, B.: Applied Cryptography, John Wiley & Sons, ISBN 978-1-119-09672-6, 784
Pages, 1996

152

Embedded Architecture of Tolls Collecting System

Ioannis Patias, Vasil Georgiev

Faculty of Mathematics and Informatics
University of Sofi a St.Kliment Ohridski“

ioannis.patias@gmail.com

Abstract. In this paper we present the system architecture of a Toll Collection
System (TCS) based on Arduino Microcontroller. The system aims to reduce the
traveling time, since there no need the car to stop in a queue to pay the tolls, but
also the system is an advanced and affordable solution. RFID technology is used
for vehicle identifi cation. A unique RFID tag identifi es each vehicle. The revenue
authority assigns the tag. Following, our system stores all necessary information,
like pre-paid amount. Strategically placed reader deducts the corresponding amount
each time the vehicle passes the toll checkpoints. The system also updates the
balance, and in case of insuffi cient balance, cameras placed on checkpoints can
capture an image of the vehicle.

Key words: Embedded system architecture, business process modelling, control
systems

1. Introduction

Toll Collection is an instrument for funding maintenance and rehabilitation
of roads infrastructure. The processing time at checkpoints, operating costs, and
traffi c congestion caused by manual tolls collection can be avoided by using All-
Electronic Tolls Collection based on RFID. The proposed RFID system consists of a
tag transmitter, an antenna, and a computer. The transmitter consists of a microchip
combined with an antenna. Tags can store up data and consist of microchip, and
antenna, and also battery for the cases of active and semi-passive tags. All the
components can be enclosed in plastic, or silicon. Passive RFID have no internal
power source and use external power to operate. These tags are powered by the
electromagnetic signal received from a reader. The received electromagnetic signal
charges an internal capacitor on the tags, which in turn, acts as a power source and
supplies the power to the chip. The RFID tag is used as a unique identifi cation
code for each vehicle. Thus, vehicle driving through a checkpoint, his RFID tag is
automatically scanned. Vehicle’s ID number (tag’s number) is then crosschecked
with the active ones stored in the system. In case the tag is not identifi ed, we get a
negative message from the system, and then a camera gets an image of car. In case
of positive message we track the car until gets to an exit-tracking checkpoint. Then
the amount calculated for tolls, based on the distance on the highway is deducted
from vehicle’s account. The available amount can be sent to the vehicles owner by

153

different means, and for recharging the user can enter the system. After recharging
the new amount is back stored for further use.

Problem Defi nition

The purpose is to develop a Tolls Collection System (TCS) Based on Arduino
Microcontroller. The main objectives of this system are to reduce the processing
time at checkpoints, the operating costs for the tolls operating authority, and
the traffi c congestion caused for the vehicles by manual tolls collection. By
implementing an all-electronic tolls collection systems we propose a more
effi cient, environmentally friendly, and safer tolls collection system. Thus, we can
increase tolls collection and provide a strong instrument for funding maintenance
and rehabilitation of roads infrastructure, with an affordable cost.

Literature Review

Tolls Collection is the most widely used instrument to secure maintenance
and rehabilitation of roads infrastructure. Apart of from highways and roads, also
bridges and tunnels are usually maintained and rehabilitated, but also cover their
operating costs collected in similar form either directly or indirectly.

The indirectly way means by increasing taxes on fuels for instance or other
form of allocating the budget on the national revenue. The disadvantage of this
method is the unfair weight allocation to taxpayers, which are not using this
infrastructure. So, they have to pay the same as the ones directly benefi ted by the
use of the infrastructure in place.

The direct way aims to charge tolls directly to the users benefi ting of the use
of the infrastructure. For instance directly charging tolls to the drivers crossing
the bridge or tunnel. This way also allows the authorities to accelerate the
infrastructure projects funding and thus implementation.

Financing projects by tolls collection also can be seen as an opportunity
of outsourcing. The authorities can either build sooner the infrastructure using
the collected tolls, instead of waiting fi rst the income of taxes to accumulate, or
mobilize private funds through PPP agreements.

According to European Commission (EC) those new fi nancial schemes for
European transport infrastructure projects, can mobilize signifi cant private funds.
With €3bn of EU funds in combination of grants and fi nancial instruments, €30bn
of investments on the ground and on-board could be generated [1].

There are various ways of tolls collection, which could be broadly categorized
as [2]:

 Manual Tolls Collection
The manual tolls collection requires an operator, meaning a toll collector.

Based on vehicles’ classifi cation the operator collects the cash. The operator does
all the processing of the transaction, thus the processing time is long.

154

 Automatic Tolls Collection
Automatic tolls collection using of automated machines. Those machines

usually accept coins. The processing time is shorter and the operating costs lower
in comparison with the manual tolls collection.

 Electronic Tolls Collection
Electronic Tolls Collection (ETC) refers to a system, which automates the

transactions processing. The system identifi es, and classifi es the vehicles equipped
with the necessary encoded data tag while they move through the checkpoints.
After the identifi cation the system fi nalizes the transaction and the vehicles do not
need to stop at all going through the checkpoint.

There are also various organizational systems of toll roads exist[3], which
affect the respective tolls collection infrastructure:

 Open Tolls Collection
For open tolls collection, vehicles need to stop at checkpoints to pay the

tolls. The advantage is the safe of money, since there is no need of infrastructure
like checkpoints at every exit. The disadvantages are fi rst the traffi c congestion
caused by the vehicles at every checkpoint along the highway, and second the
ability the system allows drivers not to pay tolls, by avoiding the checkpoints,
since they can exit and re-enter the highway.

 Closed Tolls Collection
In closed tolls collection systems, vehicles stop once entering the highway,

to collect an entrance ticket, and again upon exit. The payment transaction takes
place at the exit. The payable amount varies on the distance between the entrance
and exit checkpoints.

 All-Electronic Tolls Collection.
All-electronic tolls collection systems are based on a no cash approach. The

amount is deducted by the vehicles account automatically, or submitted to the
owner in some form. The amount payable is calculated either on entering, or after
exiting the highway. All-electronic tolls collection is the most effi cient, safer, and
fair tolls collection system.

In implementing All-Electronic Tolls Collection the most widely used
identifying devices are the ones using Radio-Frequency Identifi cation (RFID).
Ubiquitous Computing [4] is called the idea of a post-desktop model of human-
computer interaction. This is to have integration of information processing into
everyday objects and activities, which in many cases the end-user uses more than
one distributed systems and devices even simultaneously, without even being
aware of their existence. RFID tags, or electronic labels represent an example of
such implementations. They are used with objects to be monitored or tracked, like
the vehicles on a highway. Using RFID we can identify and track the vehicles by
using radio waves or sensing signals. There are tags, which can be tracked with
range of tens or hundreds of meters. The syntax of RFID tags contains two major
parts at least. The fi rst is storing and processing information integrated circuit,

155

which is also modulating and demodulating a radio-frequency (RF) signal. The
second part consists of an antenna, used for receiving and transmitting the radio
signals.

There are three categories of RFID tags:
 active,
 semi-active, and
 passive
Tags can store up data and consist of microchip, and antenna, and also battery

for the cases of active and semi-passive tags. All the components can be enclosed
in plastic, or silicon. In general RFID tags help us in our everyday activities, since
they are not expensive, and at the same time they can apply in almost any object.

2. TCS architecture

Functionality and Business Logic

The following Arduino microcontroller based Tolls Collection System fl ow
chart diagrams, show the basic operations.

Fig. 1. TCS Flow Chart Diagram: Entrance checkpoint

156

As we can see in the fi gure above (Figure 1), once a vehicle approaches to a
highway entrance checkpoint, it sends a identifi cation tag. The system checks the
ID tag validity. In case the ID tag is valid the system starts charging the vehicle.
When the system cannot confi rm the tag’s ID validity, and as enforcement mesure,
it captures a camera image and informs the vehicle’s owner for the lack of a valid
ID tag.

The tolls collection transaction takes place once a vehicle approaches a
highway exit checkpoint (Figure 2). The system checks again the ID tag validity.
In case the ID tag is valid the system checks the vehicle’s account for funds
suffi ciency. In case there is suffi cient amount deducts the tolls amount, updates the
account’s info, and informs the vehicle’s owner. If there is not suffi cient amount
in the vehicle’s account, then the system offers an option of eventually directly
charging the vehicle owner’s bank account, and again informs the owner for the
transaction. When the system cannot confi rm the tag’s ID validity it captures a
camera image and informs the vehicle’s owner for the lack of a valid ID tag.

157

Fig. 2. TCS Flow Chart Diagram: Exit checkpoint

TCS deployment

When a vehicle approaches an entrance checkpoint, the entrance receiver
captures an RFID signal sent by the vehicle transmitter. The rec eivers should
be placed so to focus on signal captured at about 30m distance. The deployment
diagram is as follows:

158

Fig. 3. Highway entrance checkpoint deployment diagram

Respectively, when a vehicle approaches a highway exit check point the
following deployment diagram is in place:

Figure 4: Highway exit checkpoint deployment diagram

The programming model of TCS including its control context and algorithmic
transformations can be presented by the following pseudocode:

CASE: HIGHWAY ENTRANCE CHECKPOINT

LOOP () {
Read the RFID reader
If
The TAG_VALIDITY goes high
Then decode the ID
If
The ID is for VALID_TAG_VEHICLE
Then Enable the START_CHARGING module
Else
Enable the ENFORCEMENT module
}

CASE: HIGHWAY EXIT CHECKPOINT

159

LOOP () {
Read the RFID reader
If
The TAG_VALIDITY goes high
Then decode the ID
If
The ID is for VALID_TAG_VEHICLE
Then If
The AMOUNT is high
Then enable the TRANSACTION module
Else if the AMOUNT is low
Then Enable the LOW_AMOUNT_ENFORCEMENT module
Else Enable the ENFORCEMENT module
}

CONCLUSIONS

The TCS based on Arduino microcontroller presented can really help tolls
collection authorities increase the tolls collection, which is a strong instrument for
funding maintenance and rehabilitation of roads infrastructure, with an affordable
cost. The system reduces the processing time at checkpoints, the operating costs
for the tolls operating authority, and the traffi c congestion caused for the vehicles
by manual tolls collection. As all electronic, the proposed tolls collection system
is a more effi cient, environmentally friendly, and safer tolls collection system.

REFERENCES
1 European Commision Infrastructure - TEN-T - Connecting Europe,

http://ec.europa.eu/transport/themes/infrastructure/ten-t-guidelines/project-funding/doc/new_
fi nancial_schemes_for_european_transport_infrastructure.pdf

2 http://nptel.ac.in/courses/105101008/downloads/cete_46.pdf
3 International Journal of Electrical and Electronics Research ISSN 2348-6988 (online)

Vol. 2, Issue 2, pp: (67-72), Month: April - June 2014, Available at: www.researchpublish.com
4 Kai Hwang, Geoffrey C. Fox, and Jack J. Dongarra, “Distributed and Cloud Computing From

Parallel Processing to the Internet of Things”, 2012 Elsevier.

160

Automation Process By Means Of Profi cy Machine Edition

Zh. Sartabanova, R Karassayev

Physics and Mathematics Faculty, K.Zhubanov Aktobe Regional State University, Kazakhstan

Abstract: This article discusses one of the modern universal application development
tools - Profi cy Machine Edition.

Keywords: Profi cy Machine Edition, technology, machine interface, programming.

The modern production technology imposes high requirements on the
automation of technological processes (Industrial control system), on the choice
of optimum means of complex automation.

It is known that the production organization requires a set of various control
devices, programs and systems that induce the enterprises to look for the single
solution, which could provide all the needs of the existing infrastructure.

Profi cy Machine Edition represents the universal environment for the
development of applications for operator interfaces, traffi c controls and
automatic equipment. Providing the possibility of fast, effective object-oriented
programming, the packet of Profi cy Machine Edition uses all advantages of
standard technologies, including XML, COM/DCOM, OPC and ActiveX.
Machine Edition also includes Web functions, for instance, the built-in Web
server, which provides data arrival in a real time and diagnostic messages to any
employee of the enterprise [1].

All the components and appendices of the Profi cy Machine Edition packet
have the unifi ed workspace and set of workbenches. The standardized user
interface allows reduce the training period, and the integration of new applications
doesn’t require learning of additional operation principles. Combination of
effective, user-friendly design makes the packet of Profi cy Machine Edition the
best choice for a man machine interface development, for programming of a PLC,
for programs of traffi c control and control on the basis of the PC.

Along with the general editing tools all the components of Profi cy Machine
Edition share the general objects in applications, including logical elements,
scenarios, graphic panels and data structures. After creation of a variable that has
several attributes, it could be used in other components of the project. [2]

Combining the best traditions of program and graphic applications with
effective open technologies on the basis of industry standards, the packet of
Profi cy Machine Edition provides easy transition to the newest development
workbenches. The interface of the software is shown in the Figure 1.

161

Figure 1. Program interface

162

1. Navigator (Project contents tree);
2. The principal screen (Opens the selected project element);
3. The inspector (Displays properties of the selected object);
4. Toolbar.
Scripts in this system are written in two languages, it is Visual Basic and

View Script. An example of the simple script, which is responsible for copying
assignment to variables corresponding value:

ft := Target2.temp
IF uni_Immitation = 1
 Target1.uni_Immitation_reverse := 0
ELSE
 Target1.uni_Immitation_reverse := 1
ENDIF
'-------------------------------------
IF Target1.Nomer = 0
 END
ENDIF
'--
IF Target1.Nomer = 1
 Target1.uni_alarm_val := Target2.alarm_val1
 Target1.uni_mode := Target2.mode01
 Target1.uni_mode1 :=Target2.mode2
 Target1.uni_rsp := Target2.rsp
 Target1.uni_POL := Target2.POL01
 Target1.uni_rsum :=Target2.rsum
 Target1.uni_h := Target2.h1
 Target1.uni_h12 := Target2.h12
 Target1.uni_h12_24 := Target2.h12_24
 Target1.uni_h24 := Target2.h24
 Target1.uni_mounth := Target2.mounth
 Target1.uni_year := Target2.year
 Target1.uni_rsumh :=Target2.rsumh
 Target1.uni_rsum12 :=Target2.rsum12
 Target1.uni_rsum12_24 :=Target2.rsum12_24
 Target1.uni_rsum24 :=Target2.rsum24
 Target1.uni_rsumm :=Target2.rsumm
 Target1.uni_rsumy :=Target2.rsumy
ENDIF

163

Flowcharts are built in the environment by help of the graphic tool. The
example of the fl owchart are provided in the Figure 2.

References

1. Logic Developer – PLC. Инструментальное программное обеспечение ПЛК
2. http://www.ingener.info/

164

Airchinnigh, Mícheál Mac an    31

Anceva, Drgana    7

Avdjieva, Irena    82

AƩ wood, Teresa    124

Dimeski, Branko    7

Dimitrov, Anatoliy    124

Dimitrov, Vladimir    90, 95, 100

Georgiev, Vasil    116, 152

Duylgerova, Zhenyq    82

Ilieva, Kalina    44

Kaloyanova, Kalinka    63

Kamash, Bereket    40

Karassayev, R.    160

Koleva, Elitza    63

Kulev, Ognyan    124

Kyrkchiev, Hristo    52

Mitreva, Emanuela    52

Nisheva-Pavlova, Maria    20

Orozova, Daniela    108, 138

PaƟ as, Ioannis    116, 152

Pavlov, Pavel    20

Peychev, Deyan    82

Sarsimbayeva, Saule    40

Sartabanova, Zh.    160

Savov, Svetoslav    73

Savoska, Snezana    7

Todorova, Magdalina    108, 138

Vasileva, Svetlana    44

Vassilev, Dimitar    73, 82, 124

A U T H O R I N D E X

