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Abstract

The transect method has been widely used to monitor habitat conservation status and has
been recently recommended as the best tool to monitor steep ecological gradients, such
as those in coastal systems. Despite that, the effectiveness of the transect approach can be
limited when considering the sampling effort in terms of time needed for sampling. Our
work aimed at evaluating the efficacy of the transect approach in a Mediterranean coastal
system. Specifically we aimed at evaluating the sampling effort versus the completeness
of datasets obtained by performing belt transects in different ways specifically designed to
progressively reduce the sampling effort: (i) sampling plots adjacently (“adjacent-plot tran-
sect”); (ii) sampling plots alternately (‘“‘alternate-plot transect”); (iii) sampling one plot at
each plant community along the vegetation zonation (‘“zonation-plot transect””). We evalu-
ated method efficiency in terms of number and type of habitats identified, spatial extent,
species richness and composition, through multivariate analyses, null models and rarefac-
tion curves. The sampling effort was measured in terms of time needed for sampling. The
zonation-plot transect had the lowest sampling effort, but provided only an approximation
of the state of the dunal communities. The alternate-plot transect showed the best trade-off
between the sampling effort and the completeness of information obtained, and may be
considered as a efficient option in very wide coastal systems. Our research provides guide-
lines that can be used in other coastal systems to choose the most cost-effective monitoring
method thereby maximising the efficient use of monitoring resources.
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Introduction

The protection of species and habitats is an important challenge for biodiversity conserva-
tion. At European level, under Community law (Habitat Directive 92/43/EEC), Member
States are required to provide a precise analysis of the conservation status of species and
habitat types listed in the Habitat Directive and a regular monitoring and assessment of
their trends (Evans and Arvela 2011).

Monitoring consists of regular field-based measurements of key indicators (e.g. popula-
tion status and dynamics, species richness and composition), which are assumed to reliably
convey the conservation status and trends of species and habitats (Lindenmayer and Likens
2010). Consistent estimate of a system state as well as robust projections of future trends
depend on reliable science-based monitoring programs (Henle et al. 2013) and on the qual-
ity of input data (Meyer et al. 2016; Hughes et al. 2017). In particular, long term moni-
toring and detailed chronosequences better inform habitat conservation status and trends
(Del Vecchio et al. 2015; Geri et al. 2016; Sperandii et al. 2018). On the other hand, since
such detailed data usually require demanding and expensive surveys, monitoring is often
criticized as being costly, wasteful, and unscientific (Lovett et al. 2007; Conn et al. 2016).
To find a balance between the reliability of the monitoring program and its cost, efficient
monitoring programs have to be based on a trade-off between the quality of data and the
sampling effort, in terms of both costs and time (McDonald-Madden et al. 2010).

In environments such as river and lake edges, salt marshes and sand dunes, character-
ized by steep ecological gradients, the transect approach is considered as the most robust
and cost-effective method for habitat monitoring (Stanisci et al. 2014; Prisco et al. 2016;
Almeida et al. 2017). The transect method has been widely used to monitor the habitat con-
servation status (e.g. Ciccarelli 2014; Prisco et al. 2016; Silc et al. 2016) in coastal dune
systems, where factors such as wind intensity, nutrient availability and soil moisture change
sharply from the coastline inlands (Maun 2009), thereby defining a complex mosaic of
habitat types. Furthermore, the method has been recently recommended as the best tool to
monitor the environmental and biotic heterogeneity in complex vegetation mosaics (Ange-
lini et al. 2016; Gigante et al. 2016a).

For habitat monitoring, the most frequently used transects are line intercept transects,
point intercept transects and, most commonly, belt transects (Hill et al. 2005). The belt
transect approach consists in laying contiguous sampling plots (quadrats) of any size along
the environmental gradient direction (Kent and Coker 1992). At each quadrat, plants are
then identified and their abundance (normally percent cover) estimated. This method
allows to explore the entire range of coastal plant communities (from the drift line to the
fixed dune), to verify the distribution range of habitat types and the integrity of the coastal
sequence, and to analyze the attributes (e.g. species richness and composition, spatial
extent) of each community. Performed regularly (e.g. yearly), and compared over time, belt
transects also guarantee an accurate identification of habitat trends (Angelini et al. 2016;
Gigante et al. 2016a), both in spatial distribution and quality, the two main criteria used for
assessing habitats conservation status (Keith et al. 2013; Bland et al. 2016; Gigante et al.
2016b; Janssen et al. 2016).

The belt transect approach is highly recommended for monitoring coastal dune habi-
tat types, but its effectiveness is questionable when considering both the costs and the
time needed for sampling. The environmental characteristics of the study area may
require an increase in the sampling effort to obtain the same level of monitoring accuracy.
These include the topography of the areas being sampled (e.g. size and complexity), the
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heterogeneity (i.e. amount of change) of the vegetation mosaic and the type of bounda-
ries between vegetation types (distinct or not distinct). Plant communities of coastal sys-
tems are in fact closely related to dune morphologies which govern the abiotic features
(e.g. water supply, grain size and salinity), thereby shaping various small-scale gradients
and patterns along the dune system (Fenu et al. 2012; Bazzichetto et al. 2016; Silan et al.
2017). Thus, the complexity of the vegetation pattern and the amount of change along the
sea-inland gradient increase with increasing dune morphology complexity. The complexity
of the vegetation mosaic coupled with the width of the system (i.e. the number of quadrats
to be surveyed) affect the time needed to perform the transect. Arguably, the time effi-
ciency will be further dependent on quadrat size. For example, cover estimates are more
difficult and time-consuming in large quadrats than in small quadrats and where plants are
small and intermingled. Finally, the availability of field operators and their expertise in
plant identification may dramatically influence the time needed to perform the assessment.

Since coastal systems are among the most threatened environments worldwide (Brown
and McLachlan 2002; Del Vecchio et al. 2018; Gigante et al. 2018; IvajnSic et al. 2018), it
is critically important to find suitable monitoring methods which guarantee accurate data
with a reasonable sampling effort. Several options can contribute to limit the sampling
effort. Some authors analyzed the effect of changing plot number and/or plot size on the
description of a community or a habitat type (Jonsson and Moen 1998; Dengler 2009).
Other researchers suggested monitoring only some particular groups of species (“indicator
species”) considered as good descriptors of habitat identity and quality (Martinez Pastur
et al. 2016; Del Vecchio et al. 2016). Finally, an alternative approach to reduce the sam-
pling effort involves the preferential (i.e. by expert judgment) selection of homogeneous
stands considered as representative of a particular habitat type, and the survey of a quadrat
of appropriate size at each new vegetation type (Hill et al. 2005).

In the light of the several sampling options proposed so far, the aim of this work is
to compare the completeness of datasets obtained by three different types of belt transect
specifically designed to progressively reduce the sampling effort: (i) laying plots adja-
cently; consisting of frame quadrats laid contiguously along the beach-inland direction, this
approach can be time-consuming if all the species are to be recorded and many quadrats
are used, but provides very detailed data on vegetation; (ii) laying plots alternately, thereby
halving the number of plots as well as the time needed for sampling; and (iii) laying plots
according to a preferential survey design, i.e. recording a quadrat whenever a new plant
community is found along the vegetation zonation, thereby strongly reducing both the
number of plots per transect and the time needed to perform the sampling. Datasets com-
pleteness was evaluated in terms of number and type of habitats identified, spatial extent,
species richness and composition, while the sampling effort was measured in terms of time
needed for sampling.

Methods
Study area
The comparison of the effectiveness of monitoring methods was carried out along the
North Adriatic coast (Italy), which represents the north-eastern part of the Mediterra-

nean Basin. We selected one of the best preserved coastal dune sector, which is included
in the Site of Community Importance 1T3270017 “Delta del Po: tratto terminale e delta
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veneto” and in the Regional Park of the Po Delta, located in the southernmost part of the
Venice lagoon. The coastal system is wider than 200 m. Dunes are well developed, fore-
dunes elevation ranges between 2 and 5.8 m, while inland dune altitude reaches about 6 m
(Simeoni et al. 2010). The vegetation sequence is complete (Caniglia 2007), ranging from
pioneer annual communities on the beach to woody vegetation on fixed dunes (Table 1),
thereby resembling the typical coastal zonation of Mediterranean coasts. Plant communi-
ties nomenclature in Table 1 follows specific literature (Buffa et al. 2007; Caniglia 2007;
Gamper et al. 2008; Biondi et al. 2012; Sburlino et al. 2013).

Coastal system sampling

Coastal system sampling was performed in 2 consecutive days at the end of May (2017),
which corresponds to the flowering period of the majority of coastal species in the North
Adriatic region. Vegetation sampling was performed along two belt transects, laid perpen-
dicularly to the coastline, walking twice along the same line. The transect location was
selected in order to possibly include all the coastal communities along the vegetation zona-
tion. Plant species together with their percentage cover were recorded in fixed-size plots,
using the Braun—Blanquet scale (Westhoff and van der Maarel 1973; Dengler et al. 2008).
We started from the edge of the Pine wood (at the beginning of the semi-fixed dune) and
proceeded toward the seashore, until the vegetation of the drift line. In the first transect,
“adjacent-plot transect”, we sampled the vegetation in adjacent plots of 1 mXx 1 m. The first
plot of the transect was marked with poles and the beginning/end were georeferenced using
a GPS unit. Afterwards, starting from the same point and following the same line, we sam-
pled the vegetation in fewer larger plots, of 2 m X2 m, a size considered as the most appro-
priate for describing coastal dune habitats (e.g. Acosta et al., 2007; Jucker et al. 2013). In
this case, plots were located according to a preferential survey design, i.e. whenever a new
plant community was found walking toward the coastline, following the vegetation zona-
tion, “zonation-plot transect”. In this case, the distance between the plots varied according
to the vegetation changes. Thereafter, from the “adjacent-plot transect” we selected only
the odd-numbered plots, to obtain an alternate sampling of the vegetation, “alternate-plot
transect”, with plots having a distance of 1 m from each others. Figure 1 represents the
design of the three transect types.

Data analyses

Vegetation data were digitalized in Turboveg (Hennekens 1996) and converted from the
Braun-Blanquet scale into percentages of the cover range, according to Hennekens (1996).
From the adjacent-plot transect we obtained a matrix of 127 plots X47 species, from the
alternate-plot transect a matrix of 64 plots X47 species, while from the zonation-plot tran-
sect a matrix of 8 plots X 39 species. Species nomenclature follows Conti et al. (2005).

To verify the consistency of number and type of identified plant communities across
the three types of transect we adopted the statistical approach normally used in vegeta-
tion science (e.g. Peet and Roberts 2013). To classify plots according to species com-
position, each species X plot matrix was analyzed through Detrended Correspondence
Analysis (DCA, on species cover data; Pc-ord 5.1; McCune and Mefford 2006) and
Cluster analysis (using average-linkage method and Bray—Curtis distance, on species
cover data). The groups identified by multivariate analyses were then assigned to Natura
2000 habitat types (Annex I of the Habitat Directive 92/43/EEC), according to their
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Fig. 1 Design of the three belt transect types used in the study. The picture is not to scale. 1 = Adjacent-plot
transect; 2 = Alternate-plot transect; 3 =Zonation-plot transect

diagnostic and dominant species, as listed in Biondi et al. (2009), European Commis-
sion (2013) and specific literature (Buffa et al. 2007; Gamper et al. 2008; Sburlino et al.
2008; Prisco et al. 2012; Sburlino et al. 2013).

To compare the accuracy and completeness of each monitoring method, we selected
a list of variables to be measured based on the criteria established for assessing the
risk of habitat collapse, that is a transformation of identity, a loss of defining features,
and a replacement by a different ecosystem type (Keith et al. 2013), and the degree
of endangerment (Janssen et al. 2016). The procedure involves the assessment of spa-
tial symptoms (i.e. declining spatial distribution and/or spatial extent, and restricted
spatial distribution) as well as functional symptoms (decline in quality due to either
physical, abiotic degradation or the disruption of biotic interactions). Accordingly, we
selected and measured a set of variables which are descriptors of habitat distribution
range, spatial extent and quality. For each transect, we determined the number of habitat
types recorded and the number of plots pertaining to each habitat type. Being performed
along the sea-inland gradient, the transect method allows to evaluate the state of the
entire dune system (i.e. the completeness of the typical plant communities zonation),
to detect the presence of a habitat in a given location, thereby contributing to define its
distribution range, and to identify the spatial extent of habitats. As descriptors of habitat
quality, we calculated the following structural attributes: (i) mean total species cover per
plot (%), (ii) mean vascular species cover per plot (%), (iii) mean moss layer cover per
plot (%), (iv) mean species richness per plot, and (v) the cumulative number of species
recorded in each habitat.

To evaluate the “indicator species” approach, for each habitat we calculated the number
of focal, generalist and alien species. Focal species, i.e. species that characterize the habitat
type, were identified according to the aforementioned literature, used for the identification
of habitat types. Alien species were identified according to Celesti-Grapow et al. (2010),
while generalist species, i.e. all native opportunistic species not specific to dune environ-
ments, were identified on the basis of specific vegetation studies on coastal dunes (Del
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Vecchio et al. 2013, 2015, 2016). Finally, all the native species that were descriptors of
dune habitats other than those identified, were classified as “other species”.

Including all possible records that can be sampled in transects, we assumed the adja-
cent-plot transect as the most exhaustive sampling among the three chosen. Accordingly,
results obtained through this method were assumed as a reference state of habitat types as
well as of the coastal sequence, and used to evaluate the accuracy and completeness of the
dataset provided by the alternate- and zonation-plot transects.

When possible (i.e. number of cases higher than 2), results were statistically compared
by performing null models (Monte Carlo ANOVA). Within each habitat, we used the type
of transect as grouping categorical variable, and the community attributes as dependent
variables; the observed F index (F,,,) was contrasted with those simulated by 1000 random
permutations (Fexp; EcoSim 7.0; Gotelli and Entsminger 2001). For each habitat, the cumu-
lative number of species as well as the number of indicator species were compared through
rarefaction curves (Estimates 9; Colwell 2013).

For each transect we estimated the sampling effort in terms of time needed to perform
the transect, considering that the team of field operators was composed of two expert
researchers (one senior and one junior researcher) and one beginner.

Results

The number and type of habitats identified were consistent among the three transects
(Table 2). For each transect, the multivariate analysis highlighted the same number of
groups of plots and the same plant communities, arranged along the environmental gradi-
ent from the edge of the Pine wood to the drift line (Table 2; Fig. 2; technical results of
multivariate analyses are provided as supplementary data in Online Resource 1). Accord-
ing to diagnostic and dominant species we identified five habitat types of EU Community
interest (Table 2; Fig. 2). Two communities (dominated by Spartina versicolor and Heli-
chrysum italicum respectively) were not recognized as Natura 2000 habitat types (Table 2).
Species composition and cover for each community in each type of transect are summa-
rized in Online Resource 2.

Based on the adjacent-plot transect, all habitats normally occupied a wide extent, and
were represented by several plots, with a maximum of 28 for the habitat 2230, with the
exception of the habitat 1210, typical of the drift line, which had a limited extent and was
recorded only in 2 plots (Table 2).

All types of transects detected the presence of habitat types in the study site, thereby
contributing to define their distribution range. The identification of the spatial extent
of each habitat type was explicit and unambiguous only for the adjacent-plot transect
(Table 2), while the alternate-plot transect allowed only an approximation of habitat spatial
extension (at least+1 m at each border). The zonation-plot transect did not provide any
spatial information and only allowed to detect the presence of a given habitat type.

The adjacent- and alternate-plot transects did not show significant differences in the
structural attributes taken into account (total percentage cover per plot, vascular species
cover per plot, moss layer cover per plot, species richness per plot), with the exception of
the habitat 1210 (Table 2; Monte Carlo F test: Pg,p» pexp) > 0-05 in any case). Conversely,
the dataset provided by the zonation-plot transect showed differences in the absolute values
of the majority of structural attributes, often overestimating the mean species richness and
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Fig.2 Comparison of DCA scatter diagrams and cluster analysis dendrograms for the three types of tran-
sects

cover per plot, and underestimating the cover of the moss layer, although it was not possi-
ble to test the significance (Table 2; Online Resource 2).

Rarefaction curves showed that the cumulative number of species as well as the number
of the indicator species detected by the adjacent- and alternate-plot transects were com-
parable, except for the habitat 1210 (Table 2; Fig. 3; rarefaction curves of the indicator
species are provided in Online Resource 3). On the contrary, the zonation-plot transect
detected a lower cumulative number of species for almost all of the habitat types. While the
number of focal species was comparable, the number of the other indicator species groups
was generally understimated (Table 2; Online Resource 2 and 3).

The sampling effort, measured as the time spent to perform the transect, greatly differed
among the three types of transects. The adjacent-plot transect required the longest time to
be completed, corresponding to 12 h, i.e. 2 working days, while the zonation-plot transect
was performed in 3 h. For the alternate plot transect we estimated 6—8 h (Table 3).
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Fig. 3 Rarefaction curves of the cumulative number of species for each habitat, in the adjacent- and alter-
nate-plot transect. Bars represent the 95% confidence interval. The zonation-plot transect, as well as the
habitat 1210 are not shown

The sampling effort, measured in terms of time needed for sampling, progressively
decreased from the adjacent-plot transect to the zonation-plot transect. Based on the
trade-off between dataset completeness and time spent for surveying, the alternate-plot
transect resulted the most effective sampling method. Indeed, despite a halved sampling
effort, the method allowed the detection of habitat types presence, and provided com-
plete information on species composition and the structural attributes considered, being
the only weak point an imprecise detection of habitats spatial extent.
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Discussion

The three methods were equally good in detecting the sequence of habitat types pre-
sent along the sea-inland ecological gradient. This represents a key feature to assess the
overall conservation status of coastal systems, since the lack of one habitat typically
indicates disturbance, degradation, and habitat transformation or decline (Acosta et al.
2007; Buffa et al. 2007). Furthermore, the failure in detecting the presence of a given
habitat type could lead to an incorrect definition of its distribution area, with conse-
quences in the process of risk assessment, and possibly to overlook local extinctions
(Janssen et al. 2016). However, habitat monitoring should also take into account the area
shrinkage or decline and the negative effects of increasing habitat fragmentation (Keith
et al. 2013). In this regard, only the adjacent-plot transect assured reliable estimates,
allowing to precisely define the boundaries and the spatial extent of each habitat type
in a given location, and to detect habitat regression or expansion when compared over
time. On the contrary, the alternate-plot method provided an imperfect detection that
would not be precisely comparable over time and might consistently produce biased val-
ues of habitat regression or expansion, while the zonation-plot transect did not involve
any spatial measurement and could only give information on the presence/absence of a
habitat type.

The three methods also differed in the description of each habitat type. Being com-
prehensive of all possible records that can be sampled in transects, the adjacent-plot
transect provided the most complete dataset, i.e. the most precise representation of habi-
tat types. The only remarkable drawback it evidenced concerned the time needed to per-
form the sampling, which largely drive the cost of a survey (Hill et al. 2005). The time
needed to survey depends on several variables such as the morphological complexity of
the area, its accessibility, the complexity of the vegetation mosaic and the skill of the
field operator. However, in very complex and wide dune systems, where the most inland
habitats can be found at a distance of 150 m or more from the coastline as in our case
study, the application of traditional adjacent-plot transects can be limiting mostly due to
the high number of quadrats to be recorded. When the vegetation sampling, performed
by two experts and one beginner researcher exceeds 8 h, the monitoring may become
unsustainable. It is also worth considering the potential reduction in data quality associ-
ated with surveyor physical fatigue.

Despite the different number of plots surveyed and the different amount of time allo-
cated to surveying, the alternate- and adjacent-plot transect provided comparable values
of the structural attributes as well as of the indicator species detected, suggesting that the
sample size (i.e. the number of plots), and the sampling effort, might be reduced without
significantly losing information. Our results indicated that in well preserved coastal sys-
tems, where habitat types can extend for several meters, the reduction in the number of
plots did not affect the representation of habitats, maintaining comparable values of mean
species richness, cumulative number of species as well as the number of the indicator spe-
cies detected. Our findings are consistent with those of Mikulyuk et al. (2010), who stated
that a higher sampling effort does not always result in an increase in data accuracy and
completeness. Indeed, different results emerged only in the comparison of habitats with a
narrow extent, represented by a low number of plots (e.g. the habitat 1210 which belt was
only 2 m wide). In this case, reducing an already low number of plots potentially affects
the outcome. Thus, when habitat types have a narrow extent, either naturally or following
disturbance events, the alternate-plot transect should be avoided.
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The zonation-plot transect was the most effective in reducing the sampling time.
However, the presence of at least one expert field operator, able to recognize boundaries
between different plant communities in the field and to lay the plot in the point that best
represented the characteristics of the community was compulsory to perform the tran-
sect. Thus, while for the adjacent- and alternate-plot transects surveyors should be com-
petent field botanists, able to identify the species in the field, performing a zonation-plot
transect requires comprehensive plant identification skills, comprehensive knowledge of
habitats and the ability to recognize habitat boundaries. The involvement of such field
operators may represent a limit, since it can be expensive thus increasing the costs of
monitoring (Carpaneto et al. 2017). Moreover, the extreme reduction in the number of
plots per habitat type resulted in a loss of data accuracy and completeness. The rela-
tionship between the number of replicates and the completeness of information is well-
known in data analysis (e.g. Rocchini et al. 2017), and this pattern clearly emerged from
our results. Although placed in the most representative location of the community, one
single plot proved to be inadequate to thoroughly describe the features of the habitat
types (e.g. species richness and cover, cumulative number of species). Furthermore, the
enlargement of the plot size did not assure data completeness and was not enough to
retrieve information lost due to the reduced number of plots.

The zonation-plot transect also was less precise in detecting the indicator species
groups. Arguably, this is mainly due to the subjective plot selection by the field opera-
tor: choosing the location that best represents the plant community, undesired groups of
species, such as generalists or aliens, have less chance to be included in the survey, due
to the tendency to avoid disturbed communities (Swacha et al. 2017). In monitoring pro-
grams requiring minimal error and maximum accuracy, all the groups of species should
be reliably detected, because habitat degradation, or the shifting toward different habi-
tats due to the increase of other species, can be detected by a decline in focal species,
with generalist, alien and other species remaining constant, or vice versa, by an increase
in these groups of species, with focal species remaining constant (Biondi et al. 2012;
Del Vecchio et al. 2016; Sperandii et al. 2018). This represents a major shortcoming
of this method when applied to monitoring, unless plots represent permanent sampling
locations and sufficient samples are taken to maximize the representativeness.

In summary, although the zonation-plot transect had the lowest sampling effort, it
provided only an approximation of the state of the dunal communities, and the accu-
racy was low. The alternate-plot transect showed the best trade-off between the sam-
pling effort, in terms of time spent for surveying, and the completeness of information
obtained.

Selecting the most appropriate method is an important step in any monitoring plan. To
maximise the efficient use of monitoring resources the most cost-effective method appro-
priate to the monitoring objective should be used. The results emerged from our study can
support the selection of the best sampling procedure according to monitoring objective,
field conditions, available resources and personnel, and can be applied to other coastal
systems.

On the basis of our research, we suggest the following best practices to set monitor-
ing programs: (1) use the adjacent-plot transect, whenever it is possible; however, in case
of wide and complex coastal system where the field survey might exceed 8 h, the imple-
mentation of alternative sampling methods might be taken into consideration; (2) use the
alternate-plot transect as a first choice alternative to the adjacent-plot transect, being aware
of its weakness in case of habitats with limited spatial extent; (3) if the sampling effort has
to be extremely reduced (e.g. due to resource constrains), the zonation-plot transect can be
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used as well, with the caution of involving at least one expert field operator, and possibly
performing more than one plot for each plant community.
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