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Abstract

Probabilistic conformant planning problems can be solved
by probabilistic inference algorithms after translating their
PPDDL specifications into graphical models. We present
two translation schemes that convert probabilistic conformant
planning problems as graphical models. The first encoding is
based on the probabilistic extension of the serial encoding of
PDDL in SatPlan, and the second encoding compiles a graph-
ical model from the finite-domain representation of the SAS+
formalism. We show that a probabilistic conformant plan can
be found by answering a marginal MAP inference, and the
plan is optimal with respect to the length of the plan as well
as the probability of achieving the goal. Since a common task
of the conformant planning is to find a plan achieving the goal
with a probability that exceeds a threshold, we can consider
relaxing of the marginal MAP query to the pure MAP which
is far easier to compute. The success probability of the subop-
timal plan derived by a pure MAP solver can be re-evaluated
by solving a summation problem, also a hard task. The proba-
bilistic inference algorithms for marginal MAP that we evalu-
ated are based on anytime AND/OR branch and bound search
guided by weighted mini-bucket heuristics. Our preliminary
evaluation highlights the potential and the challenges in this
methodology of applying search based probabilistic inference
algorithms to probabilistic conformant planning.

Introduction
Graphical models provide a powerful framework for rea-
soning with probabilistic and deterministic information.
These models use graph to capture conditional independen-
cies among variables, allowing a concise representation of
knowledge as well as efficient graph-based query process-
ing algorithms. The Maximum a Posteriori (MAP) query
asks for the mode of the joint probability distribution, while
the Marginal MAP (MMAP) generalizes MAP by allowing
a subset of the variables to be marginalized.

It is well-known that the computational complexity of
the planning is equivalent to inference. Especially, the com-
plexity of MMAP inference is equivalent to finding the
best polynomial-size plan (Littman et al. 2001). Therefore,
several translation based approaches have been developed
by formulating planning under uncertainty as probabilistic
inference over graphical models, hoping to apply general
purpose probabilistic inference algorithms. For example, a
translation from Partially Observable Markov Decision Pro-

cess (POMDP) to a Dynamic Bayesian Network (DBN) was
presented in (Kiselev and Poupart 2014), and the encoding
scheme that translates a probabilistic conformant planning
into a DBN was shown in (Lee et al. 2014), where the prob-
abilistic conformant planning refers to the class of the plan-
ning problems with non-observability and stochastic actions.

The probabilistic conformant planning problem P =
〈S,A, I,G〉 is based on the probabilistic extension of se-
quential STRIPS with negation and conditional effects,
where the S is a set of state variables grounded from first
order state predicates, the A is a set of ground action vari-
ables indicating whether a ground action were chosen or not,
the I is a probability distribution over initial state variables,
and the G is a set of goal states, where it is assumed to be a
single state for simplicity. In this paper, we address planning
problems represented in Probabilistic Planning Domain Def-
inition Language (PPDDL) (Younes and Littman 2004) with
minor extension to express probability distributions over the
initial states, called initial belief states.

Probabilistic conformant planning is the task of generat-
ing a sequence of actions achieving the goal without sens-
ing. In other words, a planner should find a sequence of ac-
tions in belief state space {b0,b1, · · · ,bt}, where b0 = I
and each bt is a probability distribution over states st at
time t. The query to the planner can be formulated in two
different ways: (1) 〈P, T 〉, which fixes the time horizon T
and asks for a plan with maximum probability of success,
argmax{a0···aT−1}bT(sT ∈ G), (2) 〈P, θ〉, which asks for
a plan of arbitrary length L achieving the goal with prob-
ability that exceeds a threshold θ, bL(sL ∈ G) > θ. We
define an optimal probabilistic conformant planner as a plan-
ner which always finds the shortest length plan that exceeds
a threshold. Note that a planner which returns a plan from
the query 〈P, T 〉 can be transformed into such an optimal
planner by increasing the time horizon incrementally.

In this paper, we formulate probabilistic conformant plan-
ning as MMAP inference (i.e., finding a most likely as-
signment to a subset of hypothesis variables) over graphical
models that compiles a planning problem properly. MMAP
is one of the most complex queries in probabilistic infer-
ence because it requires the application of summation of a
subset of the variables and maximization over the rest in a
particular (often unfavorable) order. Therefore, we focus on
applying recently developed anytime AND/OR branch and



bound search algorithm for MMAP (Lee et al. 2016) which
explores the context-minimal AND/OR search space for
graphical models (Dechter and Mateescu 2007) in depth-first
manner, and is guided by static weighted mini-bucket heuris-
tics with variational cost-shifting (Dechter and Rish 2003;
Liu and Ihler 2011).

When MMAP task is highly intractable, suboptimal
solvers for the tasks should also be considered as approx-
imation schemes. In particular, when we consider the task
as finding any plan with probability of reaching the goal
with probability higher than the threshold, we consider re-
laxing of the MMAP query to the pure MAP to find a sub-
optimal probabilistic conformant plan and re-evaluate the
plan’s probability of success by solving a summation prob-
lem, treating the action variables as evidence. Thus, candi-
date probabilistic conformant plans can be drawn from not
only the optimal pure MAP assignments (Otten and Dechter
2011) but also sub-optimal solutions from various pure MAP
solvers, e.g., stochastic local search algorithms for MPE
(Hutter et al. 2005).

The experiment result of applying search based proba-
bilistic inference algorithms reveals opportunities as well
as challenges for solving probabilistic conformant planning
problem by probabilistic inference. The rest of the paper is
organized as follows. Section 2 formulates the probabilis-
tic conformant planning task as a probabilistic inference,
Section 3 review the search based probabilistic inference
algorithms we evaluated, Section 4 presents two encoding
schemes that convert PPDDL planning domains into graph-
ical models, Section 5 shows the experiment results of ap-
plying search based probabilistic inference algorithms to the
blocks world domain, and we conclude in Section 6.

Conformant Planning as Marginal MAP
A graphical model is a tupleM = 〈X,D,F〉, where X =
{Xi : i ∈ V } is a set of variables indexed by set V and
D = {Di : i ∈ V } is the set of their finite domains of
values. F = {Fj} is a set of local functions defined on sub-
sets of variables called its scope. The function scopes yield
a primal graph whose vertices are the variables and whose
edges connect any two variables that appear in the scope of
the same function.

Let XM = {X1, ..., Xm} be a subset of X called MAP
variables and XS = X \ XM be the complement of XM ,
called sum variables. The MMAP task seeks an assignment
x∗M to variables XM having maximum probability. This re-
quires access to the marginal distribution over XM , which
is obtained by summing out variables XS :

x∗M = argmax
XM

∑
XS

∏
Fj∈F

Fj (1)

Note that, the MMAP task reduces to a pure MAP task if
XS is empty and it also reduces to a PR task (i.e., evaluating
the probability of evidence) if XM is empty.

Our task is to solve the conformant planning prob-
lem formulated either as to 〈P, T 〉 or 〈P, θ〉, where
P = 〈S,A, I,G〉. The graphical model for P can be
defined as follows. The set of boolean variables X is

{s0, s1, · · · , sT} ∪ {a0,a1, · · · ,aT−1}, where the st is a
vector over state variables grounded from first order state
predicates at time t, and the at is a vector over latent action
variables indicating that some action was chosen at time t.
For each ground action, probabilistic state transition func-
tion can be defined as Ft(at) = Pr(st+1|st,at), where
Ft(at) is a local factor over 1 step transition between time t
and t+ 1 given an action at. Usually, each Ft can be further
factored by preconditions and post conditions of each action
at because each ground action only affects a small fraction
of state variables. The initial belief state I is F0 = Pr(s0).
Finally, we have a constraint that characterizes the final state
that C(sT) = I(sT ∈ G), if sT /∈ G, C(sT) = 0. The over-
all functions can be combined as,

Pr(s0..sT|a0..aT−1) =
∏

t=0..T

Ft(at)C(sT). (2)

The probabilistic conformant planning task can be refor-
mulated as probabilistic inference over the graphical model
as follows.

〈P, T 〉: Finding the length T sequence of actions,

argmax{a0..aT−1}
∑

s0..sT

∏
t=0..T

Ft(at)C(sT).

〈P, θ〉: Finding any length L sequence of actions,∑
s0..sL

∏
t=0..L

Ft(at)C(sL) > θ.

The first query is equivalent to MMAP, where the hy-
pothesis variables are action variables and the summation
variables are state variables. In contrast to the first query, it
requires finding the maximum probability of success given
a fixed time horizon T. The second query is searching for
an arbitrary length L plan that satisfies the inequality. Thus,
it is equivalent to evaluating the probability of evidence of
the distribution defined in equation 2 after treating a length
L plan as evidence, and testing if it is greater than θ. Such
length L plan could be found by arbitrary methods, e.g., ac-
tion variables truncated from MAP solution to the problem.

AND/OR Search for Marginal MAP
Recent advances in search for MMAP inference have been
achieved by using AND/OR search spaces (Dechter and Ma-
teescu 2007), and depth-first or best-first AND/OR search
algorithms guided by mini-bucket heuristics enhanced with
variational cost-shifting ideas (Marinescu et al. 2014; 2015).
In this section, we review AND/OR search space and the
depth-fisrt AND/OR search algorithms for MMAP.

AND/OR Search Space
The AND/OR search space is defined relative to a pseudo
tree of the primal graph, which captures problem decompo-
sition. A pseudo tree of an undirected graph G = (V,E) is
a directed rooted tree T = (V,E′) such that every arc of
G not included in E′ is a back-arc in T connecting a node
in T to one of its ancestors. The arcs in E′ may not all be



included in E. A pseudo tree T of G is valid for MAP vari-
ables XM if the restricted pseudo tree T ′ which prunes all
nodes except XM is a connected pseudo tree with the same
root as T .

Given a graphical model M = 〈X,D,F〉 with primal
graph G and valid pseudo tree T of G, the AND/OR search
tree ST based on T has alternating levels of OR nodes cor-
responding to the variables, and AND nodes correspond-
ing to the values of the OR parent’s variable, with edge
weights extracted from the original functions F. Identical
sub-problems, identified by their context (the partial in-
stantiation that separates the sub-problem from the rest of
the problem graph), can be merged, yielding an AND/OR
search graph. Merging all context-mergeable nodes yields
the context minimal AND/OR search graph, denoted CT .
The size of CT is exponential in the induced width of G
along a depth-first traversal of T (i.e., the constrained in-
duced width).

A solution subtree x̂M of CT relative to the MAP vari-
ables XM is a subtree of CT restricted to XM such that it
contains the root of CT , n is labeled with a MAP variable
and exactly one of its children is in x̂M if an internal OR
node n∈CT is in x̂M , and if an internal AND node n∈CT
is in x̂M then all its OR children which denote MAP vari-
ables are in x̂M . Each node n in CT can be associated with
a value v(n); for MAP variables v(n) captures the optimal
marginal MAP value of the conditioned sub-problem rooted
at n, while for a sum variable it is the likelihood of the partial
assignment denoted by n.

Anytime AND/OR Branch and Bound Search
AOBB-MMAP (Marinescu et al. 2014) explores the context
minimal AND/OR search graph in a depth-first manner and
therefore takes advantage of problem decomposition. Dur-
ing search, AOBB-MMAP keeps track of the value of the
best solution found so far and uses this value and the heuris-
tic function to prune away portions of the search space that
are guaranteed not to contain the optimal solution in a typi-
cal branch and bound manner. AOBB often lacks good any-
time behavior because AOBB will solve to completion all
but one independent subproblems rooted at an AND node
during search. This behavior was first observed by (Otten
and Dechter 2011) in the context of pure MAP inference.
To recover the anytime behavior, breadth rotating technique
was introduced as an anytime AND/OR branch and bound
search scheme that rotates through different subproblems in
a round-robin manner. Breadth Rotate AND/OR Branch and
Bound Search (BRAOBB-MMAP) (Lee et al. 2016) extends
the same principle to AND/OR search space for MMAP.

Compilation into DBN
In this section, we show two encoding schemes that translate
probabilistic conformant planning problem into DBN.

Direct Encoding from PPDDL into DBN
The direct encoding from PPDDL into DBN first encodes
single step state transitions for each ground action schema
as shown in (Younes and Littman 2004). Then, we combine

all state transition models from each ground action schema
into a single DBN with additional variables and determinis-
tic relations which will be defined soon after. The semantics
of the resulting graphical model is based on the serial en-
coding of SatPlan (Kautz et al. 1996), and we extended it to
encode probabilistic effects by introducing effect variables
for each probabilistic effect.

A graphical model Gi→i+1 = 〈V, F 〉 for a single time
step transition from i to i + 1 can be obtained as follows.
The set of variables V is defined as V = Si ∪ Si+1 ∪ Ai ∪
EAi ∪ Saddi+1 ∪ Sdeli+1 , where the Si = {sji} is a set of all
ground predicate at i, the Ai = {aki } is a set of all ground
actions at i, the EAi

= {eaki } is a set of effect variables for

each ground action variable, the Saddi+1
= {+sji+1}, and

the Sdeli+1 = {−sji+1}.
The j-th boolean state variable sji of the state si, and the

k-th boolean action variable aki of the action ai are obtained
by grounding the state predicates and action schemata. A
ground action consists of a precondition φ and an effect e,
where φ is a conjunction of equality predicates on ground
objects or literals of state variables, and the effect e can be
either a simple effect, a conditional effect, a probabilistic ef-
fect or a conjunction of other effects. We assumed that a
planner would execute a no-op action if the precondition
didn’t meet. A simple effect is a conjunction of state vari-
ables where positive literals correspond to add list and nega-
tive literals corresponds to delete list of STRIPS formalism.
A conditional effect is a pair (φ, e), where the φ is a con-
dition defined earlier, and the e is an effect. A probabilistic
effect e is a list of pairs (pi, ei), where pi is the probabil-
ity value for the ith effect ei. Thus, a PPDDL effect can be
nested in arbitrary depth forming a tree of which simple ef-
fects placed at the leaf. For each effect of an action aki , we
introduce an effect variable eaki capturing the outcomes of
the effect. Specifically, an effect having n outcomes maps
to the effect variable with domain size n+ 1, where the ad-
ditional value is reserved for the no-op. Finally, additional
indicator variables +sji+1 and -sji+1 are introduced to encode
addition and deletion of a state variable sji+1.

The set of functions F are obtained by converting the fol-
lowing expressions into tabular forms.
1. aji ∧ φ

j
i ↔ (e

a
j
i
6= no-op), where φj

i is precondition of aji

2. ∨e
a
j
i

∈E+(e
a
j
i
)↔ +sji+1, ∨e

a
j
i

∈E−(e
a
j
i
)↔ −sji+1

where E+ = {e
a
j
i
|∃v ∈ Dom(e

a
j
i
) s.t. sji+1 ∈add(e

a
j
i
)},

E− = {e
a
j
i
|∃v ∈ Dom(e

a
j
i
) s.t. sji+1 ∈del(e

a
j
i
)}

3. ∀k1 6=k2 (ek1
i = v1) ∧ (ek2

i = v2)→¬+/-si+1,
ifsi+1 ∈add/del(ek1

i = v1) and si+1 ∈add/del(ek2
i = v2)

4. ∀j ∨ aji , ∀j 6=k a
j
i → ¬a

k
i

5. ¬+ sji+1 ∧ ¬ − s
j
i+1 → (sji ∧ s

j
i+1) ∨ (¬sji ∧ ¬s

j
i+1)

The first clauses correspond to the Conditional Probability
Table (CPT) for an effect variable, where each outcome oc-
curs only if the action triggering the effect was executed
and the precondition was satisfied. The second and the third
clauses encode the CPT for an indicator variable to indicate



Figure 1: Dynamic Bayesian Network for the Slippery Gripper Domain : The graphical model describes a single state transitions resulting
from each action. The state variables are gd, hb, bp, and gc. The pickup, dry, and paint are the action variables. Additional effect variables are
introduced for each ground action variables, and additional variables for encoding add effect and delete effect for each state variable are also
introduced. The constraint variable C is introduced to encode mutual exclusivity of action variables, and hidden node t bounds the number of
in-degree of the variable C. On the right, we show the tables that representing CPTs.

the result of executing some action as well as to deprecate in-
consistent combination of effects. The fourth set of clauses
encode the mutual exclusivity on action variables and the
last encodes frame axioms.

The overall graphical model with time horizon T can be
obtained by replicating G over T time steps. The probabil-
ity distribution over the initial state variables and the single
goal state can be assigned to the state variables s0, and sT.
In practice, in-degree of the nodes for the constraint on ac-
tion variables, and the indicator variables ±sji+1 grow pro-
hibitively for storing the tabular form of the CPT, so addi-
tional hidden variables were introduced to bound the maxi-
mum in-degrees.

Translation Example: Slippery Gripper Domain Con-
sider slippery gripper domain (Kushmerick et al. 1995)
which consists of four state variables, gripper-dry (gd),
holding-block (hb), block-painted (bp), and gripper-clean
(gc), and three actions, pick up, dry, and paint. Initially, the
gc is true, the gd is true with probability 0.7, and other two
state variables are false. The goal is a conjunction of lieter-
als, gd ∧ hb ∧ bp. If gripper-dry were true, the pick up ac-
tion would add hold-block with probability 0.95. Otherwise
hold-block would be added with probability 0.5. The dry
action would add gripper-dry with probability 0.8. Lastly,
If holding-block were true, gripper-clean will be deleted
by paint action, and if it were false, gripper-clean would
be deleted with probability 0.1. The paint action also adds
block-painted.

Figure 1 shows the DBN for the slippery gripper domain.
The CPT for the action variable pickup shows that the value
of selecting the action is normalized to 1. The effect vari-
able e1 takes three values, the no-op for the case where the
pick up action was not executed, the +hb for adding the state
variable hb’, and the null effect derived from the seman-
tics of probabilistic effect, i.e., when

∑
i pi < 1, the proba-

bilistic effect takes an additional null effect with probability
1 −

∑
i pi. The CPT for the variable e1 is tabular represen-

tation of the pickup action based on the precondition on the

state variable gd. Note that the only probabilistic functions
are effect CPTs from probabilistic effects. The CPT for the
auxiliary variable +hb is a truth table that encodes +hb is
true when the outcome of the e1 was adding the state vari-
able hb’. The last table is also a truth table that encodes the
frame axiom between the state variable hb and hb’. Finally,
the CPT for the nodeC is also a tabular representation of the
mutual exclusivity constraint.

Complexity of the translation The complexity of the re-
sulting graphical model is similar to that of serial encoding
in SATPLAN, and it can be summarized as follows. Let the
number of action schemata in the planning domain be |as|,
the number of predicates be |pre|, the maximum arity of the
action schemata be p, the maximum arity of the predicates be
q, and the number of ground objects in the instance be k. The
total number of the action variables is O(|as|kp), and the
total number of the state variables is O(|pre|kq). Assuming
that we have only flat effects, the number of effect variables
are the same as the number of action variables. Thus, the to-
tal number of variables in G is O(2|as|kp + 4|pre|kq). In
case of introducing hidden variables to bound the maxmum
in-degree, we would introduce |as|kp − 1 hidden variables
to bound the maximum in-degree of the constraint variable
to be 2. Similarly, if the maximum number of parents for
the indicator variables was |E|, we would introduce |E| − 1
hidden variables. In such a case, the maximum scope size
of the CPTs is max(3, s + 1), where the s is the maximum
number of a state variables shown in a precondition which
contributes to the arity of the CPT for an effect variable. The
maximum domain size is n + 1, where the n is the maxi-
mum number of outcomes of a probabilistic effect. In sum-
mary, the total number of variables and functions in G is
O(3|as|kp + 2(1 + |E|)|pre|kq).

Encoding from SAS+ into DBN
The second encoding scheme compiles planning problems
represented by finite-domain representation (Helmert 2009)
into DBN. The finite-domain representation can be obtained



instance ppddl to dbn braobb-mmap sas+ to dbn braobb-mmap
blocks, horizon n, a, wc, hc ibest time (sec) pr(G) n, a, wc, hc ibest time (sec) pr(G)

2, 5 299, 40, 48, 76 10 1.56 0.703125 406, 5, 22, 64 2 1.65 0.703125
2, 8 473, 64, 72, 112 10 2990.73 0.91626 646, 8, 24, 76 14 1857.33 0.91626

2, 11 647, 88, 96, 149 16 oot 0.966007 886, 11, 24, 86 6 oot 0.943176
2, 14 821, 112, 120, 169 2 oot 0.91626 1126, 14, 28, 100 8 oot 0.91626
2, 17 995, 136, 144, 199 10 oot 0.91626 1366, 17, 28, 108 10 oot 0.91626
2, 20 1169, 160, 168, 237 2 oot 0.870117 1606, 20, 26, 103 2 oot 0.870117

3, 5 741, 90, 132, 182 6 2.53 0.079102 833, 5, 44, 85 4 0.96 0.079102
3, 8 1176, 144, 159, 251 6 5767.69 0.494385 1328, 8, 45, 125 4 4382.65 0.494385

3, 11 1611, 198, 213, 328 10 oot 0.494385 1823, 11, 46, 132 2 oot 0.494385
3, 14 2046, 252, 267, 401 10 oot 0.454834 2318, 14, 46, 146 2 oot 0.494385
3, 17 2481, 306, 326, 474 2 oot 0.395508 2813, 17, 44, 183 4 oot 0.494385
3, 20 2916, 360, 380, 545 2 oot 0.395508 3308, 20, 44, 178 6 oot 0.494385

4, 8 2185, 256, 370, 477 10 108.7 0.177979 2266, 8, 67, 164 6 55.04 0.177979
4, 9 2455, 288, 415, 520 12 5717.1 0.222473 2548, 9, 68, 188 2 2291.27 0.222473

4, 10 2725, 320, 397, 556 2 oot 0.222473 2830, 10, 68, 179 2 oot 0.222473
4, 11 2995, 352, 491, 624 2 oot 0.222473 3112, 11, 68, 214 2 oot 0.222473
4, 13 3535, 416, 541, 716 2 oot 0.222473 3676, 13, 68, 222 2 oot 0.222473
4, 15 4075, 480, 672, 841 10 oot 0.222473 4240, 15, 82, 263 2 oot 0.222473

Table 1: Experiment Results from BRAOBB-MMAP Algorithm: Each instance refers to the blocks world problem instance with specified
number of blocks and time horizon. The problem statistics from direct encoding from PPDDL into DBN and SAS+ into DBN is presented,
where n is the number of variables, a is the number of MAP variables (action variables), wc is the constrained induced width, and hc is the
constrained pseudo tree height. Each group of columns corresponds to the results from two encoding schemes, where ibest is the best i-bound
that produced the plan, Pr(G) is the probability of success for the plan found. The oot indicates the algorithm encountered 2 hour time limit.
Otherwise BRAOBB-MMAP found the optimal plan.

by transforming planning problems specified in PDDL for-
malism into SAS+ formalism (Bäckström and Nebel 1995)
which aggregates mutually exclusive binary state variables
as a multi-valued state variable and represents each ground
action as a conjunction of state transitions. In classical plan-
ning, a SAT encoding based on SAS+ formalism was pro-
posed in (Huang et al. 2010), and it shows superior perfor-
mance compared to SatPlan (Kautz et al. 1996).

Similar to the direct encoding from PPDDL into DBN, the
encoding from SAS+ into DBN also first compile a graphi-
cal model Gi→i+1 = 〈V, F 〉 for a single time step from i to
i+ 1, and replicate it over T time steps. The set of variables
V is defined as V = Si ∪ Si+1 ∪ {ai} ∪ Ei ∪ δpre ∪ δpost,
where the Si = {sji} is a set of multi-valued state variables
at time i, the ai is a multi-valued action variable at time i,
the Ei = {eki } is a set of effect variables at time i, where
each effect variable eki corresponds to the k-th ground ac-
tion, the δpre = {δpreekl

} is a set of precondition variables at
time i, where each variable δpreekl

encodes the truth value of
the precondition of ekl, and the δpost = {δpostsi+1

} is a set of
post condition variables at time i, where each variable δpostsi+1

encodes the transition of the state variable si+1.

The state variables sji and the action variable ai are ob-
tained by the multi-valued state variables and state transition
based ground actions that are generated by the translator in
fast downward planning system (Helmert 2006). The effect
variable eki corresponds to the k-th ground action, which is
a collection of pairs of a deterministic ground action and
the probability value including the no-op action. The CPT
of the eki encodes the probability value of each deterministic
ground action. A deterministic ground action in SAS+ for-
malism composed of a set of preconditions, and a set of post

conditions that describes the transition of state variables.
Thus, the k-th value of the action variable ai incurs a random
selection from the value of the effect variable eki , where the
l-th value maps to the l-th deterministic state transition of the
corresponding ground action schema. The boolean variable
δpreekl

for the precondition expression of the l-th determinis-
tic effect ekl must be true to be executed. Otherwise, we as-
sumed that a planner would execute a no-op action. The post
condition variable δpostsi+1

for the state variable si+1 can be in-
fluenced by all ground actions that can change the value of
si+1 and the precondition variables of them. The CPT of the
δpreekl

simply encodes the truth table of the precondition ex-
pression of ekl, and the CPT of the δpostsi+1

encodes the deter-
ministic relation over the effect variables and precondition
variables affecting the state variable si+1.

Experiment Result
We evaluate search based probabilistic inference algorithms
for solving probabilistic conformant planning problems. In
particular, we apply BRAOBB-MMAP to find the optimal
plan and BRAOBB-MAP and stochastic local search (Hut-
ter et al. 2005) for pure MAP to find a suboptimal plan. The
heuristic function for the search algorithm was generated
by mini-bucket elimination with moment matching, WMB-
MM(i), whose strength can be controlled by a parameter i-
bound (Dechter and Rish 2003; Liu and Ihler 2011). Note
that both algorithms for pure MAP task only produce a MAP
assignment, so the probability of success was evaluated by
computing the probability of evidence.

The problem instances were generated from the blocks
world domain of the IPC 2006 probabilistic planning track.
We modified the original domain by removing 3 tower ac-



instance ppddl to dbn BRAOBB-MAP GLS+
blocks, horizon n, a, wc, hc, wu, hu time (sec) pr(G) time (sec) pr(G)

2, 5 299, 40, 48, 76, 17, 56 4.34 0.5625 0.33 0.5625
2, 8 473, 64, 72, 112, 17, 88 6.63 0.5625 1.82 0.5625

2, 12 647, 88, 96, 149, 17, 111 9.71 0.5625 3.63 0.74707
2, 14 821, 112, 120, 169, 17, 163 15.54 0.5625 25.45 0.823975
2, 17 995, 136, 144, 199, 17, 241 29.29 0.316406 84.71 0.922302
2, 20 1169, 160, 168, 237, 17, 292 35.92 0.624023 25.2 0.886399

3, 5 741, 90, 132, 182, 34, 129 9.49 0.079102 4.85 0.079102
3, 8 1176, 144, 159, 251, 34, 157 53.77 0.316406 26.64 0.316406

3, 11 1611, 198, 213, 328, 34, 317 128.28 0.316406 69.57 0.454834
3, 14 2046, 252, 267, 401, 34, 382 495.64 0.316406 671.34 0.415283
3, 18 2481, 306, 326, 474,36, 350 oot na 1743.19 0.395508
3, 20 2916, 360, 380, 545, 34, 518 oot na 126.36 10.23731

4, 8 2185, 256, 370, 477, 60, 347 106.88 0.177979 257.99 0.177979
4, 9 2455, 288, 415, 520, 61, 321 556 0.177979 146.52 0.222473

4, 10 2725, 320, 397, 556, 61, 382 418.75 0.044495 413.68 0.222473
4, 11 2995, 352, 491, 624, 61, 497 552.66 0.177979 2003.72 0.222473
4, 13 3535, 416, 541, 716, 62, 598 oot na 186.66 0.125141
4, 15 4075, 480, 672, 841, 62, 533 oot na 720.01 0.044495

Table 2: Experiment Results from BRAOBB-MAP and GLS+ Algorithm: In addition to the problem statistics presented in 1, wu is the
unconstrained induced width and hu is the unconstrained pseudo tree height. Pure MAP algorithms first produce MAP assignment to all
variables, and the probability of success was evaluated by computing the probability of evidence by processing action variables as evidence.
The time in each column is the total time for evaluating the pure MAP and PR.

tion schemata so that the resulting domain has 4 action
schemata, and we created a task of reversing the initial con-
figuration of blocks, where the blocks are stacked on the ta-
ble, and the goal is to reverse the order of the stack.

The experiment supports the time bounds up to 2 hours
within 4 GB memory. In addition, constraint propagation is
also employed on the conditioned subproblems to detect par-
tial solution trees with zero probability (Marinescu 2008).

Results from Marginal MAP Inference Algorithms
Table 1 shows the result of applying BRAOBB-MMAP al-
gorithm to two encoding schemes introduced in the ear-
lier section. For both encoding schemes, BRAOBB-MMAP
found the optimal conformant plan up to 8 time horizon for 2
and 3 blocks, and 9 time horizon for 4 blocks. For the longer
time horizon, BRAOBB-MMAP reported suboptimal plans
from the anytime solutions.

In addition, we can see that the encoding scheme based on
SAS+ improves the performance of BRAOBB-MMAP. Es-
pecially, the constrained induced width and the constrained
pseudo tree height from the encoding based on SAS+ is
much better than direct encoding from PPDDL.

Results from pure MAP Inference Algorithms
Table 2 shows the result of applying pure MAP algorithms,
BRAOBB-MAP and GLS+ to the problem instances gener-
ated by direct encoding from PPDDL.

The first group shows the result of applying BRAOBB-
MAP in conjunction with AND/OR search algorithm for
computing the probability of evidence. Such a combination
can be used to find a probabilistic conformant plan with a
proper time horizon expanding strategy, when we consider
the query 〈P, θ〉. (In this paper, a strategy for expanding
time horizon is out of scope and we assumed that such good
time horizons were given in advance.) We can see that the

BRAOBB-MAP does not always improves the plan with
longer time horizons since the values of Pr(G) are not mono-
tonically increased with time horizon.

The second group summarizes the result of applying
GLS+ (Hutter et al. 2005) algorithm for finding a MAP as-
signment and evaluating the probability of success. Here,
we show the highest probability of success obtained from
each problem instance after evaluating suboptimal solu-
tions generated by GLS+. Thus, the time spent for finding
a conformant plan is highly favorably skewed, and should
yield a potential integration, while the times should be in-
creased. Overall GLS+ can reach longer time horizon than
BRAOBB-MAP and it could find relatively good solution in
short time bounds.

Comparison with Probabilistic Fast Forward
In Table 3, we compare the results of applying BRAOBB-
MMAP and BRAOBB-MAP with Probabilistic Fast For-
ward(Domshlak and Hoffmann 2007). Probabilistic Fast
Forward (PFF) finds a conformant plan with respect to the
task 〈P, θ〉 by heuristic forward search in a belief state space.
PFF represents belief states by DBNNbā for some sequence
of actions ā, and the DBN is compiled into weighted CNFs
to retrieve probabilistic queries via weighted model count-
ing. In our encoding schemes, all the action variables are
present in a single DBN, so that the probabilistic inference
can directly query the action variables after marginalizing
the rest of the variables. On the other hand, each DBN for the
belief states bā in PFF unrolls only portion of the entire DBN
that can be instantiated by applying a specific sequence of
actions ā, and the weighted model counting computes only
posterior probability so that the heuristic function evaluates
the probability of achieving the goal.

For problem instances having 2 blocks, PFF was the best
until θ = 0.5. For the blocks world instances with 3 blocks,



BW2 θ 0.1 0.15 0.2 0.35 0.4 0.5 0.7 0.8 0.85

PFF 0.06 (4) 0.04 (4) 0.05 (4) 0.05 (4) 0.06 (4) 0.05 (4) err err err
BRAOBB-MMAP 1.55(5) 1.55(5) 1.55(5) 1.55(5) 1.55(5) 1.55(5) 1.55(5) 25.07 (6) 247.08 (7)
BRAOBB-MAP 4.12 (3) 4.22 (4) 4.22 (4) 4.22 (4) 4.22 (4) 4.22 (4) 8.31 (10) 65.21 (30) 65.26 (30)

GLS+ 0.12 (3) 0.22 (4) 0.22 (4) 0.22 (4) 0.22 (4) 0.22 (4) 0.71 (7) 5.25 (14) 18.26 (17)

BW3 θ 0.1 0.15 0.2 0.35 0.4 0.5 0.7 0.8 0.85

PFF 0.07 (6) 0.06 (6) 0.09 (6) 0.12 (7) err err err err err
BRAOBB-MMAP 65.79 (6) 65.79 (6) 65.79 (6) 212.01 (7) 5647.65 (8) oot oot oot oot
BRAOBB-MAP 14.47 (6) 14.47 (6) 14.47 (6) 2069.56 (15) oot oot oot oot oot

GLS+ 18.88 (10) 18.88 (10) 18.88 (10) 18.88 (10) 69.57 (11) oot oot oot oot

BW4 θ 0.1 0.15 0.2 0.35 0.4 0.5 0.7 0.8 0.85

PFF 0.15 (8) 0.14 (8) err err err err err err err
BRAOBB-MMAP 90.32 (8) 90.32 (8) 6489.2 (9) oot oot oot oot oot oot
BRAOBB-MAP 106.88 (8) 106.88 (8) oot oot oot oot oot oot oot

GLS+ 146.52 (9) 146.52 (9) 146.52 (9) oot oot oot oot oot oot

Table 3: Comparison with Probabilistic Fast Forward: Each row is grouped by the number of blocks, from 2 blocks to 4 blocks. The query
to the planner is 〈P, θ〉, and the length of the plan found by each algorithm is shown inside the parentheses next to the total time.

PFF performed the best until θ = 0.35. PFF and BRAOBB-
MAP failed to find a plan with higher thresholds while
BRAOBB-MMAP and GLS+ did. In case of problem in-
stances with 4 blocks, PFF was able to find a plan until θ
= 0.15. Similar to the previous cases, it also failed at larger
threshold.

We observe that BRAOBB-MMAP were competitive and
were able to generate as good, or better threshold plans than
PFF. Yet, BRAOBB-MMAP did so using far more time in
most cases. There were cases that PFF failed. For instance
with 2 blocks, PFF was unable to generate plans with thresh-
old 0.7 or 0.8 where others did. BRAOBB-MMAP accom-
plished this using 1.55 sec and 25.07 seconds respectively,
while BRAOBB-MAP and even GLS+ did so with less time.
Still, MMAP provided shortest plan for the task, as expected.

Conclusion
The paper explores the potential of probabilistic inference
algorithms to conformant planning. First, we explored two
formulations of probabilistic conformant planning. The first
seeks the most likely plan that achieves the goal. The sec-
ond assumes a constant probability threshold and seeks a
plan whose probability of success exceeds that threshold.
In both formulations shorter plans are preferred. Then, we
provided two encoding schemes that converts probabilistic
conformant planning problem into a graphical model such
that a most likely plan maps to the most likely assignment to
the corresponding action variables of the graphical model.
Therefore, a most likely conformant plan can be generated
by solving what is known as a marginal MAP task.

We applied several of the most competitive probabilis-
tic algorithms for solving the marginal MAP, pure MAP,
and PR (Probability of Evidence), in order to generate ex-
act and approximate algorithms for conformant planning and
tested their performance empirically. Our empirical evalu-
ation, though preliminary, highlights the potential and the
current boundaries of this methodology.

The MMAP algorithms we experimented find the most
likely plan for a given horizon and thus can yield shortest
plan that achieves a particular threshold when applied to

growing horizons. As the horizon extend such algorithms
can find plans having increasing probability of success.
Thus, our MMAP algorithm provides an optimal scheme
(perhaps the first of its kind) that can solve the conformant
planning problem for the formulation query 〈P, T 〉.

Our empirical evaluation illustrated the algorithm’s ability
to solve optimally relatively small planning problems having
a limited horizon. Competing approximate algorithms show
somewhat a wider but still limited range of solving ability,
yet they are often significantly suboptimal. The specific al-
gorithm we used is based on a recently developed marginal
map scheme that proved to be currently one of the most ef-
fective algorithms for this task. Note that MMAP not only
provides a best quality plan, but also proved its optimality.
The approximate algorithms generate a plan and its prob-
ability of success for a given horizon. The idea is to gen-
erate a sequence of candidates plan somehow and evaluate
their probability of success by solving (exactly) the PR task.
The generated plans having the highest probability is re-
turned. Namely compute candidate plans somehow and eval-
uate their probability of success by solving the summation
problem exactly. We tested 2 such schemes, one that solve
the pure MAP (a far easier task than MMAP) task optimally
and the other that generates suboptimal MAP assignments
by stochastic local search solver, GLS+.

Overall, the marginal MAP solver, BRAOBB-MMAP,
produced shortest plans with the highest probability of suc-
cess, whenever it could find a solution. Yet the suboptimal
solvers were far faster. Note that the only scheme that proves
optimality is MMAP. Comparing the two new approximate
schemes, BRAOBB-MAP with PR vs. GLS+ with PR, the
latter seems superior as it produced plans with higher prob-
ability of success due to its ability to solve instances having
a larger horizon. Comparing with Probabilistic Fast Forward
(PFF), our probabilistic inference based approaches became
competitive as the threshold grew. Indeed, PFF was overall
fastest compared to all solvers, when it could find a solution.
Nevertheless, in a few cases the (approximate) probabilistic
inference approaches were able to find plans for thresholds
for which PFF completely failed.



Our results are clearly preliminary and should be consid-
ered as initial attempts in this direction. Still, even at this
preliminary stage we see the potential of tapping into prob-
abilistic inference algorithms for the conformant planning
task. This exploration already highlights that in the future
we should develop more efficient anytime marginal map al-
gorithms for the task, that we should explore more effec-
tive translations, and that we should consider partial hori-
zons evaluation that incrementally increase in the style of
PFF.
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