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Abstract: Soil management in vineyard inter-rows has a great influence on 

soil hydraulic conductivity and bulk density, and, consequently, on 

runoff and soil erosion processes at the field scale. The maintenance of 

bare soil in vineyard inter-rows with tillage, as well as the tractor 

traffic, are known to expose the soil to compaction, reduction of soil 

water holding capacity and increase of runoff and erosion formation. The 

use of grass cover is one of the most common and effective practices in 

order to reduce such threats. It is therefore important to relate 

rainfall characteristics, soil properties and response in terms of runoff 

and soil erosion, from yearly to seasonal and to single event temporal 

scales.  

The objective of this work is to quantify the temporal variability of the 

effects of two different kind of inter-row management on soil 

hydrological properties, runoff and erosion in vineyards. For this reason 

two vineyard field-scale plots in the Alto Monferrato vine-growing area 

(Piedmont, NW Italy) were monitored in two years. The inter-rows were 

managed with conventional tillage (CT) and grass cover (GC), 

respectively. Fifteen series of infiltration tests were carried out 

during a 2-year period of observation (October 2012 to November 2014). In 

order to take into account the effect of tractors traffic, the tests were 

done on the track, and outside the track. Furthermore, a dataset of 29 

rainfall-runoff events covering a wide range of topsoil characteristics 

was collected in the two plots, along with soil water content and runoff 

discharge monitoring, and determination of sediment yield in case of 

erosive events. An optical disdrometer installed in the plots provided 

also 1-min rainfall intensity data. In summer, just one month after 

tillage, CT soil showed very low hydraulic conductivity, so storms were 

able to cause Hortonian runoff and soil losses up to 5.7 Mg ha-1. In 

autumn and winter very high saturation-excess runoff was observed in CT, 

that reached 83% of the precipitation. Runoff in the grass cover plot was 

mainly due to saturation of the topsoil, and the annual reduction of 



runoff in the GC plot was about 63%. Soil erosion up to 1.2 Mg ha-1 in a 

single event was observed in the GC vineyard in winter. In each year of 

observation, most of the erosion occurred during a single event, while 

the total annual erosion was up to 9 times higher in the CT treatment 

than in the GC. 
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Dear editorial board of Soil and Tillage Research, 

Please find enclosed the new revised version of the manuscript entitled "Temporal and 

soil management effects on hydrological properties, runoff and erosion at field scale in a 

hillslope vineyard, North-West Italy”, to be submitted as a research paper to Soil and 

Tillage Research for consideration of publication. We followed indications of editor in 

preparing this new version of the manuscript. All co-authors have seen and agree with the 

contents of the manuscript. We certify that the submission is original work and is not 

under review at any other publication. 

In this manuscript, we reported the results of a research evaluating the temporal and soil 

management effects on soil hydrological properties in two vineyard field-scale plots 

(Piedmont, North-West Italy), which inter-rows were managed with grass cover and 

conventional tilled, respectively. Furthermore, the study was addressed to identify 

correlations between rainfall characteristics, soil properties and field-scale response in 

terms of runoff and soil erosion, at event temporal scale. During a 2-years period of 

observation, several series of infiltration tests were carried out, and a dataset of 29 
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rainfall-runoff events covering a wide range of topsoil characteristics was collected in the 

two plots, along with soil water content monitoring, measurements and sampling of runoff 

in order to determine the sediment yield.   

The results highlighted the positive effect of grass cover in favoring water infiltration, 

reducing runoff and soil erosion throughout the year, compared with the conventional 

tillage management, with greatest effectiveness in summer. The annual reduction was 

greater than 63% and up to 90%, respectively for runoff and soil erosion. Only saturation-

excess runoff was observed in the grassed vineyard. The highest runoff rates and soil 

losses were measured in the vineyard managed with conventional tillage even some 

weeks after the execution of tillage. In summer and early autumn, the tilled soil showed 

the lowest hydraulic conductivity, so summer storm were able to generate hortonian runoff 

and high soil losses, up to 5.7 Mg ha
-1

 soil erosion for a single event in the period of 

observation. In autumn and winter, the wettest seasons, despite the autumn tillage, very 

high saturation-excess runoff was observed, so the winter runoff reached 83% of the 

precipitation.    

We believe that our research could be of interest to the readers of Soil and Tillage 

Research and we hope that the editorial board will agree on the interest of this paper. 

Thank you for your consideration. 

Sincerely yours, 

Marcella Biddoccu 

on behalf of the authors. 

Corresponding author: Marcella Biddoccu, Institute for Agricultural and Earthmoving 

Machines (IMAMOTER), National Research Council, 10135 Torino, Strada delle Cacce, 

73, Italy 

m.biddoccu@ima.to.cnr.it, Ph: +390113977723 
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Dear editor, 

The authors thanks for your comments and suggestion to further improve the manuscript. We 

reviewed the manuscript taking in account them.  

The conclusion section was revised and shortened to be more  

Apart from the editorial comments, which were solved, the answers to the specific comments are 

described below. 

Finally, the text was revised in English by a native speaker.  

 

 

Reviewers' comments: 

 

Line 4 should read: "… are known to expose …". 

 

L. 6 should read: "practices". 

 

L. 9: spelling of "scales". 

 

L. 9: Somewhere here, the objective of this study should be provided before you tell what was done 

in the study. 

Answer: the objective is now provided in L10-11 

 

L. 16: spelling of "in".   

 

L. 17 should read: "… just one month after tillage …". 

 

L. 18: spelling of "Hortonian" as this is based on a name. 

 

L. 27 should read: "… one of the land uses …". 

 

L. 34-40: This sentence is grammatically incomplete. 

 

L. 47 should read: "… and other land uses …". 

 

L. 58 should read: "… at yearly or multi-annual scales …". 

 

L. 59: Spelling of "Gómez". 

 

L. 63 should read: "… runoff and infiltration at the field-scale …". 

 

L. 71 should read: "… objectives …". 

 

L. 92 should read: "The soil has been managed …". 

 

L. 96 should read: "… on the soil surface." 

 

L. 100: spelling of "Glyphosate". 

 

L. 121 should read: "… recorded at 10-min intervals …". 
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L 123 should read: "… data have been obtained from …". 

 

L. 132 should read: "To obtain the sediment yield from each erosive event …". 

 

L. 135-136: How were the TM sensors calibrated? 

Answer: The TM sensors were gravimetrically calibrated (L136) 

 

L. 138 should read: "… in the 2-year period of observations, …". 

 

L. 140 should read: "… on the same date …". 

 

L. 149 should read: "… that slope does not affect the measurements significantly." 

 

L. 161 should read: "Rainfall events occurring after August 2013 for which precipitation was 

recorded at 10-min intervals, were …". 

 

L. 166 should read: "… were computed …". 

 

L. 170-171: "Soil characteristics (Kfs, SWCs, BD) for NT and T positions, were associated at each 

event." 

I do not understand this statement. What do you mean by "associated". Do not erase this statement, 

clarify it.  

Answer: Each rainfall event was analyzed considering its characteristics and the “soil 

properties (Kfs, SWCs, BD) measured in T and NT position in the closest date (L172-173). 

 

L. 174: spelling of "Hortonian". 

 

L. 178-179:" the lower mean values between Kfs(T) and Kfs(NT) and between SWCs(T) and 

SWCs(NT) were chosen." 

This statement is not clear. What do you mean by lower mean values, and were chosen for what? 

Answer: The paragraph was modified, to clarify this point (L178-188). Each rainfall event 

was characterize by values of Kfs and SWCs measured in T and NT. The lower value between 

Kfs(T) and Kfs(NT) was chosen as reference Kfs to compare the time series of rainfall 

intensity during the event. The lower between SWCs(T) and SWCs(NT) was chosen as 

reference SWCs to compare the SWC time series, to complete the event analysis in order to 

detect runoff generation and the type of runoff. 

 

L. 181 should read: "reached" and "remained". 

 

L. 197: I can't make sense of "both in T than in NT position". Do you mean "both in T and in NT 

position"? 

Answer: it was corrected throughout the text 

 

L. 200 should read: "… for both treatments." 

 

L. 202 should read: "… some days after tillage." 

 

L. 212 sould be "cumulative" instead of "cumulated". 

 

L. 216 should read: "The 40% and 35% of annual precipitation were recorded …". 

 



L. 218 should read: "… in both plots." 

 

L. 244 should read: "… 36 mm of rain fell with the highest …". 

 

L. 246 should read: "5.6" (decimal point). 

 

L. 252-253 should read: "… with a higher determination coefficient …". 

 

L. 255 should read: "… at 7-day intervals …"> 

 

L. 264 should read: "… are displayed in Figs. 3 and 4." 

 

L. 270-271: Similar as above, I can't make sense of "both from CT than from GC". Please clarify. 

 

L. 271 should read: "… with a maximum 10-min rainfall intensity…". 

 

L. 275 should read: "… did not overcome …". 

 

L. 282 should read: "… thus runoff caused by infiltration excess …". 

 

L. 284 should read: "… shows a rainfall occurring in autumn …". 

 

L. 284 should read: "… the 10-minute rainfall intensity …". 

 

L. 288 should read: "… near the 140 …". 

 

L. 289-290: I could not grasp the sense of this sentence, but did you intend to say "Erosion detected 

in the two plots was nearly 40 times higher in CT than in GC."? 

Answer: L295-296 “Erosion was detected in the two plots, and in CT it was nearly 40 times 

higher than in GC” 

 

L. 294-205 should read: "Runoff appeared in the first hours of the event …". 

 

L. 296 should read: "Within a few hours …". 

 

L. 297: Replace "first" with "upper". 

 

L. 304: Wghat do you mean by "this kind of saturation runoff events"? Clarify. 

 

L. 307 "Hortonian". 

 

L. 308-309 should read: "… and rainfall depth from 14 to 36 mm." 

 

L. 311: "Hortonian". 

 

L. 312 should read: "Runoff occurred for 50% of the observations …". 

 

L. 317: "Hortonian". 

 

L. 319 should read: "whereas 50% of the rainfall events produced Hortonian …". 

 



L. 320 should read: "… were examined in the following." 

 

L. 323 "Hortonian". 

 

L. 324: "… runoff in CT, but no runoff in GC." 

 

L. 324: "Hortonian". 

 

L. 325 should read: "… with a depth ranging from …". 

 

L. 326 should read: "… in both plots." 

 

L. 329: "Hortonian". 

 

L. 331: "Hortonian". 

 

L. 332: "Hortonian". 
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L. 338 should read: "With a few exceptions …". 

 

L. 338-339 should read: "… so soil water saturation was reached sooner than in the T position." 

 

L. 344 should read: "vineyard." 

 

L. 346-347 should read: "The coefficients of variation …". 

 

L. 348 should read: "During most of the sampling dates …". 

 

L. 349: Replace "exclusion" with "exception". 

 

L. 357 should read: "during summer and autumn, a finding that was particularly evident …". 

 

L. 364 should read: "In 2014, the CT topsoil showed higher sand content …". 

 

L. 369-370 should read: "… could also be related to these differences …". 

 

L. 371: There is no "role" on something. I suggest to say: "Impact of soil management, soil 

properties and rainfall on runoff". 

Answer: the section title was changed (L381) 

 

L. 372 should read: "… was usually 2 to 3.6 times higher …". 

 

L. 374: should read: "… the highest runoff was observed during …". 

 

L. 375: Do you mean "… both in CT and in GC."? 

 

L. 375-376: "The highest differences in runoff between CT and GC occurred in …". 

 

L. 376 should read: "… when the grass cover was higher." 



 

L. 377 should read: "… and runoff coefficients were observed in winter …". 

 

L. 378 should read: "… when snowfall was followed by rainfall." 

 

L. 378-379 should read: "… whereas it was 28 % in GC." 

 

L. 383: replace "have" with "had". 

 

L. 385: I could not understand this statement. Instead of "which was originated" do you mean "that 

was generated"?  

Answer: it was corrected (L395) 

 

L. 387 should read: "… despite Kfs showing the highest mean values …". 

 

L. 397: Do you mean "… at 7-day intervals."? 

 

L. 400: This statement seems to be erroneous: "when the some precipitation was recorded in the 

previous 7 days". Do you mean "when the same precipitation" or "when some precipitation"? 

 Answer: it was corrected (L411)  “when some precipitation was recorded in the previous 7 

days” 

 

L. 403 should read "rainfall-runoff event analysis". 

 

L. 404 should read: "… runoff was caused by saturation of the topsoil …". 
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L. 449: I was not sure what you meant with "and then with 7-days antecedent precipitation". Did 

you mean "… and is also related with the 7-day antecedent precipitation"? 

Answer: it was corrected in “7-day antecedent precipitation” all over in the text 

 

L. 458 should read "… was observed." 

 

L. 462 should read: "… over a 5-minute period." 

 

L. 464-466: This sentence is grammatically incomplete. 
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L. 483 should read: "Due to high compaction after grape harvest, the worst conditions for 
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 Soil moisture, runoff, soil erosion were monitored in vineyard field-scale plots  

 Temporal and soil management effects on soil hydrological properties were evaluated 

 Summer storms caused hortonian runoff and high soil losses just a month after tillage 

 Highest runoff rates were observed  in late autumn and winter in tilled vineyard  

 High runoff was due to soil saturation in the wet seasons  
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Abstract 1 

Soil management in vineyard inter-rows has a great influence on soil hydraulic conductivity and 2 

bulk density, and, consequently, on runoff and soil erosion processes at the field scale. The 3 

maintenance of bare soil in vineyard inter-rows with tillage, as well as the tractor traffic, are known 4 

to expose the soil to compaction, reduction of soil water holding capacity and increase of runoff and 5 

erosion formation. The use of grass cover is one of the most common and effective practices in 6 

order to reduce such threats. It is therefore important to relate rainfall characteristics, soil properties 7 

and response in terms of runoff and soil erosion, from yearly to seasonal and to single event 8 

temporal scales.  9 

The objective of this work is to quantify the temporal variability of the effects of two different kind 10 

of inter-row management on soil hydrological properties, runoff and erosion in vineyards. For this 11 

reason two vineyard field-scale plots in the Alto Monferrato vine-growing area (Piedmont, NW 12 

Italy) were monitored in two years. The inter-rows were managed with conventional tillage (CT) 13 

and grass cover (GC), respectively. Fifteen series of infiltration tests were carried out during a 2-14 

year period of observation (October 2012 to November 2014). In order to take into account the 15 

effect of tractors traffic, the tests were done on the track, and outside the track. Furthermore, a 16 

dataset of 29 rainfall-runoff events covering a wide range of topsoil characteristics was collected in 17 

the two plots, along with soil water content and runoff discharge monitoring, and determination of 18 

sediment yield in case of erosive events. An optical disdrometer installed in the plots provided also 19 

1-min rainfall intensity data. In summer, just one month after tillage, CT soil showed very low 20 

hydraulic conductivity, so storms were able to cause Hortonian runoff and soil losses up to 5.7 Mg 21 

ha
-1

. In autumn and winter very high saturation-excess runoff was observed in CT, that reached 22 

83% of the precipitation. Runoff in the grass cover plot was mainly due to saturation of the topsoil, 23 

and the annual reduction of runoff in the GC plot was about 63%. Soil erosion up to 1.2 Mg ha
-1

 in 24 

a single event was observed in the GC vineyard in winter. In each year of observation, most of the 25 
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erosion occurred during a single event, while the total annual erosion was up to 9 times higher in 26 

the CT treatment than in the GC. 27 

1. Introduction 28 

Grapevine cultivation represents one of the land uses for which higher runoff rates and sediment 29 

losses are observed in Europe, especially in the Mediterranean area (Tropeano, 1983; Kosmas et al., 30 

1997; Cerdà and Doerr, 2007; García-Ruiz, 2010; García-Ruiz et al., 2015). Analysis of data 31 

collected throughout Europe showed that in the Mediterranean region runoff higher than 9% of 32 

annual precipitation (Maetens et al., 2012) and the highest erosion rates (17.4 Mg ha
-1

 year
-1

) are 33 

related to vineyard land use (Cerdan et al., 2010). 34 

Some typical features of the vine-growing system, such as location on hillslopes and disposition of 35 

rows along the slope, make runoff and erosion stronger (Corti et al., 2011). Furthermore, some 36 

practices usually adopted in vineyards’ installation (land levelling works and deep tillage) and 37 

vineyards’ management (maintenance of bare soil by mechanical or chemical weeding, intense 38 

tractor traffic along fixed paths) are favoring runoff, erosion and further threats as compaction, 39 

nutrient losses and reduction of soil water holding capacity (Tropeano, 1984; Ramos and Martínez-40 

Casasnovas, 2004; Ferrero et al., 2005; Ramos and Martínez-Casasnovas, 2007; Arnáez et al., 41 

2007). The effects of the inter-rows soil management on runoff and soil erosion in vineyards of 42 

southern Europe was evaluated in several studies under natural rainfall, at different spatial scales 43 

(from plot to catchment) and from event to multi-year temporal scales (Tropeano, 1983; Kosmas et 44 

al., 1997; Arnaez et al., 2007; Brenot et al., 2008; Casalí et a., 2008; Raclot et al., 2009; Ruiz-45 

Colmenero et al., 2011; Novara et al., 2011; Corti et al., 2011; Biddoccu et al., 2016). The use of 46 

grass cover in the inter-rows is one of the most common and effective soil management practices 47 

adopted in order to reduce runoff and soil erosion in vineyards (Blavet et al., 2009; Novara et al., 48 

2011; Ruiz-Colmenero et al., 2011; Prosdocimi et al., 2016) and other land uses which are 49 

especially subjected to erosion as olive groves (Gómez et al., 2009). Under the indication of the 50 
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CAP agro-environmental requirements, some Rural Development Programmes (i.e., Regione 51 

Piemonte, NW-Italy) introduced during the period 2007-2013 specific subsidies to encourage the 52 

adoption of grass cover in vineyards and orchards in order to protect soil from degradation. 53 

However, tillage is still used in vineyards growing on low-permeability soils as a practice to remove 54 

grass in summer and improve water infiltration, particularly during autumn and winter time. In fact, 55 

growers are often worried that competition for soil resources, namely water and nutrients, between 56 

the grass cover and grapevines could affect grape yield and quality.  57 

Most studies on runoff and erosion in vineyards consider topographic features, soil properties, 58 

rainfall characteristics, and soil management techniques in relation to the hydrological and erosive 59 

response of the vineyard at yearly or multi-annual scales (Prosdocimi et al., 2016). Nevertheless, 60 

annual runoff and soil losses could be strongly conditioned by few rainfall events (Gómez et al., 61 

2014; González-Hidalgo et al., 2009). The adopted soil management influences strongly the 62 

temporal and spatial variations of the soil surface characteristics (soil cover, topsoil structure and 63 

soil crusting) and soil hydrological characteristics, which drive the partition of rainfall between 64 

runoff and infiltration at the field-scale (Leonard and Andrieux, 1998; Pare et al., 2011). There is 65 

still a gap in knowledge about the effect of the temporal variations of topsoil conditions on the 66 

triggering of runoff and soil water erosion throughout the year. A better understanding of the field 67 

response to rainfall events, taking into account the variability of the soil conditions during the year, 68 

could be useful for water balance and erosion modelling purposes (Celette et al., 2010) and to 69 

support soil management decisions in vineyards, in order to reduce runoff and erosion.  70 

This study presents the results of a 2-year experiment monitoring topsoil hydrological properties 71 

and recording runoff and soil erosion in two vineyard field-scale plots with different inter-row soil 72 

management, conventional tillage and grass cover, respectively. The objectives were: (i) to evaluate 73 

the effects of soil management, at different temporal scales, namely at yearly, seasonal and single 74 

event ones; (ii) to identify in each event the prevalent runoff mechanism (either infiltration or 75 
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saturation excess) in relation to soil management, soil hydraulic conductivity and bulk density, soil 76 

moisture and precipitation characteristics.  77 

2. Materials and Methods 78 

2.1 Study site 79 

The study was carried out within the “Tenuta Cannona Experimental Vine and Wine Centre of 80 

Regione Piemonte” (44°40’ N, 8°37’ E, 296 m asl), which is located in the Alto Monferrato hilly 81 

area of Piemonte, North-West Italy . The climate is sublitoranean, (average annual precipitation of  82 

965 mm at the Ovada station, in the period 1951-1990), mainly concentrated in October, November 83 

and March. The driest month was July. The mean annual temperature measured at Alessandria 84 

during the same period of observation was 12.6°C (Biancotti et al. 1998). At the study site, the 85 

average annual precipitation in the period 2000-2014 was 905 mm and the mean annual air 86 

temperature was 14.5°C. The Cannona vineyards lie on Pleistocenic fluvial terraces in the Tertiary 87 

Piedmont Basin, including highly altered gravel, sand and silty-clay deposits, with red alteration 88 

products. The soils derived from reworked Pleistocene alluvium, and they have a clay to clay-loam 89 

texture.  90 

The experiment was conducted in two vineyard plots, which are part of a larger vineyard, lying on a 91 

hillslope with SE aspect and average 15% slope. Each plot is 1221 m
2
 (74 m long and 16.5 m wide) 92 

and includes 7 vine rows aligned along the slope, where the vines are spaced 1.0 m along the row 93 

and 2.75 m between the rows. The soil has been managed with different techniques since 2000. The 94 

first plot has been managed with conventional tillage (CT, cultivated with chisel to a depth of about 95 

0.25 m), while in the second plot grass cover has been adopted (GC, with spontaneous grass 96 

controlled with mulcher during the year). The mulcher mows and chips the grass, and residues are 97 

left on the soil surface. Soil tillage (in CT) and grass mulching (in GC) were usually carried out 98 

twice a year, in spring and autumn. In autumn 2011, the inter-rows of the GC plot were tilled and a 99 

grass mixture was sown, to renew the grass cover. The grass mixture was composed of: Lolium 100 
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perenne 20%, Festuca rubra 60%, Poa nemoralis 15%, Poa trivialis 5%. Weeds under the rows of 101 

the two plots were controlled with Glyphosate in spring, 0.6 m across the vine row. Most of the 102 

farming operations in the vineyard were carried out using tracked or tyred tractors, with 103 

intensification from spring to the grape harvest time. During the period of the present study, soil 104 

tillage (in CT) and grass mulching (in GC) were carried out five times (on: 24/10/2012, 05/06/2013, 105 

11/11/2013, 16/05/2014, 24/10/2014). The soil is classified as Typic Ustorthents, fine-loamy, mixed, 106 

calcareous, mesic (Soil Survey Staff, 2010) or Dystric Cambisols (FAO/ISRIC/ISSS, 1998). Soil 107 

textural composition obtained from soil samples taken in 2014, at 0-10 cm depth, indicated a silty 108 

clay loam soil in the GC plot, with 15% sand, 53% silt and 32% clay content; and a silt loam soil in 109 

the CT plot, with 28% sand, 54% silt and 18% clay content. 110 

2.2 Measurements 111 

The experiment was conducted from October, 2012 to November, 2014. A monitoring system 112 

provided continuous measurements of rainfall, runoff and topsoil water content for the two 113 

experimental plots. Runoff samples were also collected to obtain sediment yield for erosive events. 114 

Periodic measurements were carried out to obtain values of saturated hydraulic conductivity (Kfs), 115 

bulk density (BD) and initial soil water content (SWCi) in the two plots, in order to detect the 116 

temporal variability of the field-saturated soil hydraulic conductivity at the surface of the vineyard 117 

inter-rows, with different conditions depending on soil management. Measurements were carried 118 

out both in the no-track (indicated as NT) and in the track position (indicated as T), which is the 119 

portion of soil affected by the passage of tractor wheels or tracks. 120 

Rainfall, runoff, erosion and soil water content 121 

Rainfall measurements were obtained from an automatic rainfall gauge, with 0.2 mm resolution, at 122 

about 200 m from the plots. Rainfall data were recorded at 10-min intervals since August, 2013, 123 

whereas only hourly measurements were available for the previous period. Since June, 2014, 1-min 124 
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rainfall intensity data have been obtained from an optical disdrometer installed near the plots (Laser 125 

Precipitation Monitor, Thies-Clima, Germany).  126 

Each plot was hydraulically bounded: a channel at the top of the plots collected upstream water. 127 

Runoff and sediments were collected by a channel, connected to a sedimentation trap and then to a 128 

tipping bucket device to measure the discharge of runoff from each plot. A portion of the runoff-129 

sediment mixture was sampled for each tip. The tipping bucket devices were calibrated to measure 130 

runoff with 0.1 mm resolution. In addition, hourly measurements of the runoff volumes were 131 

obtained from electro-magnetic counters. After each erosive event, a 1.5 L sample of runoff-132 

sediment mixture was collected. Sediments deposited along drains and in the sedimentation traps 133 

were also collected and dry-weighed. To obtain the sediment yield from each erosive event, 134 

sediment concentration was multiplied by the runoff volume and added to the weight of deposited 135 

sediments. Four soil moisture 5 TM sensors (Decagon Devices) were gravimetrically calibrated and 136 

installed at 10 cm depth in each plot in NT and T positions. Soil water content measurements were 137 

recorded every 60 minutes. 138 

Infiltration tests 139 

Several series of infiltration tests were carried out in the 2-year period of observations, using the 140 

simplified falling head technique (SFH), proposed by Bagarello et al. (2004). Eight series of tests 141 

were done in the CT plot and seven series in the GC plot. The tests were conducted on the same 142 

date in the two plots, except from November to December 2012, when they were carried out with a 143 

delay of three weeks in GC. At each measurement date, four to eight SFH experiments were 144 

performed, with 2-4 measurements carried out in the no-track position of the inter-row and 2-4 in 145 

the track position. To assure one-dimensional flow, a second ring was inserted concentric to the 146 

inner one. The two PVC cylinders had a height of 0.30 m, and inner diameters of 0.305 m and 0.486 147 

m. They were inserted in the soil to a minimum depth of 0.06 m. The applied volumes of water 148 

were 7.0 L in the inner ring and 10.8 L in the bigger cylinder. We kept a minimum height of 0.06 m 149 
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of water on the sloping soil surface. Bodhinayake et al. (2004) have demonstrated that slope does 150 

not affect the measurements significantly. Before the execution of each test an undisturbed soil core 151 

(V= 100 cm
3
) was collected next to the investigated area at depth of 0 to 0.07 m, to determine the 152 

soil bulk density. For the same purpose a sample was collected after the water infiltration inside the 153 

inner ring. Initial and saturated volumetric water contents (SWCi and SWCs) were also obtained  154 

from the collected soil samples. 155 

Each BD, SWCi, Kfs, dataset was summarized by calculating the mean and the associated 156 

coefficient of variation (CV), in order to compare the data obtained by the infiltration experiments. 157 

The statistical frequency distributions of the data were assumed to be normal for the initial soil 158 

water content and the soil bulk density and log-normal for the field-saturated hydraulic conductivity 159 

(Warrick, 1998). Differences between positions (NT vs T) in the same plot, and differences between 160 

the two plots , were evaluated by using t-test at 0.05 probability level.  161 

2.3 Rainfall-runoff events analysis 162 

Rainfall events occurring after August 2013 for which precipitation was recorded at 10-min 163 

intervals, were analysed in order to evaluate the relationships among rainfall and soil hydrological 164 

characteristics and the runoff and erosion processes. For each event, rainfall amount and duration, 165 

maximum rainfall intensity at different time intervals (10, 30, and 60 minutes), and cumulative 166 

precipitation (during the previous 7, 15, 30, and 45 days) were obtained. Rainfall energy (Brown 167 

and Foster, 1987) and rainfall event erosivity (Renard et al., 1997) were computed, by means of 168 

RIST (Rainfall Intensity Summarization Tool) (ARS-USDA, 2015). Rainfall events were 169 

considered as significant when cumulative rainfall was larger than 12.7 mm, according to the 170 

RUSLE procedure. Only one smaller rainfall event (on 14/08/2013) was analysed, because of its 171 

high intensity (21.6 mm h
-1

 in 10 min). A total of 29 rainfall events were selected, each one with its 172 

own measured values of the following soil properties: Kfs, SWCs, BD, for T and NT positions. 173 
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Firstly, Principal Component Analysis (PCA) was performed. Afterwards, stepwise multiple linear 174 

regression was applied. Finally, each of the significant rainfall events was analyzed in order to 175 

identify the surface runoff occurrence and its type (Hortonian or saturation of the soil surface 176 

horizon).  177 

For this last purpose, the method of Dehotin et al. (2015) was applied, by comparing time series of 178 

rainfall intensities with Kfs values, and topsoil SWC with SWCs values, respectively in order to  179 

detect either Hortonian or saturation excess runoff type. The measured values of Kfs and SWCs in 180 

the CT and GC plots in the period of occurrence of each rainfall event were used as reference 181 

values. The lower mean values between Kfs(T) and Kfs(NT), and between SWCs(T) and SWCs(NT), 182 

respectively, were chosen as reference Kfs and SWCs for the event. Hortonian runoff was detected if 183 

rainfall intensity values were higher than the Kfs reference value. The runoff occurrence due to 184 

saturation of the soil surface horizon was detected by comparing soil water content time series with 185 

the SWCs reference for each event. It was assumed that if the soil water content time series reached 186 

the value of SWCs and remained almost constant, the first horizon was saturated and additional 187 

rainfall was generating surface runoff.  188 

Results 189 

3.1. Soil hydrological properties  190 

Table 1 summarizes the infiltration tests, which were conducted with initial soil water content 191 

ranging between 0.158 and 0.357 cm
3
cm

-3
 in CT, and between 0.191 and 0.405 cm

3
cm

-3
 in GC. On 192 

most dates, CV(SWCi) was lower than 10% in CT. Higher variations were obtained in GC, 193 

especially in the NT position. Soil water content was usually higher in T than in NT in the two 194 

plots, with significant differences only in October, 2012, in CT and in December, 2012, and in July, 195 

2013, in GC. For measurements carried out on the same date, soil water content was always higher 196 

in GC than in CT.  197 
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At the time of the execution of the infiltration tests, the bulk density varied between 1.19 and 1.55 g 198 

cm
-3

 in CT and between 1.24 and 1.47 g cm
-3 

in GC. The coefficient of variation of bulk density 199 

was generally < 10%, with some exceptions in GC. In the CT plot, bulk density differences between 200 

positions were significant in most of the sampling dates. Unexpectedly, in July 2013, about a month 201 

after tillage, bulk density was higher than before tillage (May, 2013), both in T and in NT position. 202 

Further increase in bulk density was recorded in the T position during the following months, up to 203 

1.55 g cm
-3

 (October, 2013). A decrease of bulk density was usually observed between 204 

measurements done in autumn and in the following spring, for both treatments.  205 

The Kfs was significantly lower in GC(T) than in CT(T) comparing mean values which were 206 

obtained in November and December, 2012, some days after tillage. For the remaining dates, the 207 

lowest hydraulic conductivity was always measured in CT(T), and the difference was statistically 208 

significant in May 2014 and October 2014. In NT, Kfs was higher in CT than in GC in most of the 209 

dates, being the difference statistically significant in autumn 2012, October 2013 and May 2014. 210 

Higher field-saturated hydraulic conductivity values in the less compacted portion of the GC inter-211 

row could also relate to different texture of the topsoil.  212 

3.2 Runoff and soil erosion seasonal distribution  213 

Table 2 presents a summary of the annual precipitation, runoff and sediment yield during the years 214 

2013 and 2014. During 2013 the annual precipitation was 971 mm, higher than the mean of the 215 

period 2000-2013 (849 mm) (Biddoccu et al., 2016). The rainiest seasons were spring and then 216 

winter, when more than 76% of the cumulative precipitation fell, whereas autumn and especially 217 

summer were drier than usual. The highest runoff coefficients were measured in spring (in CT) and 218 

winter (in GC). In CT sediment yield was much greater in winter than in other seasons, due to a 219 

single event (19-28/12/2013). Precipitation measured in 2014 was more than 40% greater than the 220 

above cited average. The 40% and 35% of annual precipitation were recorded in autumn and in 221 
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winter, respectively. Highest runoff volumes and runoff coefficients were measured in winter in 222 

both plots. 223 

3.3 Influence of rainfall and soil properties on runoff and sediment yield  224 

Table 3 summarises the results of the PCA for the rainfall events and soil properties. More than 225 

80% of the variance among events can be explained by four principal componets for CT (83%) and 226 

for GC (86%). The first principal component for CT represents 29% of the variance of the system 227 

and is a good indicator (loadings>0.90) of rainfall and runoff depth, and rainfall duration of the 228 

event. The intensity of the rainfall is highly correlated with the second principal component (26% of 229 

the variance). Sediment yield is also moderately correlated with this component. The antecedent 230 

precipitation (during the previous 7, 15 and 30 days) and the field-saturated hydraulic conductivity 231 

were the variables best correlated with the third and fourth component, respectively. The first 232 

principal component for the GC events (30% of the variance) is a good indicator of the rainfall and 233 

runoff depths, of rainfall duration and sediment yield. Initial soil water content and antecedent 234 

precipitation in the previous 30 and 15 days are moderately well-represented in the second principal 235 

component (21 % of the variance of the system). The PC3-GC component also represents 21% of 236 

the variance and it is well correlated with maximum rainfall intensity. The PC4-GC is highly 237 

correlated with field-saturated hydraulic conductivity and bulk density.  238 

Figure 1 shows the rainfall events represented as individuals on the principal component plans, and 239 

classified by season. Fig.1a represents the events measured in the CT plot in the PC1_CT-PC2_CT 240 

plan. In the first quadrant larger rainfall events that produced highest runoff and sediment yield in 241 

CT are represented. They occurred in autumn and winter, when most precipitations greater than 100 242 

mm and long duration (>60 hours) produced significant runoff and erosion, up to 4.9 Mg ha
-1

. The 243 

highest runoff coefficients were recorded with rain causing snowmelt and also relevant erosion 244 

(29/1-13/2/2013 and 26/2-4/3/2013). Most of the high intensity and potentially erosive events 245 

(positive values of PC2_CT) occurred in summer and early autumn. In that period, runoff occurred 246 



11 

 

when high intensity rainfall (Imax10>30 mm h
-1

) was preceded by rainfall in the previous days. The 247 

storm event of 7-8/7/2014 occurred three days after another storm, which did not produce 248 

significant runoff. In the second event, 36 mm of rain fell with the highest 10-min intensity (59.15 249 

mm h
-1

) and produced 9.5 mm of runoff. This resulted in the highest erosion recorded during the 250 

period of observation (5.6 Mg ha
-1

). Figure 1b shows events recorded in the GC plot in the 251 

PC1_GC-PC3_GC plan. Events represented in the first and fourth quadrant (PC1_GC>0) occurred 252 

in autumn and winter. Among them, events with P>90 mm produced high runoff (RC>20%) and 253 

erosion. Summer and spring events produced negligible runoff and erosion, even with high rainfall 254 

intensities.  255 

Table 4 presents the summary of the multiple linear regression models for runoff and sediment yield 256 

variables. In predicting runoff, there is significant correlation with rainfall depth, with a higher 257 

determination coefficient for CT. The runoff model for GC included firstly the rainfall duration. 258 

The variables which were included in the following steps in the runoff model for CT were rainfall 259 

erosivity, maximum hourly intensity and 7-day antecedent precipitation. In predicting sediment 260 

yield there was a significant correlation with erosivity and rainfall depth. The second variable was 261 

the 7-day antecedent precipitation (lower determination coefficient for CT). Figure 2 shows the 262 

accuracy of the predictions with the best multiple linear regression models. The prediction models 263 

resulted in an overestimation of runoff and sediment yield. For the CT treatment this was 264 

particularly evident in autumn and winter events without snowfall.  265 

3.4 Analysis of single events to identify the runoff occurrence and mechanism 266 

Runoff was considered as significant when its depth was greater than 1 mm or greater than 2% of 267 

the rainfall depth: 14 and 9 rainfall events produced significant runoff in CT and GC, respectively. 268 

Some cases of surface runoff are shown in Figs.3 and 4. The orange lines represent the reference 269 

value of Kfs measured in the GC plot (discontinuous) and in the CT plot (continuous). In some cases 270 

Kfs reference values could not be represented in the graph, because of their greater order of 271 
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magnitude, with respect to rainfall intensity. The blue lines represent the values of saturated soil 272 

water content for CT and GC. The grey band indicates the uncertainty range of sensors (3%). Green 273 

symbols indicate hourly mean values of soil water content measured by the sensors in the plots. 274 

Fig. 3a represents a typical winter rainfall event which caused high runoff volumes both from CT 275 

and from GC. The rainfall event accounted for 216.2 mm of rainfall, with maximum 10-min rainfall 276 

intensity of 16.8 mm h
-1

. Measured runoff coefficients and sediment yields accounted for 42% of 277 

rainfall depth and 4.9 Mg ha
-1

 in the CT plot, and 20% and 0.49 Mg ha
-1

 in the GC plot. Fig. 3b 278 

shows a spring event for which light runoff was measured, that caused little soil erosion. The 279 

rainfall intensity did not overcome Kfs in the plots, but soil water content increased to reach 280 

saturation of the soil surface and to generate light saturation-excess runoff in CT. The summer 281 

rainfall event in Fig. 3c accounted for 35.8 mm of rainfall. Although the rainfall intensity was the 282 

highest (59 mm h
-1

), it did not overcome the Kfs minimum value in GC (106 mm h
-1

). The fast 283 

increase of soil water content made the soil saturated in GC for most of the event duration, both in T 284 

than in NT, and little runoff (0.6 mm) was thus originated in this plot. An increase of the topsoil 285 

water content was also measured in CT, but saturation of the soil surface was not reached. Rainfall 286 

intensity overcame Kfs in CT, thus runoff caused by infiltration excess occurred (9.5 mm) in this 287 

plot. Sediment yield was very high in the tilled plot (5.6 Mg ha
-1

) and negligible in the grassed 288 

vineyard.  289 

Fig. 3d shows a rainfall occurring in autumn, before the execution of tillage. After the 10-minute 290 

rainfall intensity exceeded the Kfs measured in CT, 7.2 mm of runoff were recorded in this plot. 291 

Very low runoff (only 0.4 mm after the whole rainfall event) was measured in GC. For the same 292 

rainfall event 1-min rainfall intensity was also obtained from disdrometer records (Fig. 4a). The 293 

maximum 1-min rainfall intensity was near the 140 mm h
-1

 peak measured by the pluviometer of 294 

34.8 mm h
-1

 (over 10-min interval). Erosion was detected in the two plots, and in CT it was nearly 295 

40 times higher than in GC. Fig. 4b presents the 1-min rainfall intensity recorded during another 296 
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event. The rainfall intensity peak did not exceed the Kfs: The soil in CT was tilled 20 days before 297 

the rainfall event, so its conductivity was assumed to be greater than 2800 mm h
-1

 and the mean Kfs 298 

measured in GC ranged between 395 mm h
-1 

and 967 mm h
-1

. However, soil water content was 299 

close to the saturation level, due to the 236 mm of rainfall in the previous two weeks. Runoff 300 

appeared in the first hours of the event, when 1-min rainfall intensity was higher than 10 mm h
-1

 301 

and soil was saturated in CT. Thus, runoff was due to saturation of the soil surface in CT. Within a 302 

few hours high rainfall intensity induced saturation of the upper horizon also in GC. When soil 303 

saturation was reached, both in CT and in CG, runoff depth increased in consequence of higher 304 

rainfall intensities. Sediment yield measured in the two plot was nearly 1.4 Mg ha
-1

 and 0.5 Mg ha
-1

 305 

in CT and GC, respectively.  306 

The rainfall depth of autumn and winter events which caused runoff due to saturation in CT ranged 307 

between 36 and 216 mm and the 10-min maximum rainfall intensity varied between 5 to 17 mm h
-1

. 308 

The soil was wet, with soil water content between 0.267 and 0.382 cm
3
cm

-3 
and it was characterized 309 

by Kfs greater than 1000 mm h
-1

 and bulk density of about 1.41 g cm
-3

. The mean runoff coefficient 310 

which was observed in the CT plot for saturation runoff events occurring in autumn and winter was 311 

79%. A light saturation-excess runoff was also detected in spring, with a very low rainfall depth 312 

(P=19.60 mm, Imax10 = 4.8 mm h
-1

) and field-saturated hydraulic conductivity (minimum Kfs = 313 

18.5 mm h
-1

), and wet soil (SWCmax = 0.373 cm
3
cm

-3
). Rainfall events that caused Hortonian runoff 314 

in CT were characterized  by 10-min maximum rainfall intensity ranging between 37 and 59 mm h
-1

 315 

and rainfall depth from 14 to 36 mm. Although the Kfs values which were measured in autumn and 316 

winter in GC were the lowest (ranging between 41 mm h
-1

 and 85 mm h
-1

), rainfall intensities in this 317 

period (maximum 10-min rainfall intensity ranging between 4 and 35 mm h
-1

) did not cause 318 

Hortonian runoff. 319 

Runoff occurred for 50% of the observations in CT and 20% in GC (Fig. 5a). Relationships between 320 

surface runoff type and the season of rainfall event occurrence was firstly examined, after 321 
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identification of runoff occurrence on single events (Fig. 5b). Only saturation excess runoff was 322 

found during winter, both in CT and in GC. In spring runoff was detected only in CT, for 20% of 323 

the events. In autumn runoff was detected during 40% and 20% of the events, for CT and GC, 324 

respectively. Half of the runoff events which occurred in autumn in CT were due to Hortonian 325 

runoff. In summer less than 20% of the rainfall events caused saturation excess runoff in GC, 326 

whereas 50 % of the rainfall events produced Hortonian runoff in CT. Relationships between 327 

surface runoff frequency and some rainfall characteristics were examined in the following. Fig. 5c 328 

shows that surface runoff by infiltration excess was detected only in CT for 10-min maximum 329 

rainfall intensity higher than 20 mm h
-1

 and it occurred for 60% of rainfall events. In relation to the 330 

rainfall depth (Fig. 5d), rainfall events whose depth was lower than 20 mm, produced some 331 

Hortonian and saturation-excess runoff in CT, but no runoff in GC. Most of the Hortonian runoff 332 

events were induced in CT for rainfall events with a depth ranging from 20 to 40 mm. Every 333 

analyzed rainfall event greater than 40 mm produced surface runoff due to saturation excess in both 334 

plots. Finally, relationships are shown between surface runoff and soil water content at the rainfall 335 

occurrence (Fig. 5e) and field-saturated hydraulic conductivity (Fig. 5f). When  soil water content 336 

was lower than 0.250 cm
3
 cm

-3
, no runoff was measured and detected in GC, and only Hortonian 337 

runoff appeared in CT. Both in CT and in GC, the frequency of saturation excess runoff increased 338 

as initial SWCi was higher. In CT some cases of Hortonian runoff were detected with initial SWCi 339 

greater than 0.250 cm
3
cm

-3
. In relation to the field-saturated hydraulic conductivity of the soil, the 340 

frequency of events that caused Hortonian runoff was about 30% for Kfs<100 mm h
-1

 in CT, 341 

whereas more than 70% of the rainfall events produced runoff due to saturation excess when Kfs 342 

>1000. On the contrary,  most of the runoff events occurred in GC soil when Kfs was lower than 100 343 

mm h
-1

.  344 

3. Discussions 345 

4.1. Temporal and management effects on soil hydrological properties  346 
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With a few exception, soil water content was higher in the T position than in NT, so soil water 347 

saturation was reached sooner in the T position. The topsoil water content was always higher in GC 348 

than in CT, in both T and NT positions.  349 

In both treatments, from late autumn and winter to spring, a decrease of bulk density was observed. 350 

Differences between T and NT were significant in CT, except for one month after autumn tillage.  351 

Bagarello et al. (2014) measured  Kfs of 838 mm h
-1 

and 7424 mm h
-1

, in the clay soil of a Sicilian 352 

vineyard. In a sandy loam soil, previously tilled but then undisturbed over the 2 years of 353 

observation, Bagarello & Sgroi (2007) obtained mean values ranging from 20 mm h
-1

 to 952 mm h
-

354 

1
, a range that was very similar to that the one obtained in the GC plot in the present study. The 355 

coefficients of variation obtained in this study were also comparable to those in Bagarello & Sgroi 356 

(2007).  357 

During most of the sampling dates the mean values of Kfs in NT position were higher in CT than in 358 

GC. On the contrary, with the only exception of measurements carried out after the autumn tillage, 359 

the lowest mean values in the T position were observed in CT. In the T portion of the inter-row the 360 

increase in water infiltration with respect to GC was evident only within few weeks after the 361 

autumn tillage, whereas tillage was effective in increasing the hydraulic conductivity in the central 362 

portion of the inter-row for a longer period. From spring to autumn, hydraulic conductivity tended 363 

to be higher in CT than in GC in the central part of the inter-row, but it was lower in the T portion , 364 

showing mean Kfs values lower than 75 mm h
-1

. 365 

Both in CT and in GC, during summer and autumn, bulk density showed an increasing trend, and 366 

hydraulic conductivity a decreasing one, that was particularly evident in the T position. Such 367 

tendency was likely the effect of compaction, due to rainfall and especially to intense tractors traffic 368 

during farming and harvesting operations which were carried out in summer and early autumn. 369 

After harvest, mean hydraulic conductivity lower than 100 mm h
-1

 was observed in the GC plot and 370 

the lowest Kfs value (40.5 mm h
-1

) was obtained in winter in the T position. The topsoil showed 371 
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higher compaction and lower hydraulic conductivity after the productive season, especially after 372 

grape harvest. Indeed, worst conditions for water infiltration were observed during autumn (before 373 

tillage in CT) and also in winter for GC. In 2014 the CT topsoil showed higher sand content than in 374 

GC, whereas the clay content was the highest in GC. Since soil erosion by overland flow is a 375 

selective process (Alberts et al., 1980), the more intense erosion which was observed in CT rather 376 

than in GC in the period 2000-2013 (Biddoccu et al., 2016) may have caused the loss of the finest 377 

particles of soil in CT. Differences in field-saturated hydraulic conductivity, namely the higher 378 

values which were observed in the less compacted portion of the inter-row of the GC plot with 379 

respect to the CT plot, could also be related to these differences in the texture of the surface soil.  380 

4.2. Impact of soil management, soil properties and rainfall on runoff 381 

The seasonal and annual runoff amount was usually 2 to 3.6 times higher in CT than in GC. During 382 

summer 2013, which was relatively dry, no runoff was measured, whereas in summer 2014 the CT 383 

runoff was 38% higher than in GC. In 2013 the highest runoff was observed during spring, the most 384 

rainy season, both in CT and in GC. The highest differences in runoff between CT and GC occurred 385 

in summer and spring, when grass cover was higher. 386 

In 2014, the highest runoff volumes and runoff coefficients were observed in winter, especially 387 

when snowfall was followed by rainfall. The seasonal runoff coefficient in CT was 83%, whereas it 388 

was 28% in GC. In CT, the winter season showed the highest runoff coefficient also during the 389 

previous decade (Biddoccu et al., 2014; Biddoccu et al., 2016).   390 

Winter precipitation events had also the greatest values on the PC1 axis in Fig.1. Despite the 391 

autumn tillage, runoff was much more abundant in CT than in GC, if one or more rainfall events 392 

had already occurred after the execution of tillage. In CT the runoff response to autumn and winter 393 

relevant rainfall events was confirmed by the single event analysis, carried out to identify the type 394 

of runoff that was originated. Among the events for which runoff was identified, all the winter 395 

precipitation events and 20% of the autumn events caused runoff due to topsoil saturation. In both 396 
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CT and GC the highest runoff coefficients were observed during events when precipitation included 397 

snowfall. Saturation excess runoff was mainly observed after tillage, in late autumn, despite Kfs 398 

showing the highest mean values. The water infiltration could be limited at greater depth, because 399 

of the subsoil compaction. In tilled vineyards van Dijk & van Asch (2002) measured in the subsoil 400 

higher bulk density and penetration resistance than in the topsoil, due to the effect of compaction of 401 

wheel load in tilled vineyards. In autumn and winter the grass cover was less effective in reducing 402 

runoff than in other seasons, however runoff measured in GC was at least more than 50% lower 403 

than in CT. 404 

The multiple linear model showed the variable response of the CT plot to rainfall characteristics, in 405 

relation to the main mechanism that generated runoff. Runoff was mainly correlated with 406 

precipitation amount, and also moderately correlated with EI30, maximum hourly rainfall intensity 407 

and 7-day antecedent precipitation. In CT, runoff was generated by infiltration excess during 408 

rainfall events characterized by short duration and low depth, and relevant rainfall intensities and 409 

erosivity, that typically occurred in summer and early autumn (before the execution of tillage), 410 

especially when some precipitation was recorded in the previous 7 days.  411 

On the contrary, only duration and depth of the precipitation event were correlated with runoff in 412 

GC, which occurred mainly during large events, because of the saturation-excess effect. Indeed, 413 

infiltration-excess runoff was not identified by the rainfall-runoff event analysis in GC, even in 414 

summer. Despite the low hydraulic conductivity, runoff was caused by saturation of topsoil, as 415 

shown by the fast increase of soil water content up to the saturation level.  416 

In summer, the very low hydraulic conductivity of the topsoil in the CT plot was likely due also to 417 

the presence of a structural crust, which was observed after first rainfall events following the late-418 

spring tillage. As Pare et al. (2011) reported in tilled vineyards, cumulative rainfall and kinetic 419 

energy are the main predicting factors of soil reconsolidation, especially from the fresh tillage to 420 
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crusting. During summer the gradual increase of crusting and compaction due to the tractors traffic 421 

made the runoff larger in CT than in GC.  422 

The analysis of runoff occurrence of each single event was carried out by comparing soil water 423 

content time series with the saturated values obtained in T and NT positions. Similarly the rainfall 424 

intensity time series were compared with Kfs. During most of the events, the value which was 425 

overcome determining the runoff occurrence, was the value of saturated water content (in case of 426 

saturation-excess runoff) or Kfs (in case of Hortonian runoff), in the T position. This effect was 427 

especially evident in summer, when infiltration-excess runoff occurred in CT and not in GC, in 428 

consequence of the lower Kfs in the T position. The winter rainfall-runoff events represented the 429 

most frequent exception to this, because the differences between values of Kfs and SWCs were not 430 

significant between the two positions. 431 

4.3. Impact of soil management and rainfall characteristics on sediment yield  432 

Sediment yields of 5.3 and 9.3 Mg ha
-1

 were measured during the two years, respectively, in the CT 433 

plot. The average value was close to 7.4 Mg ha
−1  

year
-1

, of  the period 2000-2012 for the same plot 434 

(Biddoccu et al., 2016). Tropeano (1984) reported annual soil loss of 47.4 Mg ha
−1

 in a tilled 435 

vineyard in Piedmont and annual sediment yields of 31.4 and  88.71 Mg ha
−1 

were measured in 2 436 

years of observation in a tilled vineyard in Sicily (Novara et al., 2011). In 2013 erosion was higher 437 

in CT than in GC in each season. During the most erosive winter event, erosion in CT was 10 times 438 

greater than in GC. Also in 2014 seasonal erosion was greater in CT than in GC. In GC annual soil 439 

erosion was 1.5 Mg ha
−1

 in 2013, and 1.0 Mg ha
−1

, in 2014, lower than the mean observed in 2000-440 

2012, of 1.8 Mg ha
−1  

year
-1

. Annual sediment yield in GC was 72 and 89% less than in CT. The 441 

difference between CT and GC was greater than in other studies. Novara et al. (2011) observed that 442 

the use of different cover crops in the inter-row reduced soil losses by 56%. Ruiz-Colmenero et al. 443 

(2011), in a 2-year study at plot scale, observed that vineyards with a cover crop lost between 50% 444 

and 75% less soil than with tilled soil. 445 
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Differences among seasonal amounts of sediment yields were due to the variability of rainfall 446 

during the years. Seasonal distribution of rainfall, runoff and soil erosion in 2014 was similar to the 447 

period 2000-2013 (Biddoccu et al., 2016). Nevertheless in both years just a single event per year 448 

had a great influence in determining the annual sediment yield. In 2013 the rainfall event which 449 

occurred in the period 19-28/12/2013 was the largest (216.2 mm). It was the most erosive event 450 

observed in GC during the study, and the second most erosive event measured in CT, where it 451 

caused 93% of the annual erosion. In 2014, the highest erosion occurred during the summer storm 452 

on 7-8/7/2014, when the rainfall of highest intensity (59 mm h
-1

 over 10 minutes) caused more than 453 

5.6 Mg ha
-1

 of sediment yield in CT, whereas in GC only 9 kg ha
-1

. Those two extreme events, with 454 

the highest precipitation depth and 10-min maximum intensity, respectively, caused the highest 455 

erosion. These results confirmed the observation of Gómez et al. (2014) and Gonzàlez-Hidalgo et 456 

al. (2009). The multiple linear model predicting sediment yield in CT showed the highest 457 

correlation with erosivity, which depends on the 30-min rainfall intensity and on the energy of 458 

precipitation, and then with the 7-day antecedent precipitation. Hortonian runoff was mainly 459 

observed in summer and early autumn, for rainfall events with 10-min maximum intensity greater 460 

than 20 mm h
-1

, and with significant the 7-day antecedent rainfall. In those cases, although runoff 461 

coefficients were limited (average value of 7%), sediment yield ranged between 289 kg ha
-1 

and 462 

5658 kg ha
-1

. Apart from the first precipitation event after tillage, most of the events in autumn and 463 

winter generated saturation-excess runoff in CT, whose rates were greater than 42%, and caused 464 

sediment yield up to 4.9 Mg ha
-1

.  465 

The high correlation between sediment yield and erosivity for CT was related to the absence of soil 466 

protection and low hydraulic conductivity in summer and early autumn, when most intense and 467 

erosive rainfall was observed. Nevertheless, high erosivity is also related to the rainfall energy, that 468 

is high for large precipitation events in autumn and winter. Similarly to this study, Raclot et al. 469 

(2009), in tilled vineyards, at event temporal scale and at field spatial scale, found significant 470 
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correlation between total suspended sediment and rainfall depth and between erosion and maximum 471 

rainfall intensity over a 5-min period.  472 

In GC in summer and early-autumn negligible erosion was observed. The protective role of grass 473 

was little effective when saturation-excess runoff was generated by large precipitation events. In 474 

autumn and winter, when grass is sparse and soil is more compacted and less conductive than in 475 

summer (runoff coefficients and erosion up to 53% and 1181 kg ha
-1

). The multiple linear model 476 

showed sediment yield mainly correlated with precipitation depth, and, secondly, to rainfall in the 477 

previous 7 days. The sediment yield during single events, in any case, was lower than in CT. The 478 

results obtained in the GC plot were similar to those of Gómez et al. (2014) in a grassed olive 479 

orchard, with higher correlation between sediment yield and rainfall depth than with rainfall 480 

erosivity and short term intensity. They also observed the largest erosive events in GC in late 481 

autumn and winter, when grass cover is scarce and soil compacted after the productive season.   482 

4. Conclusions 483 

The soil management effects on soil hydraulic conductivity, bulk density, soil moisture, runoff and 484 

water erosion were evaluated in a two-year period in two vineyard field-scale plots, where inter-485 

rows were managed with conventional tillage and grass cover, respectively. Eighty infiltration tests 486 

were carried out and a dataset of 29 rainfall-runoff events was collected, covering a wide range of 487 

topsoil characteristics.  488 

The results highlighted how the tillage increased field-saturated hydraulic conductivity only for a 489 

short period. It tended to be higher in CT than in GC in the central part of the inter-row, but in track 490 

it quickly decreased to such low values that Hortonian runoff was produced during intense summer 491 

storms. Sediment yield in the tilled plot was up to 9 times higher than in the grass cover plot. Due to 492 

high compaction after grape harvest, the worst condition for infiltration were found before autumn 493 

tillage in CT and in autumn and winter for GC. The main runoff events were related to the 494 

saturation-excess mechanism, which was the only one observed in the GC plot and that was 495 
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frequently observed in the tilled one, particularly in late autumn and in long-duration winter 496 

precipitation events. Despite the autumn tillage, in CT the winter 2014 runoff reached 83% of the 497 

precipitation amount and was nearly 4 times greater than in the grassed plot. The largest runoff 498 

occurred in case of snowfall events followed by rainfall. Very high sediment yield in the tilled plot 499 

was mainly related to rainfall intensity (during summer storm) and rainfall depth (in autumn and 500 

winter). The annual reduction of runoff in the grassed plot was 63% in comparison with the tilled 501 

plot. In autumn and winter the grass cover was less effective in reducing runoff than in summer. 502 

Erosion was relevant in winter when large saturation-excess runoff was generated by long-lasting 503 

rainfall and snowfall. However, the grass cover was effective in reducing annual soil losses (up to 504 

90%) and especially during most erosive events that occurred in summer and early-autumn.  505 
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Table 1 – Mean values and coefficient of variation (CV, %) of the bulk density (BD), initial soil water content (SWCi) and field-saturated hydraulic 

conductivity(Kfs) measured with the SFH techniques on each sampling date in the CT and GC treatments in track (T) and no-track (NT) positions. 

Geometric mean was used for Kfs. Bold values are different between positions according to t-test at p=0.05 level. Different letters indicate significant 

differences between treatments according to t-test at p=0.05 level. 

 

CT  

From 
Tillage 

BD 
(g cm-

3) 
SWCi  
(cm3cm-3) 

Kfs (mm-1) 
 

GC 

 From 
Tillage 

BD 
(g cm-3) 

SWCi  
(cm3cm-3) 

Kfs (mm h-

1) 

 

Days P 

(mm
) NT T NT T NT T 

  Day

s 

R 

(mm
) NT T NT T NT T 

Oct-

12 Mean 

158 141.

2 
1.3

0 1.50 

0.25

1 

0.30

0 71.0  31.3 

           

 
CV 

(%) 

  
6.2 7.3 6.1 4.3 29.9 53.0 

           

Nov-
12 Mean 

21 139.
2 

1.3
4 

1.41 
0.35

1 
0.35

7 
2886.2 

a 

3747.3 
a  

 Dec
-12 

Mea
n 

42 259.
0 

1.35 1.41 
0.33

2 

0.40

5 

251.
1 b  

40.5 

b  

 
CV 

(%) 

  
8.2 5.5 4.5 4.4 39.1 102.1 

 
 

CV 

(%) 

  
2.98 9.79 6.3 2.1 

186.

4 

154.

4 
May-

13 Mean 

202 698.

6 
1.1

9 
1.38 

0.26

7 

0.31

5 
770.1 

a  
63.6 a 

 May

-13 

Mea

n 

202 698.

6 
1.18 1.29 

0.27

0 

0.31

4 

427.

5 a 

153.

6 a 

 
CV 
(%) 

  
2.1 7.2 4.5 17.4 34.8 8.6 

 
 

CV 
(%) 

  
5.82 

11.4
7 

9.8 30.4 45.9 93.6 

Jul-13 
Mean 

 3

4 

16.2 1.3

2 
1.41 

0.16

7 

0.18

8 

486.87 

a 

44.69 

a 

 Jul-

13 

Mea

n 

37 16.2 
1.31 1.48 

0.09

8 

0.18

7 

105.

6 a 

156.

7 a 

 
CV 

(%) 

  
7.0 3.0 17.4 31.6 25.4 102.0 

 
 

CV 

(%) 

  
8.22 6.22 19.8 9.3 55.5 

152.

0 

Sep-
13 Mean 

93 88.2 1.2

5 
1.45 

0.15
8 

0.17
4 

332.6 

a 
10.0 a 

 Sep-
13 

Mea
n 

92 88.2 
1.27 1.42 

0.19
1 

0.22
4 

93.7 

a 

85.2 

a 

 
CV 

(%) 

  
1.1 2.0 4.9 17.1 49.5 11.0 

 
 

CV 

(%) 

  
0.74 9.71 20.4 11.6 95.1 

120.

5 
Oct-

13 Mean 

133 137.

4 
1.3

1 
1.55 

0.27

0 

0.29

7 
1456.3 

a 
74.4 a 

 Oct-

13 

Mea

n 

134 137.

4 
1.34 1.42 

0.29

1 

0.33

6 
591.

8 b 

99.0 

a 

 
CV 

(%) 

  
1.2 2.7 11.7 5.2 17.2 12.2 

 
 

CV 

(%) 

  
5.35 2.97 5.7 0.0 27.8 25.2 

May-

14 Mean 

184 740.

6 
1.2

8 
1.51 

0.24

9 

0.23

3 
87.1 a 18.5 a 

 May

-14 

Mea

n 

183 740.

6 
1.24 1.37 

0.25

5 

0.26

5 

525.

8 b 

423.

9 b 

 
CV 

(%) 

  
5.8 2.8 8.8 26.1 31.9 45.7 

 
 

CV 

(%) 

  12.8

8 
7.60 17.8 4.5 

126.

8 
37.2 

Oct-
14 Mean 

156 246.
2 

1.2
5 

1.47 
0.26

7 
0.32

4 
1343.5 

a 
20.5 a 

 Oct-
14 

Mea
n 

157 246.
2 

1.24 1.37 
0.31

7 
0.32

3 
967.

4 a 
394.
7 b 

 
CV 

(%) 

  
6.2 0.5 14.3 0.4 63.1 75.6 

 
 

CV 

(%) 

  
6.42 4.76 13.8 20.1 91.3 63.1 

 
 

Table 2 – Seasonal and annual records from the experimental vineyard plots (conventional tillage, CT; grass cover, GC) in 2013 and 2014: 

Precipitation (including snowfall in winter), runoff (RO), runoff coefficient (RC), sediment yield (SY). 

   CT   GC  

 
Precipitation (mm) RO (mm) RC (%) SY (kg ha-1) RO (mm) RC (%) SY (kg ha-1) 

 
2013 2014 2013 2014 2013 2014 2013 2014 2013 2014 2013 2014 2013 2014 

Winter 323.2 433.4 108.2 358.4 33 83 4982 1806 51.0 123.4 16 28 498 440 
Spring 421.0 125.0 214.1 2.0 51 2 222 2 58.1 0.8 14 1 996 1 

Summer 66.8 171.8 0.0 21.4 0 12 0 5657 0.0 1.6 0 1 0 9 

Autumn 159.8 480.0 3.1 196.7 2 41 107 1911 1.4 86.0 1 18 6 593 

Total 970.8 1210.2 325.5 578.5 34 48 5311 9377 110.5 211.9 11 18 1501 1043 
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Table 3 – Results of factor analysis of the rainfall events variables and soil variables measured in the two plots, for the extraction of principal components. Values in italic and bold indicated the moderately high (>0.70) and 

high (>0.90) loadings. (CT = conventional tilled, GC = grass cover, I max X min = maximum intensity in X min, EI30 = erosivity, RO = runoff, RC = runoff coefficient, SY = sediment yield, Ant. Prec. Y days = antecedent 

precipitattion  in previous Y days, SWC = soil water content, Kfs = field-saturated hydraulic conductivity, BD = bulk density). 

 

CT 
PC1- 

CT 
PC2-CT PC3-CT PC4-CT  GC PC1-GC PC2-GC PC3-CT PC4-CT 

Precipitation 0.971 0.096 -0.018 -0.001  Precipitation 0.966 0.117 0.058 -0.103 

Precip. duration 0.925 -0.201 0.035 -0.112  Precip. duration 0.904 0.161 -0.206 0.106 

I max 10 min -0.235 0.870 -0.208 0.021  I max 10 min -0.173 -0.207 0.914 0.005 

I max 30 min -0.220 0.909 -0.194 0.058  I max 30 min -0.112 -0.190 0.960 -0.039 

I max 60 min -0.089 0.950 -0.141 0.113  I max 60 min 0.039 -0.112 0.957 -0.082 

EI30 0.275 0.915 -0.109 0.015  EI30 0.677 -0.069 0.641 -0.144 

RO CT 0.964 0.011 0.037 -0.045  RO GC 0.930 0.166 -0.090 0.150 

RC CT 0.899 0.066 0.287 -0.033  RC GC 0.798 0.383 -0.156 0.234 

SY_CT 0.111 0.787 0.251 -0.077  SY_GC 0.915 -0.116 0.034 0.091 

Ant. Prec. 7 days -0.148 0.002 0.780 0.003  Ant. Prec. 7 days -0.001 0.708 0.023 -0.386 

Ant. Prec. 15 days 0.159 -0.223 0.703 0.002  Ant. Prec. 15 days -0.041 0.824 -0.191 -0.062 

Ant. Prec.30 days 0.460 -0.220 0.719 -0.218  Ant. Prec.30 days 0.124 0.826 -0.247 0.302 

Ant. Prec. 45 days 0.709 -0.250 0.521 -0.209  Ant. Prec. 45 days 0.324 0.701 -0.322 0.381 

SWC CT 0.141 0.130 0.605 0.448  SWC GC 0.226 0.830 -0.070 0.017 

Kfs CT -0.102 -0.014 0.031 0.964  Kfs GC -0.013 0.089 0.019 -0.921 

BD CT 0.368 -0.086 0.504 -0.513  BD GC 0.179 0.132 -0.084 0.906 

Eigenvalues 4.661 4.181 2.773 1.522  Eigenvalues 4.797 3.389 3.377 2.195 

Accumulated  

variance 29.134 26.130 17.330 9.514 
 Accumulated 

variance 29.982 21.183 21.106 13.716 



 

Table 4 – Summary of the stepwise multiple linear regression model for runoff and sediment yield in the two plots (R
2
adj = adjusted coefficient of determination, EI30 = erosivity, I max 60 min = maximum intensity in 60 

min, Ant. Prec.7 days = antecedent rainfall in previous 7 days). 

 

Runoff Conventional Tillage  Runoff Grass Cover 

Variable Step Value R
2

adj 
Increase 

in R
2

adj 
Sign. 

  
Step Value R

2
adj 

Increase 

in R
2
adj 

Sign. 

Intercept  -40.939     Intercept  -6.798    

Precipitation 1 1.366 0.899 0.899   Precipitation duration 1 0.230 0.769 0.769 0.000 

EI30 2 -0.387 0.918 0.019 0.000  Precipitation 2 0.129 0.810 0.041 0.000 

I max 60 min 3 3.488 0.947 0.029 0.000        

Ant. Prec.7 days 4 0.337 0.957 0.010 0.000        

             

Sediment Yield Conventional Tillage  Sediment Yield Grass Cover 

Variable Step Value R
2

adj 
Increase 

in R
2

adj 
Sign. 

  
Step Value R

2
adj 

Increase 

in R
2
adj 

Sign. 

Intercept  -855.559     Intercept  -33.434    

EI30 1 13.696 0.507 0.507 0.000  Precipitation 1 1.882 0.753 0.753 0.000 

Ant. Prec. 7 days 2 32.758 0.585 0.078 0.000  Ant. Prec.7 days 2 -1.335 0.819 0.066 0.000 

 

 

 



Fig.1 – Representation of events as individuals on the principal component plan, classified by season. (a) Rainfall 

events associated with runoff-erosion and soil characteristics measured in the CT plot represented in the PC1_CT-

PC2_CT plan and (b) Rainfall events associated with runoff-erosion and soil characteristics measured in the GC plot 

represented in the PC1_GC-PC3_GC plan. Different symbols indicate season of rainfall occurrence.  

 

Fig.2 – Comparison of values observed and predicted by the multiple linear regression models for (a) runoff in the CT 

plot, (b) sediment yield in the CT plot, (c) runoff in the GC plot, (b) sediment yield in the GC plot. 

 

Fig.3 – Examples of runoff detection graphs with pluviometer data (10 minutes step) for some rainfall events. R= rain 

intensity at 10 min step, SWC = measured volumetric soil water content (1 hour step), SWCs = reference value of 

saturated water content, Kfs = reference value of field-saturated hydraulic conductivity, RO cum = cumulated measured 

runoff,  P = total event precipitation, I10 = maximum rain intensity at 10 min step, P7 = antecedent precipitation at 7-

day step, RO= measured runoff , SY = measured sediment yield. 

 

Fig.4 – Examples of runoff detection graphs with disdrometer data (1 minutes step) for some rainfall events. 

TotalPIntensity_1min= rain intensity at 1 min step, SWC = measured volumetric soil water content (1 hour step) in the 

plot, SWCs = reference value of saturated water content, Kfs = reference value of field-saturated hydraulic conductivity, 

RO cum = cumulated measured runoff,  P = total event precipitation, I1 = maximum rain intensity at 1 min step, P7 = 

antecedent precipitation at 7-day step, RO = measured runoff plot, SY= measured sediment yield, T = track position, 

NT = no track position. 

 

Fig.5 – Influence of soil management (a), season (b), rainfall maximum intensity (c), rainfall depth (d), initial soil water 

content (e) and field-saturated hydraulic conductivity (f) on the surface runoff occurrence and type of runoff. Each bar 

represents the totality of analyzed events for each category, and among those events they indicate the fractions of: (i) 

events without runoff occurrence (No runoff, blue bars), (ii) events for which hortonian runoff was detected (red bars), 

(iii) events for which saturation-excess runoff was identified (green bars). 
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