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1. Introduction

Throughout this paper the standard notation of graph theory will be used, so K,
Knxs, Cr will denote the complete graph on v vertices, the complete multipartite
graph with m parts of size s and the k-cycle, respectively. Given a set S, by Kg we
mean the complete graph whose vertex-set is S.

Given two graphs K and I', a (K, I')-design is a set of graphs isomorphic to I'
whose edges partition the edge set of K (see [5]). A (K, Cx)-design is also called
k-cycle system of order v (see [6]). The problem of determining the spectrum of values
of v for which there exists a (K, Cy)-design for a given k attracted a large number
of combinatorialists since the 60’s. One can easily see that necessary conditions for
its existence are v odd and v(v — 1) divisible by 2k. Quite recently, it has been finally
proved that these conditions are also sufficient. So, there exists a k-cycle system of
order v if and only if k < v, v is odd and v(v — 1) = 0 (mod 2k). The if part of this
theorem was solved by Alspach and Gavlas [2] in the case of k odd (for another
recent proof see [8]) and by Sajna [22] and [23] in the case of k even.

A k-cycle system of order v is i-perfect, where 1 < i < L%J, if for any edge
[x, y] € K, there is exactly one cycle of the system in which x and y have distance
i.Givenl € {1,2,..., L%J}, by saying that a (K, Cx)-design is I-perfect, we mean
that it is i-perfect foralli € 1. If I = {1, 2, ..., L’%J}, an [-perfect (K,, Cy)-design
is called a Steiner k-cycle system of order v and it is denoted by SkS(v). A Kirkman
k-cycle system of order v, denoted by KkS(v), is a SkS(v) together with a partition
of its cycles into 2-factors of K. The major known existence results about i-perfect
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cycle systems and, in particular, about Steiner cycle systems can be found in [1], [3],
[71, [12], [13], [15], [16], [17]. Here we only recall that a necessary condition for the
existence of a SkS(v) is that v and k be odd integers.

Given an additive group G, a (K, I')-design B is said to be regular under G (for
short G-regular) if, up to isomorphisms, the vertices of K are the elements of G and
whenever B is a cycle of B we also have B + g € B for every g € G. Of course by
B + g we mean the graph defined by

V(IB+g) =V(B)+g and EB+g)={lx+g, y+glllx yleEMB)}

A design is said to be cyclic, abelian, non abelian, ... when it is regular under a group
having the respective property.

The existence problem of cycle systems for the cyclic case has generated a con-
siderable amount of interest. Many authors have contributed to prove the following
Theorem 1.1 which is, so far, the most important result about the existence of cyclic
k-cycle systems (see [10], [11], [14], [18], [19], [20], [21], [24])-

Theorem 1.1. For all v = 1 or k (mod 2k) there exists a cyclic (K, Cy)-design with
the only definitive exceptions of (v, k) = (9, 3), (15, 15), (p", p™) with p a prime and
n> 1.

In what follows we will deal with the existence problem of cycle systems for the
elementary abelian case. We recall that an elementary abelian group is a finite group
where every non-zero element has order a prime p. The only results we know about
this case are the following:

Theorem 1.2 (Bonisoli, Buratti, Mazzuoccolo [7]). There exists a 2-transitive elemen-
tary abelian Kirkman k-cycle system of order v if and only if (k, v) = (p, p") for some
odd prime p and some positive integer n.

Theorem 1.3 (Granville, Moisiadis, Rees [13]). For every prime power g = 2ke + 1
with k odd, there exists an elementary abelian Steiner k-cycle system of order q.

Proof. Let g be as in the statement and g be a primitive element of the finite field
of order g, then an elementary abelian Steiner k-cycle system of order ¢ is formed
by the cycles

i+2e

i+2-2e + i+(k—1)-2e +a)

(gi—{-a,g +a,g o ..., 8

for 0 <i < e and for each field element «. O

Remark 1.4. Note that the cycles of the previous construction are nothing but
the blocks of the developments 'of C; = (g, g't2¢, git22¢ ... giT*=12¢)y where
0<i<e.

I Let G be any finite additive group and D # ¢ any subset of G. The incidence structure
devD :={G,{D + x, x € G}, €} is called the development of D (see [4]).
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Also, in [25] A. Vietri proved the existence of an elementary abelian 3-cycle
system of order (2d + 1)?> when 2d + 1is a prime and d = 0, 3, 8, 11(mod 12).

In Section 3 some necessary and sufficient conditions for the existence of ele-
mentary abelian k-cycle systems (EA-k-cycle systems, for short) will be proved. It is
convenient to give here some notation about finite fields, since we will use them for
getting our constructions.

Given a prime power ¢, the finite field of order ¢ will be denoted by IF,;, while
[y will denote the multiplicative group of Fy. Also, we denote by C¢ the group of
non-zero e-th powers in Fy, e being any divisor of ¢ — 1. The cosets of C¢ in IF 7> also
called cyclotomic classes of index e, are C¢ = g0C¢, gl C¢, g2C¢,..., g~ 1C¢, where g
is a primitive element of ;. For simplicity, once g has been fixed, we set C{ := gce.

When e = 2, we will write IFqD and Iqu instead of C2 and Clz, respectively.

2. The Method of Partial i-differences to Construct Regular :-perfect
(K, Ci)-designs

From [12] we learn that any regular i-perfect k-cycle system can be characterized
by the method of partial differences introduced by M. Buratti in [9]. Here we recall
some definitions and the main result from [12], useful in the following.

Definition 2.1. Let A = (ag, a1, ..., ar—1) be a k-cycle with vertices in an abelian
group G and let d be the order of the stabilizer of A under the natural action of G,
thatisd = |{g € G: A+ g = A}.Giveni € {1,2,..., |k/2]}, the multisets

AiA = {£(ani —an) |0 < h < k)
A = (Eanti —an) |0 < h < k/d)

where the subscripts are taken modulo k, are called the list of i-differences from A
and the list of partial i-differences from A, respectively.

Of course, d = 1 implies 3;A = A; A. More generally, given a set F of k-cycles
with vertices in G, by A; F and 9; F one means the union (counting multiplicities)
of all multisets A; A and 9; A respectively, where A € F.

Theorem 2.2. GivenI C {1, 2,..., %} a G-regular I -perfect (K, Cy)-design is equiv-

alent to a set F of k-cycles with vertices in G (called base cycles) such that 9; F =
G — {0} foralli € 1.

As an immediate consequence we have:

Corollary 2.3. A G-regular (K, Cy)-design is equivalent to a set F of k-cycles with
vertices in G such that 01 F = G — {0}.

In Example 2.5 we will show how to construct an EA-(K»s, C1s)-design just applying
Corollary 2.3. For our purposes the following notation will be useful.



4 A. Benini and A. Pasotti

Let ag, aj, ..., a,—_1, x be elements of an additive group G, with x of order p.
The closed trail represented by the concatenation of the sequences
(a07 alv MR ar—l)

(@ +x,a1+x,...,a,_1 +x)
(ag +2x,a1 +2x,...,a,-1 + 2x)

(a+(p—Dx,ar+(p—Dx,....a,—1 + (p— Dx)
will be denoted by

lag, a1, ..., ar—1]x.

Remark 2.4. Note that [ag, ay, ..., a,_1]y is a (pr)-cycle if and only if the elements
aj,fori =0,...,r — 1, belong to pairwise distinct cosets of the subgroup < x > in
G. Also, if A = [ag, ay, ..., a,—1]x 18 a (pr)-cycle then

A ={x@@ —ai-)i=1....r = 1}U{*(ao +x —a,—1}.

Example 2.5. Let G = Zs x Zs and consider the following 15-cycles with vertices in
G (with some abuse, let us write any pair (x, y) as xy):
A = [00, 01, 13];9 = (00, 01, 13, 10, 11, 23, 20, 21, 33, 30, 31, 43, 40, 41, 03)
B = [00, 13, 22]p; = (00, 13,22, 01, 14, 23, 02, 10, 24, 03, 11, 20, 04, 12, 21)
C =[00, 22, 32]p2 = (00, 22, 32, 02, 24, 34, 04, 21, 31, 01, 23, 33, 03, 20, 30)
D = [00, 11, 34]93 = (00, 11, 34,03, 14, 32,01, 12, 30, 04, 10, 33, 02, 13, 31).
One can easily check that:
1A = {£01, £12} U {02} 1B = {+13, £14} U {£21}
31C = {222, £10} U {£20} D = {£11, £23} U {£24}
Setting 7 = {A, B, C, D} we have 0;F = G — {00}. Hence, by Corollary 2.3,

{A, B, C, D} is a set of base cycles of an EA-15-cycle system of order 25.
Explicitly, the required design is the following:

(A+0i[0<i<4} U{B+i0]0<i<4 U{C+i0|0<i<4) U{D+i0|0<i<4).

3. Existence of Elementary Abelian Cycle Systems

We have already observed that necessary and sufficient conditions for the existence
of a k-cycle system of order v are k < v, v odd and v(v — 1) = 0 (mod 2k).

For the existence of an elementary abelian k-cycle system of order v a stricter
condition is necessary.

Proposition 3.1. If an EA-(K,, Ci)-design exists, then
a) v = p" where p is an odd prime andn > 1;

b) k<wv

c) p(p"—1)=0 (mod 2k).
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Proof. Let BB be the required system and let A be a k-cycle of B. Conditions a) and
b) follow obviously. To prove condition ¢) one can easily see that the order of the
stabilizer of A under the natural action of Z7 is 1 or p and this implies that the
order of the orbit of A is p" or p"~!, respectively. Since the orbits partition the set

of blocks of B we have that p"~! must be a divisor of %, that is % € Z.

The previous proposition suggests searching sufficient conditions distinguishing
two different cases: the first one when p is a divisor of k£ and the second one in which
p does not divide k.

3.1. Case. p Divides k

Lemma 3.2. Let p be a prime such that p" = 1(mod 2t). If there exists a sequence
A=(ap=0,a1,a,...,a) of elements of F pn such that

a) D:={a;j—aj_1|1 <i <t}isacomplete system of representatives for the cosets
of C"inFy,
b) {ai—a;j|0<i<j<t—-1}N{ha; |0<h<p—-1}=0

then there exists an EA-(pt)-cycle system of order p".

Proof. Let B =1[0,ay,as,...,a;—1]s- Condition b) together with Remark 2.4 make
us sure that B is a (pt)-cycle. Again by Remark 2.4, we obtain 8B = (—1)-D. Now,
let S be a complete system of representatives for the cosets of (—1) in C' and let
F={s-B|seS})Sincedq)yF=85-91B=S5-(—1)-D = C"- D, by Condition a)
it follows that 0 F = IF;,,, hence, by Corollary 2.3, we have that F is the set of base
cycles of an EA-(pt)-cycle system of order p”. O

Proposition 3.3. Let p be a prime. There exists an EA-(pt)-cycle system of order p"
for all p" = 1(mod 2t) such that

no_ 200
p l>t(t 1).

1

p—1" 2 (1)

Proof. We consider the sequence A = (ap = 0, ay, ..., a;) of elements of F,» so
defined: foralli =1,...,7r — 1 we set

ai =a;_1 +xj_y withx;_| € Bi_| := Cit_l — A
where A;_1 ={a; —ax |0< j <k <i—1},

and
ar =a,—1 +x,_ withx,_y € B_j :=C|_; — Ay,
where Ay = {h(a; —aj) —a,;1 |10<h<p—-1,0<i<j=<t—1}

Firstly, we prove that such a sequence exists, namely that B; | # ¢ forall i =
I,..., 1. Byhypothesis 2= > (p — 1)"“Z1 ‘which implies |C'| > (p — D2, 1t



6 A. Benini and A. Pasotti

is easy to check that |A;_{| = i(iz_l) < (’_1)20_2),50 Bi_1 # @foralli=1,...,t—1.
Moreover, |Ay| < (p — 1)@ + 1 and note that, for instance, 0 and —x( are two
elements of Ay, which do not lie in Ct’_l. Hence B,_| # @ too.

Now we have to prove that the sequence A defined as above satisfies Conditions
a) and b) of Lemma 3.2.

Since D := {a; —aj—1 | 1 <i <1t} = {xo,x1,...,x_1}, where x; € C! for any
i=0,...,t— 1, Condition a) is satisfied.

Now we deal with Condition ). Reasoning by contradiction, we suppose that
there exist 71,7, j with0 < h < p—-1,0<i < j <t—1suchthata —a; =
ha; = h(a;—1 + x,—1), thatis hx,_y = (a; —aj) — ha;—y. If h # 0 then x,_; =
h=Y(a; —aj)—a;_1,butx;_1 € B;_y. A contradiction. If 2 = 0 thena; = a; implies
Xj_1 =a; —a;_1, again a contradiction, since x;_; € B;_j. O

We observe that the previous Condition (1) is always satisfied when ¢ < n. In
this case, obviously under the necessary condition p" = 1(mod 2t), we are able to
give a concrete construction for an EA-cycle system.

Construction 3.4. Case t < n. Weconsider thesequence A = (ag = 0, ay, ap, ..., ar)
defined by the rule ¢; = a;_; +g'~! fori = 1,...,r, where g is a primitive ele-
ment of F,». We want to prove that B = [ag, a1, ay, ..., a;—1]s is a (pt)-cycle. By
Remark 2.4, it is sufficient to show that the elements of {ag, ai, ..., a;_1} belong
to different cosets of the additive group (a,). Reasoning by contradiction, let i, j
with 0 <i < j <t — I such that ¢; — a; = wa; for a suitable @ € F,. Namely
g+ +g " =a(l+g+..+g" 1), butit cannot happen since g is primitive and
t < n.Ttiseasytoseethatd; B = (—1)-{1, g, g2, ..., g~ '}. Hence, by taking a com-
plete system S of representatives for the cosets of (—1) in C’, using Corollary 2.3 it
follows that 7 = {s- B | s € S} is the set of base cycles for an EA-(K pn, C)p;)-design.

Proposition 3.5. Let ¢ = p?" be an odd prime power, where r > 1. There exists an
EA-(pt)-cycle system of order q for every odd integer t dividing p® — 1.

Proof. Letq —1 = p" — 1 = 2et, with r as in the statement. Let g be a primitive
element of I, and set & = g%¢. Starting from the construction of Theorem 1.3, now
we are able to construct an EA-(pt)-cycle system of order g.

We consider the closed trail C; = [g', g'e, g'e2, ..., g'e!~ l]xl wherex; =gl (g — 1)
(1 — &'~y and i is taken modulo e. We want to prove that C; is a ( pt) cycle for all
i € Z,. By Remark 2.4, it is sufficient to show that the elements of {g’, g'¢, g'e ,
g'e'~1} belong to different cosets of the additive group < x; > for alli € Z . In
other words, we have to prove that, forany A € F, and forany 0 < j <k <t —1

g —e)y£agig— DA —¢""  Vi=0,...,e=2 )
and also

gl —ely £ 0l —gha — &7, 3)
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Reasoning by contradiction, we assume that in (2) theequality holds forsome 2 € F),
andsome 0 < j <k <t — 1. If » = 0, then e = ¢/ results in a contradiction. If
ek _gJ

e
1 o n
ment of F, we obtain F,(¢) = Fq. On the other hand, by hypothesis, Zd—:} divides

A # 0, we obtain g = A~ e T+ 1, hence g € F,(¢). Since g is a primitive ele-

2¢ — ¢ belongs to the proper subfield of F, of order p?, that
isF,(e) C IFy, again a contradiction.

In a similar way we can show that (3) is also satisfied.

Now, we consider the set 7 = {C; | i € Z.}. It is easy to check that 0| F = F,
thus, by Corollary 2.3, F is the set of base cycles of an EA-(pt)-cycle system of
order q. |

There exist parameters which satisfy Proposition 3.3 but not Proposition 3.5 (see
Table 1) and also vice versa (see Table 2).

On the other hand, Proposition 3.3 and Proposition 3.5 are not complemen-
tary. In fact there are EA-cycle systems whose existence is guaranteed by both these
results (see Table 3) and others whose existence is guaranteed by neither Proposition
3.3 nor Proposition 3.5 (see Table 4).

Of course Condition (1) of Proposition 3.3 is certainly satisfied when ¢ =
1 (see also Theorem 1.2) and r+ = 2. Moreover, if + = 3 Proposition 3.3 gives
the existence of an EA-3p-cycle system of order p" for every prime p such that
p" = 1l(mod 6) with (p,n) # (5,2),(7,2). On the other hand, we have a di-
rect construction for an EA-15-cycle systems of order 25 (see Example 2.5) and

Table 1.
p 3 5 7 11 11 13 13 13 17 17 17 23 23 23
n 6 5 4 6 6 4 8 8 4 8 8 4 6 6
t 7 11 5 45 63 15 238 510 15 290 870 5 91 143
Table 2.
p 3 5 7 7 7 7 7 11 11 19 19 19 19
n 6 6 2 6 6 10 10 2 4 2 4 6 6
t 13 31 3 57 171 2801 8403 5 15 9 45 381 3429
d 3 1 3 3 5 5 1 2 1 2 3 3
Table 3.
p 3 5 7 7 7 7 11 11 11 19 19 19 19
n 8 4 3 6 6 6 6 6 6 4 4 4 4
t 5 3 3 3 9 19 3 5 15 3 5 9 15
d 4 2 1 3 3 3 2 2 2 2 2 2 2
Table 4.
p 3 3 5 5 5 7 7 7 11 11 13
n 4 8 2 4 8 4 6 8 6 6 4
t 5 41 3 13 313 15 43 1201 105 315 119
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Proposition 3.5 ensures the existence of an EA-21-cycle system of order 49. Besides,
if we consider the case of + = 4, again Proposition 3.3 ensures the existence of
an EA-4p-cycle system of order p" for every prime p such that p” = 1(mod 8)
with (p,n) # (5,2),(7,2),(11,2), (13, 2),(17,2), (19, 2). Anyway, we have di-
rectly checked the existence of such cycle systems. Hence we can conclude with the
following:

Proposition 3.6. There exists an EA-(pt)-cycle system of order p" for every prime p
such that p" = 1(mod 2t) witht =1,2,3,4andt < p”‘l.

3.2. Case: p Does Not Divide k

In the following, by adapting a known construction for perfect cyclic cycle systems
(see [12]), we are able to give a construction method for perfect elementary abelian
k-cycle systems of order p” where p is not a divisor of k. Note that in this case
condition ¢) of Proposition 3.1 becomes p" = 1(mod 2k). Hence we consider only
the case of k even, since the case of k odd has already been solved (see Theorem 1.3).

Construction 3.7. Let ¢ = p" = 1 (mod 2k) be a prime power, where k = 2¢¢ with
e > landr odd. Let ¢ be a primitive ¢-th root of unity in F, and let (xo, x1, ..., X2¢_1)
be a 2¢-tuple of elements of Iy belonging to pairwise distinct cosets of < & >. Let
A = (ag, ay, ..., ar_1) be the k-cycle defined by the rule

aj = &'x, for j=2%+4r, 0<r<?2¢ 0<j<k-—1
or, more explicitly,

A= (X0, X1, .00, X261, EXQy EX]yvvry EXDE_]yunn, St_lxo, Et_lxl, ceey Et_lxze_l).

Now, foranyi = 1, ..., k/2, we consider the multiset A; A of all the i-differences of
A and the list L; of the first 2¢ i-differences, thatis L; = {ap+; —an |0 < h <2°—1}.
It is easy to see that A;A = (—¢) - L;, where (—¢) is the group of 2¢-th roots of unity
inF,.

Let I be a subset of{l, 2,0, %‘} containing 1. If L; results in a complete system
of representatives for the cosets of C2 in IF; foralli € I then, taking a complete sys-
tem S of representatives for the cosets of (—¢) in C% and setting F = {s- A | s € S},
we have A;F = S-AjA =S -(—¢)-L; =C¥ . L; = ]Fj Hence, by Theorem
2.2 (note that in this case 9; A = A; A), F is the set of base cycles of an I-perfect
EA-(K,, Cy)-design.

Of course, applying Construction 3.7 is the more difficult the larger e and |/|
are. We are able to obtain some results in the following two different cases: (e =
1I={1,2,46,....5—1pand (e > 1,1 = {1}.
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3.2.1. Casee=1

Proposition 3.8. Let ¢ = p" = 1 (mod 2k) be a prime power and let I = {1, 2,4,
6,..., % — l}. For all k = 2 (mod 4), with k # 2, there exists an I-perfect EA-
(K, Cy)-design.

Proof. Letk = 2t, t odd, and let ¢ be a primitive k/2-th root of unity in . Follow-
ing Construction 3.7, we have to find a pair of elements from two different cosets
of (g) C F(’;, say (xq, x1), in such a way that x| — xg and exy — x; belong to different

cosets of C? = ]FqD - F;. We want to prove that there exists an a € ]qu such that

(1, ate ) is a suitable pair.

Firstly, we observe that xg = 1 belongs to (¢) and we can always find an x; =

)
[% |a GFEH = E > % = |(g)|. Secondly, we note that

ate
a+1

¢ (g), because

X1 —X0 = 77 Land exg—x; = at— belong to different cosets of F-, g being in ]Fm
At this point, Construction 3.7 makes us sure that

F={s(l,x1,8 ex1, 8%, &x1,..., 6> 1 k2= 1x )| s € 8}
is the set of base cycles of an EA-(K,, Cy)-design, S being a complete system of
representatives for the cosets of (—e¢) in IFqD.

Finally, note thatifx; € qu then the designis 7-perfect, where I = {1, 2,4,6, ...,
k/2 — 1}. In fact for any i € I we have

AF =8 <—e>{x? =D, e? = 1) =FJ - {x1 (e = 1), 6 — 1} = F}.

Actually, we can prove that such a choice is always possible. In fact, we know
thatx) € A = {w |a e Iqu } and that A has size q—;l. By way of contradiction we

a+1
assume that all the elements of A are squares, so A = IE‘qD since they have the same
size. But 1 is a square which does not liec in A. The assertion follows. |

Example 3.9. {1, 2, 4}-perfect EA-(Kg;, C19)-design

As an explicit example, we apply the above proposition to get a {1, 2, 4}-perfect
EA-(K3g, Cqp)-design.

InFg) = Z3[x]/ 4, 42 Wechoose x asa primitive element and & = x!'¢ = 2x3+
x—+2 asaprimitive 5-th root of unity in Fg;. Asin Proposition 3.8 weset: xo = 1 € (¢),

a=23+x2+x=xP e Fg and, consequently, x; = Zﬁ = x ¢ (¢). Moreover,

we note that x; —xg = x +2 = x* ¢ ]FSE'1 while exg —x; = 203 +2=x¥ ¢ Fg
So, considering the cycle

4

C=(,x,¢,¢x, 82’52%53’ 83x, I3 ,54x)

and assuming the set § = {1, x%, x* x%} as a complete system of representatives

for the cosets of (—¢) in IE“SDI, we can say that F = {C, x2C, x*C, x°C} is a set of
base cycles of an EA-(Kg;, Cyp)-design B. Also, since x; = x is a non-square, B is
a {1, 2, 4}-perfect EA-10-cycle system of order 81.
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3.2.2. Casee > 1

Proposition 3.10. Let g = 1(mod 2k) be a prime power, where k = 2°t withe > 1 and
t odd. There exists an EA-k-cycle system of order q for any g > 2*~1[(2¢ — )¢ —
(¢ =3)] =2t +1.

Proof. Let g be a primitive element of I, and let ¢ be a primitive ¢-th root of unity
inF,. Let (X1, X2, ..., X¢e_1). be the solution of the system

x2 —xp =g — De
x3—x3=g>(x; — e

Xpeo] = Xpe—p = g% 2(x1 — e
& — Xpe_| = g2 _l(xl —Dec

where ¢ is a fixed element of C2*. Note that such a solution exists if and only if
D=1 —l—cZi:_ll g" # 0. 1In this case, foranyi = 1,...,2° — 1 we have

i—1 2]
e+ ec Zlh:] gh +cD gh

i =

D
It is not hard to see that (X1, X2, ..., X2e_1)¢; = (X1, X2, ..., X2e_1)¢, if and only if
¢1 = c3. So, for any fixed ¢ in C* provided D # 0, the set L = {¥; — 1, % —
X1y ..., Xpe_] — Xpe_3, & — Xpe_1} results in a complete system of representatives for

the cosets of C% in IF;. Now, let A be the closed trail

A=(1,%], ..., %0e_1,8& 68Xy 6801, &V e %, e e ).

We want to prove that A is a k-cycle with vertices in [, namely that there exists

an element ¢ € C> such that D # 0, X, # O forany £ = 1,...,2¢ — I, and

X, ii-ij_l ¢ (e)yforany £ =1,...,2°—1land 1 < j < i < 2¢ — 1. Note that,

for any fixed £ = 1,...,2¢ — 1, there is exactly one value of ¢ € C* giving ¥, = 0
and there are at most 1 = |(g)| values of ¢ € C% giving X, X; -)Ej_l € (e) for each
¢ =1,...,2¢ — 1 and for each pair (i, j) with 1 < j < i < 2° — 1. On the other
hand, it is easy to see that x; # 1 # x», Xy 2 eforany £ = 1,...,2° — 1 and
Xi ~)E/T1 # 1forany 1 < j <i <2¢— 1. Thus, among the values of C2* we have to
take off at most

2°42(t —2) + 2°=3)(t—1) + (t—1)=21Q2 - 1)r—(2°=3)] - 2

(2°=1)(2°-2)
2
. e -1
elements. By the hypothesis on ¢, |C%| = QT > 2¢7 ¢ = e — 2° = 3)] — 2.
Hence the assertion follows from Construction 3.7. |
Of course, the bound determined in the previous proposition is as sharp as possible.

Nonetheless, in the same way as in Proposition 3.10, we are able to construct an
EA-(K3g, Cyp)-design, even if 81 # 105.
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Example 3.11. EA-(Kg;, Cyo)-design
In Fg; = Z3[x]/ 41,42 We choose x as a primitive element and ¢ = x16 =

2x3 + x + 2 as a primitive 5-th root of unity in Fg;. As in Proposition 3.10, we
consider the system

xy —x1 =g(x — e
x3—x2 = g*(x; — De
e—x3=g(x; — e

Fixing ¢ = | we obtain the solution

x? 4 2x 42 17 224+ x+1 7
M=3 "7, 1" =35 1%
x> +xc+x+1 x> +xc+x+1

XHxr41
X3 =

- =X
3 4+x24+x+1

40 36

It is easy to check that none of the xlxgl =x ,xlxgl = x"°, xzxgl = x70 belongs

to (¢). So, assuming § = {1, x*} as a complete system of representatives for the
cosets of (—¢) in C*, we can state that

F = {s(1,x1, x2, X3, & X18, X268, X3¢, ..., ¥, x16%, xo6*, x36%) | 5 € S}

is the set of base cycles of an EA-(Kgy, Cyp)-design.

4. Elementary Abelian Cycle Systems of K, x s

In this section we propose some results about elementary abelian cycle systems of
the complete multipartite graph.

As far as the authors are aware, at the moment the only known result about
regular cycle systems of K, is the following (see [10] and [26])

Theorem 4.1. A cyclic k-cycle system of K« exists if and only if

(m,k) #(3,3) and (m,k) # (0, 1)(mod 2), (2,2)(mod 4), (3,2)(mod 4).

Also, it is obvious that removing all lines having a fixed direction from the affine
plane of order ¢ one gets a transversal design T D(q, q) (for the well known con-
cept of a transversal design one can see, e.g., [4]) that equivalently can be seen as an
EA-(Kgxq, K4)-design. So we can state:

Proposition 4.2. There exists an EA-(K pn y pn, K pn)-design for every prime p.

We start determining a necessary condition for the existence of an EA-cycle
system of K, 5.
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Proposition 4.3. If an EA-(K,; x5, Ck)-design exists, then

a) ms = p" where p is a prime andn > 1;
b) k <ms;
¢) ps(m —1) = 0(mod 2k).

Proof. Of course |V (K, «xs)| must be a prime power, so let ms = p” where p is a
prime and n > 1. Hence a) is satisfied. Obviously condition b) is true. To conclude,
we prove ¢). For the same reason as in Proposition 3.1, p”~! must be a divisor of
the number p"(g_;—s) of blocks of the required design. Hence %k_l) must be an
integer. 0

Example 4.4. EA-(K>x4, C4)-design

Let the vertices of K»44 be the elements of Zg. We choose the following parti-
tion of the vertex-set {{000, 001, 010, 011}, {100, 101, 110, 111}}. Now, it is easy to
see that the cycles

C1=1000, 101Jo10, C>=[101,001]g10, C5=[000, 110]p19, C4=[001, 100]o10

form an EA-(K»y4, C4)-design.

While it is trivial that a (K, «s, C)-design together with a (K, Cy)-design gives
a (K5, Cy)-design, the following seems not.

Proposition 4.5. If there exist an EA-(K x5, Ci)-design and an EA-(K, Cy)-design,
then there also exists an EA-(K,,s, Cy)-design.

Proof. Let A and B be an EA-(K,,xs, Cr)-design and an EA-(Kj, Cy)-design,
respectively, and let Py, P, ..., P, be the parts of K,,«. For any positive inte-
ger n, let us denote by I, the set {1, 2, ..., n}. By hypothesis ms = p" for some odd
prime p where n > 1, so m = p’ and s = p” for suitable integers ¢ and r. Since
A and B are elementary abelian, V (K, x;s) = Zif’ and V(K,) = Z!,. Without loss
of generality we can assume that the m parts of K, are the cosets of Z; in Z’;”.
Namely, {g1, g2, ..., &} being a complete system of representatives for the cosets
of Z!, in Z;“, P =7, + g, foranyi € I.
Ofcourse f; : x € V(K;) — x+g; € V(Kp,) resultsin an isomorphism between
Ky and K p, foranyi € I,,. Hence, for any k-cycle B € B we can see that f; (B) results
again in a k-cycle. Since F; = { f;(B) | B € B} is an EA-k-cycle system of K p, for any
i € I, it is not hard to see that AU F| U F> U ...U F, is an EA-(K,,s, Ci)-design.
O

Theorem 4.6. Let p be an odd prime. If there exist an EA-(K pi  pr, K pu)-design and
an EA-(K pu, Cy)-design then there also exists an EA-(K pi  pr, Cy)-design.

Proof. Let Abe an EA-(K -, K pu)-design and let {Ky, ..., Ky} be a set of rep-
resentatives for the Z;j”-orbits on A. As above, by I,, we denote the set {1, 2, ..., n}.
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By hypothesis there exists an EA-(K;, Cx)-design B;, for every i € I,. For any arbi-
trary block I' of A, there exist g € Z;,“ and i € I, such that ' = K; + g, hence
Bi+g=1{B+g|B e B;}isan EA-(T", Cy)-design, say Br. It is not hard to see that
B = Ure Br is an EA-(K i 7, Ci)-design. O

From Theorem 4.6 and Proposition 4.2, applying suitable propositions from
Section 3, we can also state the following

Proposition 4.7. There exists an EA-(K pn y pn, Cpt)-design for every prime p such that
p" = 1(mod 2t) witht = 2,3,4 andt < p"~!. (cfr. Proposition 3.6).

Proposition 4.8. There exists an EA-(K pny pn, Cpi)-design for any prime p such that
p" = 1(mod 2t) with % > ’ZOT_I) (cfr. Proposition 3.3).

Proposition 4.9. Let p" = p? be an odd prime power, where r > 1. There exists an
EA-(K pny pn, Cpt)-design for every odd integer t dividing p¢ — 1 (cfr. Proposition
3.5).

Proposition 4.10. There exists an EA-(K pnx pn, Ci)-design for any prime p such that
p" = 1(mod 2k) and any k = 2(mod 4), with k # 2 (cfr. Proposition 3.8).

Proposition 4.11. Let g = 1(mod 2k) be a prime power, where k = 2t with e > 1
and t odd. There exists an EA-(K x4, Ci)-design for any q > 2Ze=lp(2e — 1)y — (2¢ —
3)] — 2¢*1 4 1 (cfr. Proposition 3.10).

Acknowledgements. The authors are grateful to Prof. Marco Buratti for helpful suggestions
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