
Dipartimento di Informatica
Università degli Studi di Verona

Rapporto di ricerca
Research report

RR 83/2011
June 2011

ST4SQL: a spatio-temporal query
language dealing with
granularities

Gabriele Pozzani
gabriele.pozzani@univr.it

Carlo Combi
carlo.combi@univr.it

Questo rapporto è disponibile su Web all’indirizzo:
This report is available on the web at the address:
http://www.di.univr.it/report

Abstract

In many different application fields the amount and importance of spatio-temporal
data (i.e., temporally and/or spatially qualified data) is increasing in last years
and users need new solutions for their management. In [3] a framework for mod-
eling spatio-temporal data in relational databases has been proposed. The model
is based on the notions of temporal, spatial, and spatio-temporal granularities.
Once data have been modeled, they must be queried through query languages
able to exploit also their spatio-temporal components. In this paper we propose
a spatio-temporal query language, called ST4SQL. The proposed language ex-
tends the well-known SQL syntax and the T4SQL temporal query language [7].
The proposed query language deals with different temporal, spatial, and spatio-
temporal semantics with respect to temporal and spatial dimensions. These
semantics allow one to specify how the system must manage spatio-temporal
dimensions for evaluating the queries. Moreover, the query language introduces
new constructs for grouping data with respect to temporal and spatial dimen-
sions. Both semantics and grouping constructs take into account and exploit
data qualified with spatio-temporal granularities.

1 Introduction

Spatio-temporal databases are those databases providing support for represent-
ing and managing temporal, spatial and spatio-temporal data. They implement
capabilities of both temporal and spatial databases and, further, they provide
new constructs for representing spatio-temporal data, i.e., data with both a
temporal and a spatial qualification.

Research on spatio-temporal databases began in the late 1990s with two dif-
ferent projects [19, 15]. Thenceforth, several papers [3, 4, 5, 14, 22] proposed
to manage spatio-temporal data in databases by qualifying them with spatio-
temporal granularities. In general, granularities represent partitions of a tem-
poral and/or spatial domains in disjoint intervals or regions (called granules),
e.g., municipalities, pollution areas. Spatio-temporal data can be temporally
and/or spatially qualified associating them to the granule representing their
temporal or spatial location. In [3] authors proposed the definitions of spatial
and spatio-temporal granularities and, based on them and on the notion of tem-
poral granularity [4], they proposed a relational database for granularities. The
database can be used to store information about temporal, spatial and spatio-
temporal granularities. Authors proposed to use the database for granularities
to extend existing spatio-temporal databases in order to qualify spatio-temporal
data with granularities.

Once spatio-temporal data have been modeled in relational databases, they
should be queried. For this purpose we need a query language able to manage
spatio-temporal data. SQL [11] includes the definition of temporal datatypes
(e.g., date, timestamp, interval) and functions. However, it may be not enough.
SQL considers temporal data as other classical data and users have to manage
them “manually”, forcing their semantics. The same approach has been applied
to spatial datatypes. The ISO/IEC 13249-3 SQL/MM Part 3 [12] standard in-
cludes the definition of spatial datatypes for representing 2- and 3-dimensional
geometries (e.g., points and regions) and functions for their management. How-
ever, again, spatial data are considered as other classical data. This approach,
used for both temporal and spatial data, may lead to not exploit full potential
of temporal and spatial dimensions. A different approach has been discussed
in several proposals about temporal query languages [7, 20]. In these propos-
als, temporal dimensions are in some sense considered “meta-data” enriching
classical information. In this way, particular meaning may be associated to
temporal dimensions and this meaning can be used to better exploit temporal
qualification of data. In particular, T4SQL [7] includes also the definition of four
temporal semantics (i.e., atemporal, sequenced, current, and next) that can be
specified by the user for the automatic management of temporal dimensions
during query evaluation.

Based on temporal and spatial capabilities, some spatio-temporal query lan-
guages have been proposed [8, 9, 19, 21]. In general, these query languages
define spatio-temporal datatypes and a set of functions on them. Thus, they
lack of ad-hoc semantics for spatio-temporal dimensions that may help users to
easily manage spatio-temporal data.

In this paper, we propose an extension of T4SQL, called ST4SQL, for support-
ing also spatial and spatio-temporal dimensions. ST4SQL introduces new con-
structs for querying data exploiting their spatio-temporal components. ST4SQL
adds to T4SQL support to spatio-temporal granularities [3] and data qualified

1

with granularities and it introduces support for spatial and spatio-temporal di-
mensions. In particular, we extend the four temporal semantics proposed in
T4SQL also to consider data qualified with temporal granularities. Moreover,
we define spatial and spatio-temporal semantics for dealing with data qualified
with spatial and spatio-temporal granularities. We propose also constructs for
grouping data and applying aggregate functions with respect to their temporal,
spatial, and spatio-temporal qualification based on granularities. We introduce
the syntax of ST4SQL and we explain the usage of new constructs exemplifying
them with queries on a real clinical database.

The paper is organized as follow. In the next section we discuss main related
work about spatio-temporal query languages. In Section 3 we briefly introduce
granularities and the database model on which ST4SQL is based. Moreover, we
introduce the clinical spatio-temporal database we then use as an example. In
Section 5 we describe the ST4SQL query language, exemplifying it with several
queries. In Section 6 we conclude with final remarks and future work.

2 Related work

Several temporal query languages have been proposed [7, 17, 20] to overcome
the limitations of SQL with respect to temporal databases.

In 1995, Snodgrass et al. proposed TSQL2 [20], a temporal extension to the
SQL-92 standard query language. Despite many researches proved the useful-
ness of TSQL2, the project for incorporating some TSQL2 capabilities into the
ISO SQL standard has been canceled in 2001. However, some similar temporal
features have been implemented in Oracle Database [16] and IBM DB2 [10].

The draft proposed for adding temporal support in SQL standard, called
SQL/Temporal, includes the support for two temporal dimensions and two se-
mantics for temporal queries. Supported temporal dimensions are valid time,
i.e., the time instants or intervals when an information is true in the modeled
reality, and transaction time, i.e., the time interval during which data are cur-
rent and can be retrieved in the database [13]. Temporal semantics allow a
user to specify how the DBMS has to (automatically) manage temporal infor-
mation during the evaluation of a query. According to the sequenced semantics
the query engine evaluates the query for each time instant in the time domain
selecting only those tuples whose value for the considered temporal dimension
includes the considered instant. Conversely, in the non-sequenced semantics the
query is evaluated considering all tuples in the relations without regard to their
value for the given temporal dimension.

In [7] Combi et al. proposed the T4SQL temporal query language. It extends
SQL/Temporal adding support also for availability time (i.e., the time when
the database system or user become aware of a fact), and event time (i.e.,
the time when a decision has been taken or an event happened determining
the considered fact) [13]. Moreover, besides the mentioned sequenced and non-
sequenced (called atemporal) semantics, T4SQL introduces other two semantics:
(1) current (the DBMS evaluates the query only on those tuples where d is equal
or contains the current date) and (2) next (the DBMS considers only pairs of
tuples related to the same entity and that are consecutive with respect to the
temporal ordering).

Both previous languages include support for temporal join and temporal

2

grouping. The first one is an extension of natural join in which join conditions
include one or more temporal dimensions. The latter allows to group tuples
according to their value on a temporal dimension.

Considering spatial databases, currently, many commercial DBMSs that im-
plement spatial functionalities, offer spatial datatypes, relationships, and oper-
ations following the approach standardized in ISO/IEC 13249-3 SQL/MM Part
3 [12]. SQL/MM is a standard extending SQL with multimedia and application-
specific features. In particular, its third part defines how to store, retrieve, and
process spatial data in SQL. Spatial data types and functions for converting,
comparing, and analyzing spatial data are defined.

SQL/MM includes functions for testing the validity of relationships between
spatial data, and computing operations over spatial objects. Spatial functions
include, for example, ST_Area that computes the area of the geometry on which
it is applied and ST_Overlaps() that tests whether the geometry on which it is
applied overlaps the geometry provided as parameter. By using these functions
spatially-enabled DBMSs allow one also to perform spatial selection (i.e., a
selection operation based on a spatial predicate) and spatial join (i.e., a join
operation which join condition includes a spatial predicate).

After TSQL2 and SQL/MM Part 3, despite several spatio-temporal query
languages have been proposed [6, 8, 9, 19, 21], there have not been efforts for
standardizing a spatio-temporal model and query language.

Erwig and Schneider [8] extend spatial functions adding a temporal com-
ponents. In this way, spatial functions may be applied to moving points and
regions. For example, the trajectory() function returns a polyline represent-
ing the trajectory of a moving point over time while traversed computes the
region traversed in any time by a moving region.

A slightly different approach has been proposed by Sistla et al. [19]. Au-
thors introduce a query language based on the FTL (Future Temporal Logic)
language [18]. FTL queries are specified in the Retrieve-Where form, where
the Retrieve clause specifies which data have to be returned and the Where

clause specifies the FTL formula representing the condition that the retrieved
data must comply with. The NextTime and Until modal temporal operators
may be used in the Where clause. Temporal conditions can use spatial relations
in order to perform spatio-temporal selection.

3 A data model supporting granularities

In [3] a framework for modeling and qualifying spatio-temporal data in relational
databases using spatio-temporal granularities has been proposed. Informally, a
temporal granularity represents a partition of a time domain. Each element of
a granularity is called granule and represents a set of time instants perceived
and used as an indivisible entity. Granules must be disjoint and their order
must coincide with time point order. We can use these granules to provide
data with a temporal qualification at the suitable granularity. In other words,
a temporal granularity represents a temporal unit of measure. For example, we
can associate a patient’s hospitalization with the granule representing September
30, 2010, thus proving it with a temporal qualification.

Similarly, a spatial granularity represents a partition of a space domain.
Granules must have disjoint interior and may have holes and may be composed

3

by several disconnected regions. In [3] spatial granularities are defined by us-
ing a two-level model. The lower level represents the spatial domain, on which
we can recognize geometrical information and in which vector data represent-
ing granules are defined. The higher level is a multidigraph structure used to
access and manage granules. A multidigraph is a labeled directed graph with
multiple labeled edges. In the multidigraph each node represents a spatial gran-
ule. On the other hand, edges represent relationships between granules (e.g.,
direction- and distance-based relations). Each edge is labeled with the name of
the relationship it represents.

Based on these two frameworks, the notion of spatio-temporal granularity
has been proposed in [3]. Spatio-temporal granularities represent the evolu-
tion over time of a spatial granularity. A spatio-temporal granularity has two
components. The former is a temporal granularity that aggregates time points,
while the latter is a mapping (called spatial evolution) that associates to each
time point the spatial granularity valid on it.

In [3] a database for granularities has been designed. The database allows
one to store all information describing temporal, spatial, and spatio-temporal
granularities. The following is a part of the relational schema of the database
for granularities.

GRANULE(id,index ,start ,end ,granularity)

T-GRANULARITY(id,name ,domain ,extentS ,

extentE ,anchor)

ST -GRANULARITY(id,name ,tgranularity ,evolution)

EVOLUTION(id,name)

VALIDTIMEHISTORY(evolution,sgranularity ,since,to)

S-GRANULARITY(id,name ,domain ,extent ,domain_rel)

NODE(id,sgranularity ,geom ,label)

NODE -LABEL(id,label)

where T-GRANULARITY and GRANULE represent temporal granularities and their
granules, respectively. S-GRANULARITY contains information about spatial gran-
ularities, while NODE and NODE-LABEL represent spatial granules (the nodes
of the multidigraph) and their labels, respectively. Finally, ST-GRANULARITY,
EVOLUTION, and S-GRANULARITY represent spatio-temporal granularities and
their spatial evolutions.

4 A motivating clinical database

The designed database for granularities may be used to qualify and aggregate
data, also during the querying phase, in an existing relational database. In [3]
authors propose two ways to qualify and aggregate information by using granu-
larities. The first way provides to add, in each table containing data we want to
qualify, a reference (i.e., a foreign key) to the granule representing the temporal
or spatial location. The second way allows one to qualify data with granular-
ities directly during the querying phase. In this case, tuples we are interested
in are associated to a temporal and/or a spatial location (e.g., a timestamp or
a coordinate on the Earth surface). Later (e.g., in a query) it is possible to
“dynamically” aggregate information with respect to the temporal or spatial
locations we added by using suitable granularities.

Let us consider for example the following database schema:

4

PATIENT(id,tax_code ,surname ,name ,birth_date)

CONTACT(id,patient ,contact_date , gaf

contact_location , duration)

PATIENT_DIAGNOSIS(id,patient ,diagnosis ,

start_date ,end_date)

DIAGNOSIS(id,category ,icd10_code ,

description)

PATIENT_PROFESSION(id,patient ,profession ,

start_date ,end_date)

PROFESSION(id,description)

PATIENT_EMPLOYMENT(id,patient ,employment ,

start_date ,end_date)

EMPLOYMENT(id,description)

PATIENT_RESIDENCE(id,patient ,address ,

subzone ,start_date ,end_date)

PATIENT_DOMICILE(id,patient ,address ,subzone ,

start_date ,end_date ,location)

CONTACT_LOCATION(id,description ,location)

SUBZONE(id,description ,quarter ,municipality)

MUNICIPALITY(istat code,name ,inhabitants_2001 ,

node)

It is a part of the schema of the Verona Psychiatric Case Register (PCR).
Verona is a city in North-East of Italy. Its Health District includes a Community-
based Psychiatric Service (CPS) for providing support to psychiatric patients.
PCR is the information system collecting information about patients’ accesses
to CPS since 1979 [1]. At the first contact with the psychiatric service (e.g., a
visit), socio-demographic information, past psychiatric and medical history, and
clinical data are routinely collected for patients aged 14 years and over. These
data may be updated at successive contacts when required. Each patients’ con-
tact with CPS structures is recorded in PCR. Recorded contacts include: at-
tendances at the out-patient clinic, domiciliary visits, telephone calls, day cares
provided at the day hospital units, all admissions to the acute psychiatric ward,
and private clinics. Data on about 28,700 patients and more than 1,500,000
psychiatric contacts have been recorded in PCR up to now.

To each patient a diagnosis is assigned according to ICD-10 [23] categories.
Moreover, PCR stores also patients’ employment and profession. All these data
may be updated when required, and thus PCR records also their valid time.

PCR is currently used for administrative, clinical, and research purposes.
The relations of PCR we reported above exemplify the two ways for using

granularities for aggregating and querying spatio-temporal data. The relation
Municipality contains a reference (i.e., the node attribute) to the correspond-
ing granule in the Municipalities spatial granularity. On the other hand, the
Patient_domicile relation has a location attribute representing the coordi-
nates on the Earth surface where the domicile is located. Moreover, all temporal
relations contain the start_date and end_date attributes representing the valid
time of the tuples in the relations. location and valid time attributes may be
used for spatially and/or temporally aggregating data at the querying phase.

In the following we will exemplify the capabilities of our ST4SQL query
language also presenting some queries on PCR. These queries refer to patients’
personal information and contacts with CPS and they may be useful to get

5

reports for administrative purposes.

5 The ST4SQL query language

In this section, we present our query language for dealing with spatio-temporal
data and granularities. It is a spatio-temporal extension of T4SQL, the temporal
query language proposed by Combi et al. [7] and discussed in Section 2. Thus,
ST4SQL is an SQL-based query language. It extends the temporal constructs of
T4SQL to deal with temporal granularities and it adds new spatial and spatio-
temporal constructs, similar to the temporal ones, for dealing also with spatial
and spatio-temporal granularities.

ST4SQL queries are based on the usual SELECT-FROM-WHERE structure, but
ST4SQL adds new constructs for the “automatic” management of temporal, spa-
tial, and spatio-temporal dimensions. Supported temporal dimensions include
valid time, transaction time, availability time, and event time [13]. On the other
hand, in the spatial case we consider only valid space, that is the spatial location
where an object instance is “true”. Values for valid space can be modeled, for
example, as points, lines, or regions.

As we already explained, one of the main contributions of T4SQL has been
the introduction of four semantics for temporal queries. These semantics allows
one to specify how the system has to manage temporal dimensions in order to
evaluate queries. The proposed semantics for temporal querying are defined
on time points. Thus, for example, the SEQUENCED semantics applied to valid
time considers instant by instant the temporal domain and evaluates the query
taking into account only those tuples whose valid time contains the considered
time point.

However, we can consider semantics also on temporal granularities. In this
way, the system evaluates queries considering granules instead of time points
and, thus, constraining tuples with respect to their value on temporal dimen-
sions according to temporal granules. To do that, we extend previous temporal
semantics. Thus, each semantics requires the user to specify a time dimension
(e.g., valid time) and a temporal granularity (e.g., months). In other words, se-
mantics based on granularities allow one to “relax” T4SQL queries by grouping
tuples with respect to the granules of a temporal granularity instead of time
points.

Similar definitions can be given also on spatial dimensions. A spatial se-
mantics allows one to specify how the query engine must manage spatial dimen-
sions associated to tuples. Similarly to the temporal case, we define four spa-
tial semantics: SPACELESS (corresponding to the ATEMPORAL one), SEQUENCED,
CURRENT, and NEXT.

Note that we define only spatial semantics based on granularities, not on
space points. This limitation is based on the consideration that joining only
tuples spatially qualified exactly with the same point location is not meaning-
ful, especially considering that many errors and uncertainties can affect spatial
surveys.

Considering spatio-temporal granularities, we note that they temporally
qualify spatial granularities. Thus, they allow one to spatially aggregate data
with respect to a spatial granularity whose definition changes over time. The
value of tuples over a given temporal dimension is used to select the spatial

6

granularity valid at the same time of considered tuples. Thus, a spatio-temporal
semantics requires that both a temporal dimension and a spatial dimension are
specified, we call this pair a spatio-temporal dimension. On this pair, the user
specifies a semantics on both the temporal and the spatial dimension. Then,
the temporal and spatial semantics are applied as we have described before in
this section, but, moreover, the temporal dimension is used also for selecting
the spatial granularity valid at the same time of considered tuples.

The syntax of ST4SQL extends that of T4SQL (and that of SQL). Its (in-
complete) BNF is as follows:

[SEMANTICS [<tsem > ON <tdim >

[WITH TGRANULARITY <tG >] [THROUGH <attr >]

[TIMESLICE <ts_exp >] [, ...] ,]

[<ssem > ON <sdim > WITH SGRANULARITY <sG >

[ORDERED BY <sr >] [THROUGH <attr >]

[SPACESLICE <ss_exp >] [, ...] ,]

[<tsem > ON <tdim > [TIMESLICE <ts_exp >] AND

<ssem > ON <sdim > [SPACESLICE <ss_exp >]

WITH STGRANULARITY <stG >

[SIMPLIFY BY <s_aggr_funct >]]]

SELECT <sel_element_list >

[WITH <exp > [AS] <dim > [, ...]]

[, TGROUP(<t_attr >) [AS] <new_name > [,...]]

[, SGROUP(<s_attr >) [AS] <new_name > [,...]]

[FROM <tables >]

[WHERE <conditions >]

[WHEN <t_conditions >]

[WHEREABOUTS <s_conditions >]

[GROUP BY <group_element_list >]

[HAVING <g_cond >]

<tsem >::= ATEMPORAL | CURRENT | SEQUENCED | NEXT

<ssem >::= SPACELESS | CURRENT | SEQUENCED | NEXT

<dim > ::= <tdim > | <sdim >

<tdim >::= AVAILABILITY | TRANSACTION |

VALID TIME | INITIATING_ET | TERMINATING_ET

<sdim >::= VALID SPACE

<group_element_list >::= <group_element > [, ...]

<group_element >::= <attribute > |

<temp_attr > ON <tG> | <space_attr > ON <sG>

where:

• tG and sG represent a temporal and a spatial granularity, respectively;
• ts_exp and ss_exp represent expressions corresponding to a time interval

and a spatial region, respectively;
• <sr> is the name of a spatial relationship between granules whose def-

inition must be present in the SR relation of the proposed database for
granularities.

We introduce also some spatio-temporal functions for accessing the value of
tuples on temporal and spatial dimensions. Given a tuple of a relation R, the
value it takes over the temporal and the spatial dimensions can be recovered by
using the following accessors:

7

VALIDT(R) returns the valid time of the R tuple;
TRANSACTIONT(R) returns the transaction time of the R tuple;
AVAILABLET(R) returns the availability time of the R tuple;
INITIATING ET(R) returns the initiating event time of the R tuple;
TERMINATING ET(R) returns the terminating event time of the R tuple;
VALIDS(R) returns the valid space of the R tuple;

As we already mentioned in previous section, Belussi et at. proposed two
ways to qualify data with spatio-temporal granularities in two alternative ways:
(1) indirect (tuples are associated to a temporal and/or spatial location that is
qualified with granularities at query time) and (2) direct (tuples are associated
directly to a granule in a temporal, spatial, or spatio-temporal granularity). In
the first case accessors return the location associated to the tuples, while in the
second case accessors return the granule associated to the tuples.

Finally, considering any expression <exp> representing an interval (e.g.,
VALIDT(R), ts_exp) we access its starting and ending element with <exp>$start

and <exp>$end, respectively.
Since ST4SQL includes SQL and T4SQL, we now describe only new con-

structs defined in ST4SQL. For this reason, considering temporal semantics, we
describe only their new versions based on temporal granularity.

5.1 The clause SEMANTICS

The SEMANTICS clause allows one to specify the semantics to be applied for
temporal, spatial, or spatio-temporal dimension. More semantics may be spec-
ified on different dimensions, while at most one semantics can be applied to a
dimension, otherwise the query is considered to be not well-formed.

In particular, a semantics for a temporal dimension may be specified with
the following syntax:

SEMANTICS <tsem > ON <tdim >

[WITH TGRANULARITY <tG >] [TIMESLICE <ts_exp >]

while, with a similar syntax, the user may specify a spatial semantics:

SEMANTICS <ssem > ON <sdim >

WITH SGRANULARITY <sG> [ORDERED BY <sr >]

[THROUGH <attr >] [SPACESLICE <ss_exp >]

and a spatio-temporal semantics:

SEMANTICS <tsem > ON <tdim > [TIMESLICE <ts_exp >]

AND <ssem > ON <sdim > [SPACESLICE <ss_exp >]

WITH STGRANULARITY <stG >

[SIMPLIFY BY <s_aggr_funct >]

As we have already explained above, each semantics requires a dimension
(<tdim> or <sdim>) on which it has to be applied. Moreover, optionally, a
temporal semantics can be applied in relation to a temporal granularity <tG>

that will be used to group and select the tuples on which the query has to
be evaluated. Since spatial semantics are defined only on granularities, the
WITH SGRANULARITY <sG> token is mandatory and <sG> is the name of the
spatial granularity to be used.

8

The TIMESLICE and SPACESLICE options are optional and allow one to restrict
the query evaluation only on those tuples whose value for the given tempo-
ral or spatial dimension intersects the value of <ts_exp> and <ss_exp> ex-
pressions, respectively. <ts_exp> must represent a time interval, when the
WITH TGRANULARITY <tG> option is not specified, or to a pair (gstart,gend)

representing a granule interval where gstart and gend are the indexes of the first
and the last granule in <tG> in the interval, when the WITH TGRANULARITY <tG>

token is present. Similarly, <ss_exp> is a list of labels of granules in the <sG>

spatial granularity. The TIMESLICE and SPACESLICE options can be specified to-
gether with any semantics but the CURRENT one.

Note that, when no semantics is specified by the user on a temporal or
spatial dimension, the ATEMPORAL or SPACELESS semantics (depending on the
dimension) is applied as default by the system on that dimension.

5.1.1 ATEMPORAL temporal semantics

The ATEMPORAL semantics disables any system support on the specified temporal
dimension. Thus, the given dimension is considered as a usual atemporal at-
tribute without any specific meaning. In this case, unless other spatio-temporal
constructs are specified, queries are evaluated as usual SQL statements and the
user is free to manage the temporal dimension whenever she needs.

With the ATEMPORAL semantics, the TIMESLICE <ts_exp> and WITH TGRANULARITY <tG>

options can be specified together in order to limit the query evaluation only to
some granules of <tG>. <ts_exp> is a pair (gstart,gend) representing a gran-
ule interval where gstart and gend are the indexes of the first and the last
granule in <tG> in the interval, respectively.

Thus, for example, the following query retrieves the patients who in 2009
had at least a contact lasted more than one hour. In this case, the valid time is
represented by the date when contacts occurred.

SEMANTICS ATEMPORAL ON VALID TIME

WITH TGRANULARITY Years TIMESLICE (2009 ,2010)

SELECT DISTINCT p.name , p.surname

FROM patient AS p JOIN contact AS c

ON c.patient=p.id

WHERE c.duration > ’01:00:00 ’

The output relation does not include the dimension on which the ATEMPORAL
semantics has been applied. The user can include the temporal dimension in the
output relation by specifying the WITH option in the SELECT clause (discussed
below).

Note that, since the ATEMPORAL semantics disables any automatic support
leaving the user free to manage also the temporal dimensions, one can execute an
ATEMPORAL query to obtain the same result that could be obtained by applying
any other semantics.

5.1.2 SEQUENCED temporal semantics

Using the SEQUENCED semantics the DBMS evaluates the query only on those tu-
ples of the relations referred in the FROM clause whose value for the given tempo-
ral dimension intersects the same temporal granule of the temporal granularity

9

<tG>. In other words, the query is evaluated granule by granule considering in
turn only the tuples whose value on the provided temporal dimension intersects
the considered granule. Thus, the output relation is a temporal relation where
the query result is associated to the granule on which it has been evaluated.

For example, the following query allows us to retrieve monthly the average
number of contacts per patient for unemployed patients.

SEMANTICS SEQUENCED ON VALID TIME

WITH TGRANULARITY Months

SELECT COUNT(c.id)/COUNT(DISTINCT c.patient)

FROM contact AS c, patient_employment AS pe,

employment AS e

WHERE c.patient = pe.patient AND

pe.employment = e.id AND

e.description = ’unemployed ’

Since both contact and patient_employment relations support valid time,
the SEQUENCED semantics automatically restricts the query evaluation only on
those contacts occurred in the same month in which the corresponding patient
declared, for at least a day, to be unemployed. Moreover, since the SEQUENCED

semantics provides that the considered granule is included in the output relation,
the query returns a relation that includes also the month in which that data are
valid.

5.1.3 CURRENT temporal semantics

The CURRENT semantics forces the DBMS to evaluate the query only on those
tuples whose value over the given temporal dimension intersects the granule
of <tG> containing the current time. In other words, the CURRENT semantics is
similar to the SEQUENCED one but it does not evaluate the query for each granule
in the specified granularity but only in the “current” granule.

For example, by using the CURRENT semantics we can retrieve the patients’
professions in the current month. Since the query is evaluated on those tuples
whose valid time intersects the current month, if a patient changes her profession
during the current month all her professions are returned.

SEMANTICS CURRENT ON VALID TIME

WITH TGRANULARITY Months

SELECT p.name , p.surname , pr.description

FROM patient AS p, patient_profession AS pp,

profession AS pr

WHERE pp.patient=p.id AND pp.profession=pr.id

Conversely to the SEQUENCED semantics, the CURRENT semantics does not
include in the output relation the granule on which the query is evaluated.
Thus, unless other spatio-temporal constructs are specified by the user, the
output relation is atemporal.

5.1.4 NEXT temporal semantics

The NEXT semantics allows one to retrieve information about the state of the
same object in two consecutive granules. In other words, the NEXT semantics
considers only pairs of tuples (each one belonging to the join of the tables

10

specified in the FROM clause) that are related to the same object and that are in
two consecutive granules of <tG> according to the temporal ordering.

When the FROM clause contains more than one relation, they are joined using
join conditions specified by the user in the query or Cartesian product when join
conditions are not specified. Tuples in the relation resulting from this join are
used for defining the pairs on which the query has to be evaluated.

Two tuples are related to the same object if they have the same atemporal
key. If atemporal keys are not defined or more keys are present in relations
referred in the FROM clause, the user must specify the attribute to use for iden-
tifying tuples referring to the same object. To do that, the THROUGH <attr>

option may be specified, and the <attr> attribute is used instead of snapshot
keys for joining pairs of tuples. With the NEXT semantics, the user can use the
NEXT(<attr>) function to refer, in the select and where clauses, to the value
of a <attr> attribute in the tuple associated to the successor granule.

For example, the following query retrieves the patients who found a new job
after a period of unemployment and who, in that month, had a worse Global
Assessment of Functioning (GAF) value [2], i.e., patients whose mental health
seems to get worse with the new job.

SEMANTICS NEXT ON VALID TIME

WITH TGRANULARITY Months THROUGH patient.id

SELECT DISTINCT p.name , p.surname

FROM patient AS p, patient_employment AS pe,

employment AS e, contact AS c

WHERE pe.patient=p.id AND pe.employment=e.id AND

c.patient=p.id AND NEXT(c.gaf)<c.gaf AND

e.description = ’unemployed ’ AND

NEXT(e.description) <> ’unemployed ’

5.1.5 SPACELESS spatial semantics

The SPACELESS spatial semantics corresponds to the ATEMPORAL one we de-
scribed before. The SPACELESS semantics disables any support from the system
and the user has, eventually, to manage explicitly the spatial dimension on
which it is applied. No spatial granularity has to be specified together with the
SPACELESS semantics unless the SPACESLICE option is specified: in this case the
granularity is mandatory.

For example, the following query retrieves the patients living in a highly
polluted area and contacting CPS structures located in little polluted areas.

11

SEMANTICS SEQUENCED ON VALID TIME

WITH TGRANULARITY Weeks ,

SPACELESS ON VALID SPACE

SELECT DISTINCT p.tax_code , p.name , p.surname

FROM patient AS p JOIN contact AS c

ON p.id=c.patient

JOIN patient_domicile AS pd

ON pd.patient = p.id

JOIN contact_location AS cl

ON c.contact_location = cl.id,

s-granularity AS sg JOIN node AS n1

ON n1.sgran = sg.id

JOIN nodelabel AS nl1 ON n1.label = nl1.id

JOIN node AS n2 ON n2.sgran = sg.id

JOIN nodelabel AS nl2 ON n2.label = nl2.id

WHERE sg.name = ’PM10’ AND nl1.label = ’High’

AND nl2.label = ’Low’ AND

n1.geom.st_contains(pd.location) AND

n2.geom.st_contains(cl.location)

Where st_contains is the SQL/MM procedure that checks whether the object
on which it is called contains the geometry provided as a parameter.

Using the SPACELESS semantics, the user disable the system support on
the spatial dimension and she manage spatial data explicitly. For this reason,
spaceless queries may be longer, more complex, and less readable than queries
based on other semantics.

The output relation does not include the dimension on which the SPACELESS
semantics has been applied.

Since the SPACELESS semantics disables any automatic behavior, it is possible
to write a spaceless query in which spatial dimensions are explicitly managed
in the way that it has the same result that could be obtained by applying any
other spatial semantics.

5.1.6 SEQUENCED spatial semantics

The SEQUENCED semantics evaluates the query granule by granule. For each
granule, only those tuples whose value for the spatial dimension intersects the
considered spatial granule are taken into account.

It allows us to retrieve, for example, the final report of contacts of patients
living (when contacts occurred) in the same subzone (i.e., quarter) where con-
tacts took place.

SEMANTICS SEQUENCED ON VALID TIME ,

SEQUENCED ON VALID SPACE

WITH SGRANULARITY Subzones

SELECT c.patient , c.report

FROM patient_domicile AS pdom , contact AS c,

contact_location AS cl

WHERE c.patient = pdom.patient AND

c.contact_location = cl.id

The SEQUENCED temporal semantics restricts the query evaluation to the
patients’ domiciles valid when contacts occurred. On the other hand, the

12

SEQUENCED spatial semantics provides that contacts occur in the same subzone
where patient’s domicile is located.

Similarly to what happens in the temporal case, the SEQUENCED semantics
provides that the spatial dimension on which it is applied is included in the
output relation. Thus, in the previous query both the time instant and the
spatial granule are returned besides other required data.

Considering another example, the following query returns the patients whose
residence is currently in a municipality that intersects an area with a high level
of acoustic noise.

SEMANTICS CURRENT ON VALID TIME ,

SEQUENCED ON VALID SPACE

WITH SGRANULARITY DayAcousticNoise

SPACESLICE ’High’

SELECT p.tax_code , p.name , p.surname

FROM patient AS p, patient_residence AS pr,

subzone AS s, municipality AS m

WHERE pr.patient = p.id AND

pr.subzone = s.id AND

s.municipality = m.istat_code

The SEQUENCED spatial semantics relates the patient’s residence (through
the subzone and municipality relations) with spatial granules representing
the day acoustic noise levels. The SPACESLICE token has been used to restrict
the query evaluation only to the spatial granule labeled with High, that we
suppose to represent areas with a high level of noise pollution.

5.1.7 CURRENT spatial semantics

The CURRENT spatial semantics can be used to restrict the query evaluation
only on those tuples whose value over the specified spatial dimension intersects
the spatial granule containing the current geographical position of the query
submitter. This information can be locally saved, for example, in a system
configuration file, or can be inferred from the DBMS server machine, for example
analyzing the IP address from which the query has been received.

Considering the PCR database, the CURRENT semantics can be used, for
example, by a physician for retrieving diagnoses only of patients currently living
in the catchment area where she works.

SEMANTICS CURRENT ON VALID TIME ,

CURRENT ON VALID SPACE

WITH SGRANULARITY CatchmentAreas

SELECT DISTINCT p.name , p.surname , d.icd10_code

FROM patient_domicile AS dom , patient AS p,

patient_diagnosis AS pdia , diagnosis AS d

WHERE dom.patient = p.id AND p.id = pdia.patient

AND pdia.diagnosis = d.id

Similarly to the CURRENT temporal semantics, the spatial one cannot be
paired with the SPACESLICE option and the spatial dimension is not included in
the output relation.

13

5.1.8 NEXT spatial semantics

Similarly to the temporal one, the NEXT spatial semantics allows one to relate
tuples related to the same object in two consecutive granules. As in the temporal
case, two tuples are considered to be related to the same object if they share
the same value on a attribute provided by the user with the THROUGH token. On
the other hand, conversely to the temporal case, a unique order in not defined
between spatial points and granules. For this reason, the user must provide also
the spatial relationship the system has to use for ordering spatial granules and
thus to find consecutive granules. This can be done with the ORDERED BY <sr>

token, where <sr> is the name of a spatial relationship defined in the SR table
of the database for granularities.

For example, the following query relates the number of contacts for each
patient in a quarter and in the quarters that are South of it.

SEMANTICS NEXT ON VALID SPACE

WITH SGRANULARITY Quarters

ORDERED BY South THROUGH c.patient

SELECT c.patient , COUNT(c.id), COUNT(NEXT(c.id))

FROM contact AS c JOIN contact_location AS cl

ON c.contact_location = cl.id

GROUP BY c.patient

The behavior of the NEXT spatial semantics is similar to the temporal one.
The query is evaluated on pairs of tuples belonging to the relation resulting from
the join between two instances of the relations in the FROM clause. These two
instances are joined on the basis of the attribute specified in the THROUGH token.
Among the obtained pairs of tuples the system selects only those whose values
over the given spatial dimension intersect two consecutive granules according
to the order defined by the relationship specified in the ORDERED BY token. In
the SELECT and WHERE clauses, the NEXT(<attr>) function can be used to refer
to the value of the <attr> attribute in the tuple associated to the successor
granule.

By default, the spatial dimension on which the NEXT semantics is applied is
not included in the output relation.

5.1.9 Spatio-temporal semantics

In previous examples about the usage of spatial granularities, we always aggre-
gated patients’ domiciles using a unique Municipality granularity, supposing
that this granularity was always valid, i.e., it never changes over time. However,
patients’ domiciles are spatio-temporal data, thus they may be aggregated by
using the spatial granularity that actually was valid at the time when domi-
ciles were valid. Spatio-temporal granularities can be used in queries for this
purpose. As a matter of fact, spatio-temporal granularities temporally qualify
spatial granularities. Thus, they allow one to spatially aggregate data with re-
spect to a spatial granularity whose definition changes over time. The value of
tuples over a given temporal dimension is used to select the spatial granularity
valid at the same time of considered tuples. For this reason spatio-temporal
semantics require that both a temporal and a spatial dimension are specified,
and we call this pair a spatio-temporal dimension.

14

A spatio-temporal granularity groups spatial granularities with respect to
granules of a temporal granularity. Each tuple is spatially qualified by using
spatial granularities valid during the time granules intersecting the value of the
tuple over the given temporal dimension. Since this value may be an interval
and during this interval the spatial granularity may evolve, several spatial gran-
ularities may be used to qualify each tuple. For this reason the user may specify
an aggregate function to apply to spatial granularities in order to obtain just
one spatial granularity among all granularities valid during the interval. Aggre-
gate functions include, for example, first (that returns the spatial granularity
valid at the first instant in the interval), last (that returns the spatial gran-
ularity valid at the last instant in the interval), and operations for calculating
union, intersection, and difference of spatial granularities [3]. If the aggregate
function is not provided by the user, the system uses all spatial granularities
valid in the interval, one by one, for querying the considered tuple, and all these
combinations are used for obtaining the final resulting relation.

The user specifies a semantics on both the temporal and the spatial di-
mension making up the given spatio-temporal dimension. These temporal and
spatial semantics are applied as we described above in this section, but, more-
over, the temporal dimension is used also for selecting the spatial granularity
valid at the same time of considered tuples.

We note that specifying the SEQUENCED semantics on the spatial dimension
and the CURRENT semantics (or a timesliced SEQUENCED semantics) on the tem-
poral one, a user can query data with respect to a spatially qualified timeslice.
On the other hand, specifying the SEQUENCED semantics on the temporal dimen-
sion and the CURRENT semantics (or a spacesliced SEQUENCED semantics) on the
spatial one, a user can query data with respect to the evolution over time of
spatial granules. The ATEMPORAL and SPACELESS semantics cannot be used in
spatio-temporal semantics.

For example, the following query retrieves information about patients’ domi-
cile valid in 2010 and located, during this interval, in an area with high or
medium PM10 pollution level.

SEMANTICS SEQUENCED ON VALID TIME

TIMESLICE (2010 -01 -01 ,2010 -12 -31) AND

SEQUENCED ON VALID SPACE

SPACESLICE ’High’,’Medium ’

WITH STGRANULARITY PM10_Weeks

SELECT DISTINCT p.tax_code , p.name , p.surname

FROM patient_domicile AS pd, patient AS p

WHERE pd.patient = p.id

PM10_Weeks is a spatio-temporal granularity representing daily PM10 surveys
associated to the Weeks temporal granularity. Thus, the query is evaluated on
those tuples whose value over the valid space intersects a PM10 granule valid
in a week intersecting also the tuples value over the valid time. The output
relation includes both the temporal and spatial granules qualifying tuples.

5.2 The clause SELECT

After the SEMANTICS clause, ST4SQL queries continue with the usual SELECT
and FROM clauses. The SELECT clause specifies what attributes (or expressions)

15

have to be returned for each tuple in the resulting relation, while the FROM clause
contains the list of relations (that, eventually, may be the result of a subquery)
required for processing the query.

As we explained before, the dimensions on which ATEMPORAL, SPACELESS,
CURRENT, and NEXT semantics are applied are not included in the output re-
lation, while the dimensions on which the SEQUENCED semantics is applied are
included in the output relation. In order to change this behavior and to include
dimensions in the output relations, the user can, besides classical attributes, use
the WITH token in the SELECT clause. This option overwrites the dimension that
would be included automatically by the system in the output relation.

Thus, for example, the following query retrieves the duration of contacts
occurred in the current month for patients born before 1950. The query includes
in the output relation the contact date.

SEMANTICS CURRENT ON VALID TIME

WITH TGRANULARITY Months

SELECT c.duration WITH VALIDT(c) AS VALID TIME

FROM contact AS c JOIN patient AS p

ON c.patient = p.id

WHERE p.birth_date < ’01 -01 -1950’

5.3 The clauses WHERE, WHEN, and WHEREABOUTS

The WHERE clause contains the selection and join conditions to apply in order
to select the set of tuples on which the query must be evaluated. In ST4SQL,
the WHERE clause may include temporal and spatial conditions (i.e., conditions
involving the value of temporal and spatial dimensions). In some cases, temporal
and spatial conditions are complex and for the sake of clarity they could be
kept divided from classical conditions. For this purpose, ST4SQL provides the
WHEN and WHEREABOUTS clauses where temporal and spatial conditions can be
specified, respectively.

Let us consider for example the following query. It retrieves the duration of
the contacts occurred at most one month after that the diagnosis of the corre-
sponding patient has been established and at most at 1 km from the patient’s
domicile.

SEMANTICS SEQUENCED ON VALID TIME ,

SPACELESS ON VALID SPACE

SELECT c.duration

FROM contact AS c JOIN patient_diagnosis AS pd

ON c.patient = pd.patient

JOIN contact_location AS cl

ON c.location = cl.id

JOIN patient_domicile AS pdom

ON c.patient = pdom.patient

WHEN VALIDT(c)$start - VALIDT(pd)$start

< INTERVAL ’1’ MONTH

WHEREABOUTS VALIDS(cl). st_distance(VALIDS(pdom))

< 1 KM

16

5.4 The clause GROUP BY

The GROUP BY clause allows one to define groups of tuples on which aggregate
functions may be applied. ST4SQL allows the user to group tuples with respect
to the their value on a temporal or spatial dimension. To do that the user can
use the spatio-temporal accessors we introduced above in the GROUP BY clause.
For example, GROUP BY VALIDT(t) specifies that tuples have to be grouped
with respect to the valid time of the t relation. Moreover, the accessors may
be followed by the ON <G> option that specifies that the groups are not defined
according to the value returned by the considered accessor but by the granules of
the <G> granularity, whose type (temporal or spatial) must agree with the type
of the accessor. For example, GROUP BY VALIDT(t) ON <tG> groups together
tuples whose valid time intersect the same granule in <tG>.

In order to include the value of groups on a dimension in the output relation,
the user can use the TGROUP and SGROUP functions in the SELECT clause. These
functions require as parameter the accessor used in the GROUP BY clause and
return the value of the accessor if the ON <G> option has be not specified in the
GROUP BY or the granule in <G> if the ON <G> option has be specified. Thus, for
example:

SELECT TGROUP(VALIDT(T))

FROM T

GROUP BY VALIDT(T) ON <tG >

returns a relation where each tuple represents a group of tuples in t. Each group
contains the tuples whose value over the valid time dimension intersects the same
granule of <tG>. The identifier of the granule (returned by TGROUP(VALIDT(t)))
used for grouping together the tuples is included the output relation.

For example, the following query retrieves in each month the average number
of contacts per patient with respect to diagnosed mental disease.

SELECT TGROUP(VALIDT(c)), d.category ,

COUNT(c.id)/ COUNT(DISTINCT c.patient)

FROM contact AS c, patient_diagnosis AS pd,

diagnosis AS d

WHERE c.patient = pd.patient AND

pd.diagnosis = d.id

GROUP BY VALIDT(c) ON Months , d.category

Similarly, also spatial dimensions and granularities can be used also for
grouping tuples. The following query retrieves the average number of contacts
per patient grouped with respect to the diagnosis category and the day acoustic
noise level.

SELECT SGROUP(VALIDS(cl)), d.category ,

COUNT(c.id)/ COUNT(DISTINCT c.patient)

FROM contact AS c, patient_diagnosis AS pd,

diagnosis AS d, contact_location AS cl

WHERE c.patient = pd.patient AND

pd.diagnosis = d.id AND

c.contact_location = cl.id

GROUP BY VALIDS(cl) ON DayAcousticNoise ,

d.category

17

The HAVING clause allows one to specify conditions on the groups. The
HAVING clause provides conditions that have to be applied to each group of
tuples, then only groups that meet such conditions are retrieved in the output
relation. The HAVING clause may include aggregate functions, temporal and
spatial conditions.

5.5 On the semantics of ST4SQL

All ST4SQL queries can be translated into equivalent SQL queries by using
standard constructs. Hence, it is possible to specify the semantics of ST4SQL
with respect to the one of SQL. This can be done by showing how ST4SQL
constructs can be translated into SQL. Due to the lack of space, here we show
only a fragment of the ST4SQL semantics. All other cases are treated similarly
to the showed one. In particular, we introduce only the translation of the NEXT

spatial semantics.
Consider the following ST4SQL query:

SEMANTICS NEXT ON <sdim > WITH SGRANULARITY <sG >

ORDERED BY <sr > THROUGH <attr >

SELECT <attr_list >

FROM T1, ..., Tn

WHERE <jconds > AND <sconds >

where <attr_list> is a list of names of attributes in the T1, . . . , Tn relations,
while <jconds> and <sconds> are the sets of join and selection conditions. Note
that, the distinction between join and selection conditions is not specified by
the user, but can be easily computed by the system. Moreover, we remember
that when the NEXT semantics is specified, also the ORDERED BY and THROUGH

options are mandatory.
The NEXT semantics allows one to evaluate a query on the pairs of tuples

representing two states of an object in two consecutive granules. To do that,
the first thing the system has to do is to calculate the table containing the
tuples representing the objects to pair. This table is the result of the join of
all relations in the original FROM clause (i.e., T1, . . . , Tn) according to the join
conditions <jconds>. Thus, instance is calculated as follow:

(SELECT

FROM T1, ..., Tn

WHERE <jconds >

) AS instance

where, as usual, when the user does not specify the join condition between all
relations, the Cartesian product is applied.

Then, in the FROM clause of the translated SQL query we have to:
• join two copies of the instance relation according to their values on the
<attr> attribute, provided by the user as parameter of the THROUGH op-
tion;

• add the relations containing the information about the <sG> spatial gran-
ularity.

In the WHERE clause, we have to select only the pairs whose two constituent
tuples intersect two consecutive spatial granules in <sG> with respect to the
order defined by the <sr> spatial relation.

18

When the NEXT semantics is applied, the user can refer in the SELECT and
WHERE clauses to the value of an attribute in the successor tuple by using the
NEXT(<attr>) function. That is translated in the SQL query as tnext.<attr>,
while all other attributes are referred as t.<attr>.

Finally, the SELECT clause of the resulting SQL query contains all the at-
tributes named by the user in the original ST4SQL query, where, eventually, the
NEXT(<attr>) function is translated as explained.

Concluding, the SQL query equivalent to the considered one is:

SELECT <attr_list >

FROM sgranularity AS sg JOIN node AS n

ON (n.granularity = sg.id)

JOIN node AS nnext

ON (nnext.granularity = sg.id),

instance AS t JOIN instance AS tnext

ON t.<attr > = tnext.<attr >

WHERE <sconds > AND sg.name = <sG > AND

n.geom.st_intersects(VALIDS(t)) AND

nnext.geom.st_intersects(VALIDS(tnext))

AND NOT EXISTS (SELECT node.id FROM node

WHERE node.granularity = sg.id AND

evaluate(<sr>,n.geom ,node.geom) AND

evaluate(<sr>,node.geom ,nnext.geom))

where evaluate(r,g1,g2) is a function we defined for evaluating the spa-
tial relationship r between geometries g1 and g2 while st_intersects is the
SQL/MM function testing whether two geometries intersect each other.

It is clear that SQL queries equivalent to ST4SQL ones are more complex,
less readable, and they contain, in some cases, subqueries. Thus, computational
complexity and performance issues arise. In order to keep query evaluation time
reasonable, we need to take into account these problems and apply query opti-
mization techniques and indexing structures when we will completely implement
our language.

6 Conclusions

In this paper, we proposed a new query language, called ST4SQL, for dealing
with temporal, spatial, and spatio-temporal dimensions qualified with granu-
larities. ST4SQL provides support for valid time, transaction time, availability
time, event time, and valid space. Moreover, it defines spatio-temporal dimen-
sions as a combination of temporal and spatial dimensions. ST4SQL introduces
four temporal and spatial semantics that, combined, define spatio-temporal se-
mantics. Semantics add a specific meaning to queries and allow the user to
specify how the system has to (automatically) manage dimensions for the query
evaluation. Moreover, ST4SQL allows the user to group data with respect to
their spatio-temporal components. In ST4SQL all proposed constructs may use
granularities for qualifying and querying spatio-temporal data. We introduced
the syntax of ST4SQL and we exemplified it with several queries on a real psy-
chiatric database. All ST4SQL queries can be translated in equivalent SQL
queries, thus the semantics of ST4SQL can be provided with respect to the SQL
one.

19

As for the ongoing work, we want to explore issues related to the spatio-
temporal querying (e.g., spatio-temporal index structures) in order to extend
ST4SQL and optimize the translation of ST4SQL toward SQL and the evaluation
of obtained spatio-temporal queries.

References

[1] F. Amaddeo and M. Tansella. Information systems for mental health. Epi-
demiologia e psichiatria sociale, 18:1–4, 2009.

[2] A. P. Association and A. P. A. T. F. on DSM-IV. Diagnostic and statistical
manual of mental disorders: DSM-IV-TR. Amer Psychiatric Pub Inc, 2000.

[3] A. Belussi, C. Combi, and G. Pozzani. Formal and conceptual modeling of
spatio-temporal granularities. In Proceedings of the International Database
Engineering and Applications Symposium, IDEAS 2009, pages 275–283,
Cetraro, Calabria, Italy, Sept. 2009. ACM.

[4] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, and X. S. Wang.
A glossary of time granularity concepts. LNCS, 1399:406–413, 1998.

[5] E. Camossi, M. Bertolotto, E. Bertino, and G. Guerrini. A multigranular
spatiotemporal data model. In GIS-03, pages 94–101. ACM Press, Nov.
7–8 2003.

[6] C. X. Chen and C. Zaniolo. SQLST : A spatio-temporal data model and
query language. In ER, pages 96–111, 2000.

[7] C. Combi, A. Montanari, and G. Pozzi. The T4SQL temporal query lan-
guage. In Proceedings of the Sixteenth ACM Conference on Information
and Knowledge Management, CIKM 2007, pages 193–202, Lisbon, Portu-
gal, 6-10 2007. ACM.

[8] M. Erwig and M. Schneider. Developments in spatio-temporal query lan-
guages. In DEXA Workshop, pages 441–449, 1999.

[9] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos,
M. Schneider, and M. Vazirgiannis. A foundation for representing and
querying moving objects. ACM T. Database Syst., 25(1):1–42, 2000.

[10] IBM. DB2. URL: http://www.ibm.com/software/data/db2/.

[11] International Organization for Standardization. ISO/IEC 9075-14:2008 In-
formation technology - Database languages - SQL - Part 14: XML-Related
Specifications (SQL/XML). URL: http://www.iso.org.

[12] International Organization for Standardization. ISO/IEC 13249-3:2006:
Information technology — Database languages — SQL Multimedia and Ap-
plication Packages — Part 3: Spatial. 2006.

[13] C. S. Jensen, C. E. Dyreson, M. H. Böhlen, and et al. The consensus
glossary of temporal database concepts - february 1998 version. In Temporal
Databases, Dagstuhl, pages 367–405, 1998.

20

[14] V. Khatri, S. Ram, R. T. Snodgrass, and G. M. O’Brien. Supporting user-
defined granularities in a spatiotemporal conceptual model. Ann. Math.
Artif. Intell, 36(1-2), 2002.

[15] M. Koubarakis, T. K. Sellis, A. U. Frank, S. Grumbach, R. H. Güting,
C. S. Jensen, N. A. Lorentzos, Y. Manolopoulos, E. Nardelli, B. Pernici,
H.-J. Schek, M. Scholl, B. Theodoulidis, and N. Tryfona, editors. Spatio-
Temporal Databases: The CHOROCHRONOS Approach, volume 2520 of
Lecture Notes in Computer Science. Springer, 2003.

[16] Oracle Corporation. Oracle database. URL: http://www.oracle.com.

[17] N. L. Sarda. Hsql: A historical query language. In Temporal Databases,
pages 110–140. 1993.

[18] A. P. Sistla and O. Wolfson. Temporal triggers in active databases. IEEE
Trans. Knowl. Data Eng., 7(3):471–486, 1995.

[19] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and query-
ing moving objects. In Proceedings of the Thirteenth International Con-
ference on Data Engineering, April 7-11, 1997 Birmingham U.K, pages
422–432. IEEE Computer Society, 1997.

[20] R. T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer,
1995.

[21] J. R. R. Viqueira and N. A. Lorentzos. SQL extension for spatio-temporal
data. VLDB J., 16(2):179–200, 2007.

[22] M. F. Worboys. Imprecision in finite resolution spatial data. GeoInformat-
ica, 2(3):257–279, 1998.

[23] World Health Organization (WHO). International classification of diseases
(ICD). URL: http://www.who.int/classifications/icd/en/.

21

University of Verona
Department of Computer Science
Strada Le Grazie, 15
I-37134 Verona
Italy

http://www.di.univr.it

	Introduction
	Related work
	A data model supporting granularities
	A motivating clinical database
	The ST4SQL query language
	The clause SEMANTICS
	ATEMPORAL temporal semantics
	SEQUENCED temporal semantics
	CURRENT temporal semantics
	NEXT temporal semantics
	SPACELESS spatial semantics
	SEQUENCED spatial semantics
	CURRENT spatial semantics
	NEXT spatial semantics
	Spatio-temporal semantics

	The clause SELECT
	The clauses WHERE, WHEN, and WHEREABOUTS
	The clause GROUP BY
	On the semantics of ST4SQL

	Conclusions

