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ABSTRACT
We give a randomized 2n+o(n)-time and space algorithm for
solving the Shortest Vector Problem (SVP) on n-dimensional
Euclidean lattices. This improves on the previous fastest al-
gorithm: the deterministic Õ(4n)-time and Õ(2n)-space al-
gorithm of Micciancio and Voulgaris (STOC 2010, SIAM J.
Comp. 2013).

In fact, we give a conceptually simple algorithm that solves
the (in our opinion, even more interesting) problem of dis-
crete Gaussian sampling (DGS). More specifically, we show
how to sample 2n/2 vectors from the discrete Gaussian distri-
bution at any parameter in 2n+o(n) time and space. (Prior work
only solved DGS for very large parameters.) Our SVP result
then follows from a natural reduction from SVP to DGS.

In addition, we give a more refined algorithm for DGS
above the so-called smoothing parameter of the lattice, which
can generate 2n/2 discrete Gaussian samples in just 2n/2+o(n)

time and space. Among other things, this implies a 2n/2+o(n)-
time and space algorithm for 1.93-approximate decision SVP.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Computations on dis-
crete structures

General Terms
Algorithms
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1. INTRODUCTION
A lattice L is defined as the set of all integer combinations

of some linearly independent vectors b1, . . . , bn ∈ Rn. The
matrix B = (b1, . . . , bn) is called a basis of L, and we write
L(B) for the lattice generated by B.

Perhaps the most central computational problem on lat-
tices is the Shortest Vector Problem (SVP). Given a basis for
a lattice L ⊆ Rn, SVP is to compute a non-zero vector in L of
minimum Euclidean norm.

Starting in the ’80s, the use of approximate and exact solvers
for SVP (and other lattice problems) gained prominence for
their applications in algorithmic number theory [25], coding
over Gaussian channels [12], cryptanalysis [45, 10, 24], com-
binatorial optimization and integer programming [26, 21, 14].
Over the past decade and a half, the study of lattice problems
greatly increased due to newly found applications in cryp-
tography. Many powerful cryptographic primitives, such as
fully homomorphic encryption [15, 8, 9], now have their se-
curity based on the worst-case hardness of approximating the
decision version of SVP (and other lattice problems) to within
polynomial factors [2, 32, 42, 7].

From the computational complexity perspective, much is
known about SVP in both its exact and approximate ver-
sions. On the hardness side, SVP was shown to be NP-hard
to approximate within any constant factor (under random-
ized reductions) and hard to approximate to within a fac-
tor of nc/ log log n for some constant c > 0 under reasonable
complexity assumptions [28, 22, 18]. From the perspective of
polynomial-time algorithms, the celebrated LLL basis reduc-
tion gives a 2O(n) approximation algorithm for SVP [25], and
Schnorr’s block reduction algorithm [44], with subsequent
refinements [3, 34], gives a rn/r approximation in 2O(r)poly(n)
time allowing for a smooth tradeoff between time and ap-
proximation quality.

As one would expect from the hardness results above, all
known algorithms for solving exact SVP, including the ones
we present here, require at least exponential time and some-
times also exponential space (and the same is true even for
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polynomial approximation factors). We mention in passing
that despite running in exponential time, these algorithms
have practical importance in addition to the obvious theoret-
ical importance. For instance, they are used for assessing the
practical security of lattice-based cryptographic primitives,
they are used as subroutines in the best current approxima-
tion algorithms (variants of block reduction), and they are
used in some applications where low-dimensional lattices
naturally arise.

While the state of the art for polynomial-time approxima-
tion of lattice problems has remained relatively static over
the last two decades, the situation for exact algorithms has
been markedly different. Indeed, three major (and very dif-
ferent) classes of algorithms for SVP have been developed.

The first class, developed by Kannan [21] and refined by
many others [19, 17, 35], is based on combining strong ba-
sis reduction with exhaustive enumeration inside Euclidean
balls. The fastest current algorithm in this class solves SVP
in Õ(nn/(2e)) time while using poly(n) space [17].

The next landmark algorithm, developed by Ajtai, Kumar,
and Sivakumar [3] (henceforth AKS), is the most similar to
this work. AKS devised a method based on “randomized
sieving,” whereby exponentially many randomly generated
lattice vectors are iteratively combined to create shorter and
shorter vectors, to give the first 2O(n)-time (and space) ran-
domized algorithm for SVP. Many extensions and improve-
ments of their sieving technique have been proposed, both
provable [4, 33, 41, 27] and heuristic [38, 48, 49, 6, 23], where
the fastest provable sieving algorithm [41] for exact SVP re-
quires 22.465n+o(n) time and 21.233n+o(n) space. It was ob-
served by [27, 30, 47] that AKS can be modified to obtain
a 20.802n+o(n)-time and 20.401n+o(n)-space algorithm for ap-
proximating SVP to within some large constant factor. Here
2.401n+o(n) corresponds to the best known upper bound on
the n-dimensional “kissing number” (the maximum num-
ber of points one can place on the unit sphere such that the
pairwise distances are ≥ 1) due to Kabatjanskiı̆ and Lev-
enšteı̆n [20].

The most recent breakthrough, due to Micciancio and Voul-
garis [34] (henceforth MV) and built upon the approach of
Sommer, Feder, and Shalvi [46], is a deterministic Õ(4n)-time
and Õ(2n)-space algorithm for SVP. It uses the Voronoi cell
of the lattice—the centrally symmetric polytope correspond-
ing to the points closer to the origin than to any other lattice
point.

Main contribution.
As our main result, we give a randomized 2n+o(n)-time

and space algorithm for exact SVP, improving on the Õ(4n)
deterministic running time of MV. A second main result is
a much faster 2n/2+o(n)-time (and space) algorithm that ap-
proximates the decision version of SVP to within a small con-
stant factor.

Our 2n+o(n)-time algorithm actually solves a more difficult
problem, namely, that of generating discrete Gaussian sam-
ples from a lattice with arbitrary parameter, as we describe
below. We feel that this is even more interesting than the
improved running time for SVP, and it should have further
applications. As far as we are aware, outside of security re-
ductions having access to powerful oracles, this is the first

provable algorithm to use the discrete Gaussian directly to
solve a classical lattice problem.

Discrete Gaussian samplers.
Our first main technical contribution is an algorithm for

the Discrete Gaussian Sampling Problem (DGS), which will
directly imply our SVP algorithm. Below, we give an infor-
mal description of this result. (See Section 3 for the details.)
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Figure 1: The discrete Gaussian distribution on Z2 with
parameter s = 10 (top) and s = 4 (bottom)

Define ρs(x) = e−π‖x‖2
2/s2

and ρs(A) = ∑y∈A ρs(y) for any
discrete set A ⊆ Rn. The discrete Gaussian distribution DL,s
over the lattice L ⊆ Rn with parameter s is the distribution
satisfying

Pr
X∼DL,s

[X = x] = ρs(x)/ρs(L), ∀x ∈ L.

See Figure 1 for an illustration. The parameter s determines
the “width” of the discrete Gaussian. Note that as s becomes
smaller, DL,s becomes more and more concentrated on short
lattice vectors. Hence it should not come as a surprise that
being able to obtain sufficiently many samples from DL,s for
an arbitrary s leads to a solution to SVP. We will discuss this
relatively natural reduction below, but first let us describe
our main technical contributions, the Gaussian samplers.

THEOREM 1 (GENERAL DGS, INFORMAL). There is an al-
gorithm that takes as input a lattice L ⊂ Rn and any parameter
s > 0 and outputs 2n/2 i.i.d. samples from DL,s using 2n+o(n)

time and space.

Notice the amortized aspect of the algorithm: we obtain
2n/2 vectors in about 2n time. We do not know how to re-
duce the time to 2(1−ε)n —even if all we want is just one
vector! (But see below for a faster algorithm that works for
large parameters.) Improving the running time of the algo-
rithm (while still outputting a sufficiently large number of
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samples) would immediately translate into an improved SVP
algorithm.

As we explain below, a closer inspection of the technique
used in our algorithm suggests that with some refinement
it might be able to achieve a running time of 2n/2. Indeed,
we actually do achieve this, but only for sufficiently large
parameters s. This is our second main technical contribution.

THEOREM 2 (SMOOTH DGS, INFORMAL). There is an al-
gorithm that takes as input a lattice L ⊂ Rn and a parameter
s above the smoothing parameter of L and outputs 2n/2 i.i.d.
samples from DL,s using 2n/2+o(n) time and space.

The smoothing parameter is the value of s above which
DL,s “looks like” a continuous Gaussian in a certain precise
mathematical sense. (See Definition 2.) While sampling above
smoothing is apparently not enough to solve exact lattice
problems, it is enough to solve major lattice problems ap-
proximately. Indeed, we show how this is sufficient to ap-
proximate the decision version of SVP to within a constant
factor in time 2n/2+o(n) (with the constant being roughly 1.93).
This holds the record for the fastest provable running time of
a hard lattice problem.

1.1 Comparison with prior work
The task of discrete Gaussian sampling is by no means

new. It by now has a long history within cryptography [32,
16, 42, 39, 31]. Gentry, Peikert, and Vaikuntanathan first showed
how to solve DGS in polynomial time for large parameters.
DGS has been used extensively to improve reductions from
worst-case lattice problems (such as approximate decisional
SVP) to the average-case Short Integer Solution (SIS) and Learn-
ing with Errors (LWE) problems [32, 42, 39, 31], and as a
core subroutine for instantiating certain cryptographic prim-
itives [16]. In all previous works, the DGS procedure either
samples at very high parameters or requires a priori knowl-
edge of a relatively short lattice basis—typically only available
when a user is able to generate the lattice themselves, such
as in certain trapdoor schemes—or access to powerful oracles,
such as SIS or LWE oracles.

Furthermore, even with oracles and a short basis, none of
the algorithms from prior work could be used to sample be-
low the smoothing parameter of the lattice. The reason that we
are able to achieve this is because of our observation that, if
we allow ourselves exponential time, we can carefully com-
bine vectors sampled from a discrete Gaussian together to
obtain vectors whose distribution is exactly a discrete Gaus-
sian with a smaller parameter. (See Lemma 3 and the proof
overview below.) All prior work only obtained a distribution
that is statistically close to the discrete Gaussian, with error
that is unbounded below the smoothing parameter.

We note that our approach is similar to that of the AKS
algorithm at a high level. In particular, like AKS, we use
a sieve algorithm that starts with a large collection of ran-
domly selected vectors and proceeds to combine them to-
gether in pairs to find short lattice vectors. The major impor-
tant difference between our approach and that of the AKS al-
gorithm and its derivatives is that we maintain complete con-
trol over the distribution of the lattice points that we generate
at each step. While prior work is focused (quite naturally) on
controlling the lengths of the vectors after each step, our al-
gorithm actually completely ignores their lengths—choosing
whether to combine two vectors based only on their coset
mod a sublattice.

Indeed, we view our 2n+o(n)-time algorithm as an efficient
discrete Gaussian sampler that consequently yields an effi-
cient solution to SVP, rather than as a sieve algorithm for
SVP. It is the simplicity and elegance of the discrete Gaus-
sian distribution that allows us to side-step many of the com-
plications that arise with other sieve algorithms (such as the
“perturbation” step). Indeed, the 2n+o(n)-time algorithm is
quite simple; the most technical tool that it uses is a simple
subroutine that we call the “square sampler” (described be-
low).

One negative aspect of our approach is that it has a clear
lower bound. It seems that we cannot use this approach to
find any algorithm that runs in time less than 2n/2. And, the
quoted running time of each algorithm (2n+o(n) and 2n/2+o(n)

respectively) is essentially tight in both theory and practice—
for large (and relevant) parameters, our sieves yield essen-
tially nothing when their input consists of fewer than 2n or
2n/2 vectors respectively. This is in contrast to AKS-style al-
gorithms, which seem to perform well heuristically [38, 48,
49, 23].

1.2 Proof overview
We now include a high-level description of our proofs, first

that of Theorem 1 and then that of the more refined Theo-
rem 2. We end with a brief discussion of how to use Gaussian
samples to solve SVP as well as other applications.

A 2n+o(n)-time combiner for DGS.
Recall that efficient algorithms are known for sampling from

the discrete Gaussian at very high parameters [16]. It there-
fore suffices to find a way to efficiently convert samples from
the discrete Gaussian with a high parameter to samples with
a parameter lowered by a constant factor. By repeating this
“conversion” many times, we can obtain samples with much
lower parameters.

Note that this is trivial to do for the continuous Gaussian:
if we divide a vector sampled from the continuous Gaussian
distribution by 2, the result is distributed as a continuous
Gaussian with half the width. Of course, half of a lattice vec-
tor is not typically in the lattice, so this method fails spectac-
ularly when applied to the discrete Gaussian. But, we can try
to fix this by conditioning on the result staying in the lattice.
I.e., we can sample many vectors from DL,s, keep those that
are in the “doubled lattice” 2L, and divide them by two. This
method does work, but it is terribly inefficient—there are 2n

cosets of 2L, and for some typical parameters, a sample from
DL,s will land in 2L with probability as small as 2−n. I.e.,
our “loss factor,” the ratio of the number of output vectors to
the number of input vectors, can be as bad as 2−n for a sin-
gle step. If we wish to iterate this k times, we could need 2kn

input vectors for each output vector, resulting in a very slow
algorithm!

We can be much more efficient, however, if we instead look
for pairs of vectors sampled from DL,s whose sum is in 2L, or
equivalently pairs of vectors that lie in the same coset c mod
2L. Taking our intuition from the continuous Gaussian, we
might hope that the average of two such vectors will be dis-
tributed as DL,s/

√
2. This suggests an amortized algorithm,

in which we sample many vectors from DL,s, place them in
“buckets” according to their coset mod 2L, and then take
the average of disjoint pairs of elements in the same bucket.
We call such an algorithm a “combiner.” The most natural

735



combiner to consider is the “greedy combiner,” which sim-
ply pairs as many vectors in each bucket as it can, leaving
at most one unpaired vector per bucket. Since there are 2n

cosets, if we take, say, Ω(2n) samples from DL,s, almost all
of the resulting vectors will be paired. A lemma due to Peik-
ert ([40]) shows that the resulting distribution will be statis-
tically close to the desired distribution, DL,s/

√
2, provided that

the parameter s is above the smoothing parameter.
At this point, we can already build a roughly 2n-time al-

gorithm for DGS that works for such parameters. (Namely,
use prior work to sample at some very high parameter and
iteratively apply the combiner described above.) While this
is not our main result (it is strictly weaker), we note that we
have not seen this observation mentioned elsewhere.1 But,
in order to move below smoothing (which is necessary, e.g., for
solving SVP), we need to do something else.

Even Odd

-4 -2 2 4

-4

-2

2

4

Figure 2: The lattice L∗ = {(z1, z2) ∈ Z2 : z1 = z2 mod 2}.
Note that when we rotate this lattice by 45◦, (z1, z2) 7→
(z1 + z2, z1− z2)/

√
2, we obtain (

√
2Z)2. Our combiner cre-

ates samples from DL∗ ,s and then outputs (z1 + z2)/2. The
resulting distribution is exactly D

Z,s/
√

2.

In particular, below the smoothing parameter, combining
discrete Gaussian vectors “greedily” as above will not typi-
cally give a result that is statistically close to a Gaussian dis-
tribution. However, all is not lost. Recall that our algorithm
works by picking pairs of vectors sampled independently
from DL,s that are in the same coset c mod 2L, and then tak-
ing the average of each pair. So, the algorithm effectively
samples from some distribution over the 2n-dimensional lat-
tice of pairs of vectors from L that are in the same coset mod
2L,

L∗ := {(X1, X2) ∈ L2 : X1 = X2 mod 2L} =
⋃

c∈L/(2L)
c× c .

Furthermore, when we take the average of a vector pair from
L∗, (X1, X2) 7→ (X1 + X2)/2, we can view this as a projec-
tion of the 2n-dimensional rotation (X1, X2) 7→ (X1 +X2, X1−
1One can likely also obtain a 2O(n)-time algorithm for DGS
above the smoothing parameter by instantiating the oracles
in [31].

z
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Figure 3: The distribution of averages of pairs of inte-
gers sampled from D

Z,
√

2 resulting from taking (1) only
even pairs; (2) only odd pairs; (3) even and odd pairs with
“greedy” weights proportional to ρ√2(2Z) and ρ√2(2Z+ 1)
respectively; and (4) even and odd pairs with “squared”
weights proportional to ρ√2(2Z)2 and ρ√2(2Z+ 1)2 respec-
tively. The fourth distribution is exactly DZ.

X2)/
√

2, scaled down by a factor of
√

2. Since the projected
rotation of a Gaussian is again a Gaussian, it follows that the
average of a vector pair sampled from DL∗ ,s has exactly the
distribution that we want, DL,s/

√
2. This fact has a straight-

forward proof, yet we have not seen this observation before.
(This fact is closely related to Riemann’s theta relations, as
described in [37, Chapter 1, Section 5]. See Lemma 3 for a
short algebraic proof and Figure 2 for an illustration of the ro-
tation applied to the one-dimensional lattice L = Z.) How-
ever, note that if the combiner just greedily paired as many
vectors from each coset as possible, it would not yield the cor-
rect distribution. In particular, the probability that a sample
from DL∗ ,s will land in c× c for some coset c is proportional
to the “squared weight” of the coset ρs(c)2. But, the greedy
approach pairs vectors from c with probability roughly pro-
portional to ρs(c). (Figure 3 shows how the resulting distri-
butions differ in the one-dimensional case.) For parameters
above smoothing, these distributions are roughly the same,
but to go below smoothing (and to avoid the statistical er-
ror resulting from the greedy approach), we need a way to
sample pairs from this “squared distribution” directly.

This mismatch between the “squared distribution” that we
want and the “unsquared” distribution that we get is the pri-
mary technical challenge that we must overcome to build our
general discrete Gaussian combiner. To solve it, we present
a generic solution for “converting any probability distribu-
tion to its square” relatively efficiently, which we call the
“square sampler.” Informally, the square sampler is given
access to samples from some probability distribution that as-
signs respective (unknown) probabilities (p1, . . . , pN) to the
elements in some (large) finite set {1, . . . , N}. It uses this to
efficiently sample a large collection of independent coin flips
bi,j such that bi,j = 1 with probability proportional to pi.
Then, using these coins, it applies rejection sampling to the
input samples (accepting the jth instance of input value i if
bi,j = 1) in order to obtain the desired “squared distribution.”
If Pr[bi,j = 1] = Tpi for some proportionality factor T, it is
not hard to see that the expected “loss factor” of this process
is T ∑ p2

i . We therefore take T to be as large as possible by set-
ting T ≈ 1/ max pi (if we took T to be any larger, we would
need a coin that lands on heads with probability greater than
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one!), making the loss factor of the square sampler approxi-
mately ∑ p2

i / max pi.
In particular, when combining discrete Gaussian vectors,

the loss factor is approximately the collision probability over
the cosets c of 2L, ∑ ρs(c)2/ρs(L)2, divided by the maximal
probability of a single coset. As a result, if one coset has a
2−n/2 fraction of the total weight and the other cosets split
the remaining weight roughly evenly, then the loss factor is
roughly 2−n/2 for a single step of the combiner. This looks ter-
rible for us, as it could be the case that k applications of the
combiner could yield a loss factor of 2−kn/2! Surprisingly, we
show that the product of all loss factors for an arbitrarily long
sequence of applications of the combiner is at worst 2−n/2

(ignoring loss due to other factors). I.e., the accumulated loss
factor can be no worse than essentially the worst-case loss
factor in a single step!2 As a result, our general combiner al-
ways returns 2n/2 vectors when its input is 2n+o(n) vectors
sampled from the discrete Gaussian. (See Corollary 1 for the
formal analysis of repeated application of our combiner.)

A 2n/2+o(n)-time combiner for DGS above smoothing.
Recall that the general combiner described above starts with

many vectors and then repeatedly takes the average of pairs
of vectors that lie in the same coset of 2L. We observed
that this combiner necessarily needs over 2n vectors “just
to get started” because it works over the 2n cosets of 2L.
To get a faster combiner, we therefore try pairing vectors
according to the cosets of some sublattice L′ that “lies be-
tween” L and 2L such that 2L ⊆ L′ ⊂ L. If we simply
take many samples from DL,s, group them according to their
cosets mod L′, and sum them together (taking averages is
a bit less natural in this context), analogy with the continu-
ous Gaussian suggests that the resulting vectors will be dis-
tributed as roughly DL′ ,

√
2s. Note that the parameter has in-

creased, which is not what we wanted, but we are now sam-
pling from a sparser lattice. In particular, suppose that we
apply this combiner twice, so that in the second step we ob-
tain vectors from some sublattice L′′. We then expect to ob-
tain samples from roughly DL′′ ,2s. So, intuitively, if we take
L′′ to be a sublattice of 2L, we have “made progress,” even
though we have doubled the parameter. Our running time
will be proportional to the index of L′ over L (assuming that
the index of L′′ over L′ is the same), so we should take the
index of L′ over L to be as small as possible. More specif-
ically, we can build a “tower” of progressively sparser lat-
tices (L0, . . . ,L`) with the index of Li over Li−1 taken to be
slightly larger than 2n/2.3 If we take L` to be the lattice from
which we wish to obtain samples with parameter s and L0 to
be a dense lattice from which we can sample efficiently with
parameter 2−`/2s, we can hope that iteratively applying such
a combiner “up the tower” will yield a sampling algorithm.

As in the description of our 2n-time combiner, the lemma
from [40] shows that the above approach, when instantiated
with the “greedy combiner,” will yield an algorithm that can
output vectors whose distribution is statistically close to the

2While the purely algebraic proof of this fact is quite simple
(see the proof of Corollary 1), we do not yet have good intu-
itive understanding of it. Indeed, we have found ourselves
referring to it as the “magic cancellation.”
3We note that Becker et al. [6] also use a tower of lattices in
their heuristic algorithm.

discrete Gaussian for parameters s that are above the smooth-
ing parameter. Though this statistical distance can be made
small, it is large enough to break applications such as our
approximation algorithm for decision SVP.

To avoid this error, the natural hope is that the same com-
biner used in the 2n-time algorithm above (the one with the
“square sampler”) will suffice. Unfortunately, this gives the
wrong distribution. In particular, we obtain a distribution in
which the cosets of L′ over 2L have weight that is propor-
tional to the square of their weights over the discrete Gaus-
sian. (See the full version for the technical details [1]. Note
that when L′ = 2L there is only one such coset, which is
why our 2n-time combiner does not run into this problem.)
In some sense, this is the “inverse” of the problem that the
square sampler solves. And, indeed, we solve it by build-
ing a “square-root sampler”—based on a clever trick (used
implicitly in [36] and discussed in [13]) that allows one to
flip a coin with probability

√
p given black-box access to a

coin with unknown probability p. So, our combiner works
by “squaring the weights” of the cosets mod L′ of input vec-
tors; pairing them according to these squared weights and
summing the pairs; and then “taking the square root of the
weights” of the cosets mod 2L of the resulting output vec-
tors.

This completes the description of the proof of Theorem 2.
The above only works above the smoothing parameter be-
cause the required size of the input to the square-root sam-
pler depends on 1/pmin, where pmin is the probability of land-
ing in the coset with minimal weight. We therefore only
know how to use the square-root sampler to efficiently sam-
ple above the smoothing parameter, where the minimal weight
is roughly equal to the maximal weight. Indeed, in this regime,
both the square-root sampler and the square sampler incur
“almost no loss,” so that we obtain an algorithm that runs
in time 2n/2+o(n) and returns 2n/2 samples from the discrete
Gaussian. But, below this, 1/pmin can be arbitrarily large.
(Intuitively, some sort of dependence on 1/pmin is necessary
for a square-root sampler because a coset whose weight is
negligible could have significant weight after we “take the
square root.” So, we should expect that any square-root sam-
pler would need at least enough samples to “see” such a
coset.)

However, we again stress that our techniques do not incur
error that depends on “how smooth the distribution is.” This
leaves open the possibility that our algorithm might be mod-
ified to work even below smoothing. The only bottleneck is
that the square-root sampler requires very large input in such
cases. But, we note that the way that we currently use the
square-root sampler might not be optimal. More specifically,
we observe the rather strange behavior of our current algo-
rithm: when the algorithm “takes the square root” of some
coset weights, it typically “squares” the weights of some (dif-
ferent!) cosets immediately afterwards. So, while the second
step is not the exact inverse of the first, it does still seem that
the square-root step is a bit counterproductive. This suggests
that there is room for improvement in this algorithm, and we
have made some progress to that end by proving a correla-
tion inequality that we believe should play a central role in
such an improved algorithm [43].

Reduction from SVP to DGS.
As mentioned above, if we could efficiently sample from

DL,s at the right parameter, we can hope that a DL,s sample

737



will hit a shortest non-zero vector of Lwith reasonable prob-
ability. One can quickly see here that there is an important
trade-off in the choice of s. For s too small, the discrete Gaus-
sian becomes completely concentrated on 0, whereas for s
too large, the distribution becomes too diffuse over L and
will rarely hit a shortest vector. By properly choosing s, we
show that the discrete Gaussian yields a shortest non-zero
lattice vector with probability 2−0.465n−o(n). Since our DGS
algorithm returns 2n/2 vectors in time 2n+o(n), we obtain a
2n+o(n)-time algorithm for SVP.

In order to obtain this bound, we use the result of Ka-
batjanskiı̆ and Levenšteı̆n that achieves the current best up-
per bound on the kissing number [20]. (The kissing number
bounds from above the maximal number of shortest non-
zero vectors in a lattice. Note that the reciprocal of the lat-
ter is a natural upper bound on the above probability.) At a
high level, this is essentially the same problem faced by the
randomized sieving algorithms, and our techniques are very
similar to those developed there (in particular those in [41,
33]).

Reduction from decision SVP to DGS above smooth-
ing.

In order to approximate the length of the shortest non-zero
lattice vector to within a constant factor, we note that it suf-
fices to approximate the smoothing parameter of the dual lat-
tice (for exponentially small ε) to within a constant factor. Of
course, if we had a 2n/2-time discrete Gaussian sampler that
worked above smoothing and always failed below smooth-
ing, then it would be trivial to use this to approximate the
smoothing parameter. However, while our 2n/2+o(n)-time
sampler does in fact always work above smoothing, it is not
a priori clear how it behaves when asked to provide samples
below smoothing.

We handle this problem as follows. First, while we cannot
guarantee that our sampler always fails below smoothing,
we show (with a bit more work) that it always either fails
or outputs valid discrete Gaussian samples. We call such a
sampler “honest.” Second, we show a simple test that can
distinguish between the discrete Gaussian distribution with
parameter slightly above smoothing and the discrete Gaus-
sian with parameter below smoothing. With this, we obtain
an O(1)-approximation algorithm for the smoothing param-
eter that runs in 2n/2+o(n) time.

Further applications.
Based on an embedding trick of Kannan [21] and standard

concentration bounds on the discrete Gaussian, we show how
to use our sampler to solve 1.97-approximate CVP in time
2n+o(n). The reductions of [29] show that this yields the same
approximation factor and running time for almost all lattice
problems.

Also, our algorithm from Theorem 2 gives 2n/2+o(n)-time
algorithms for .422-BDD and O(

√
n log n)-approximate SIVP.

1.3 Conclusions and open problems
We have devised a novel randomized method for solving

lattice problems more efficiently based on DGS. We believe
that our techniques may lead to further algorithmic progress
for lattice problems, as well as provide new tools within cryp-
tography and cryptanalysis.

Our work raises many questions and potential avenues for
improvement. Firstly, we suspect that the algorithm from
Theorem 2 can be modified to work for an arbitrary param-
eter s with the same running time of roughly 2n/2 (at least
to sample a single vector). Such a result would subsume
Theorem 1 and would lead to an improved algorithm for
SVP, as well as other problems. We have made some modest
progress towards proving this, but a solution still seems far.s

Secondly, one may broadly ask what other uses a discrete
Gaussian sampler that works below smoothing has. As such
an algorithm has not existed previously, this question has re-
ceived very little attention until now. Indeed, solving exact
SVP and approximate CVP are in some sense the most ob-
vious applications, but we suspect it to have many applica-
tions.

A more general open problem is whether SVP can be solved
in singly exponential time but only polynomial space. The
best running time known for polynomial-space algorithms is
the nO(n) obtained by enumeration-based methods [21, 19,
17, 35].

Organization
In this extended abstract, we sketch the proof of the general
DGS algorithm (see 3) and the SVP algorithm (see Theorem 4
and Corollary 2).

2. PRELIMINARIES
Let N = {0, 1, . . . , }. Except where we specify otherwise,

we use C, C1, and C2 to denote universal positive constants,
which might differ from one occurrence to the next. We use
bold letters x for vectors and denote a vector’s coordinates
with indices xi. Throughout the paper, n will always be the
dimension of the ambient space Rn.

2.1 Lattices
A rank d lattice L ⊂ Rn is the set of all integer linear com-

binations of d linearly independent vectors B = (b1, . . . , bd).
B is called a basis of the lattice and is not unique. Formally,
a lattice is represented by a basis B for computational pur-
poses, though for simplicity we often do not make this ex-
plicit. If n = d, we say that the lattice has full rank, and
we often assume this as results for full-rank lattices naturally
imply results for arbitrary lattices.

Given a basis, (b1, . . . , bd), we write L(b1, . . . , bd) to de-
note the lattice with basis (b1, . . . , bd). The length of a short-
est non-zero vector in the lattice is written λ1(L). For a vector
t ∈ Rn, we write dist(t,L) to denote the distance between t
and the lattice, miny∈L(‖t− y‖).

2.2 The discrete Gaussian distribution
For any s > 0, we define the function ρs : Rn → R as

ρs(t) = exp(−π‖t‖2/s2). When s = 1, we simply write ρ(t).
For a discrete set A ⊂ Rn we define ρs(A) = ∑x∈A ρs(x).

Definition 1. For a lattice L ⊂ Rn and a vector t ∈ Rn, let
DL+t,s be the probability distribution over L+ t such that the
probability of drawing x ∈ L+ t is proportional to ρs(x). We
call this the discrete Gaussian distribution over L + t with
parameter s.

We make frequent use of the discrete Gaussian over the
cosets of a sublattice. If L′ ⊆ L is a sublattice of L, then the
set of cosets, L/L′ is the set of translations of L′ by lattice
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vectors, c = L′ + y for some y ∈ L. It is easily seen from the
Poisson summation formula that for any c ∈ L/L′, ρs(L′) ≥
ρs(c), i.e., the zero coset has maximal weight (see, e.g., [5]).
We use this fact throughout the paper. In particular, it follows
that ρs(L)/ρs(L′) ≤ |L/L′|.

Banaszczyk proved the following two bounds on the dis-
crete Gaussian [5].

LEMMA 1 ([5, LEMMA 1.4]). For any lattice L ⊂ Rn and
s > 1,

ρs(L) ≤ snρ(L) .

LEMMA 2 ([11, LEMMA 2.13]). For any lattice L ⊂ Rn,
s > 0, u ∈ Rn, and t ≥ 1/

√
2π,

Pr
X∼DL+u,s

[‖X‖ > ts
√

n] <
ρs(L)

ρs(L+ u)
(√

2πet2 exp(−πt2)
)n .

Definition 2. For a lattice L ⊂ Rn and ε > 0, we define the
smoothing parameter ηε(L) as the unique value satisfying
ρ1/ηε(L)(L

∗ \ {0}) = ε.

We note that if L′ ⊆ L, then ηε(L) ≤ ηε(L′), and we have
ηε(sL) = sηε(L). The name smoothing parameter comes
from the following fact.

CLAIM 1. For any lattice L ⊂ Rn and ε ∈ (0, 1), if s ≥
ηε(L), then for all t ∈ Rn,

ρs(L+ t)
ρs(L)

≥ 1− ε

1 + ε
.

2.3 The Gram-Schmidt orthogonalization
Given a basis, B = (b1, . . . , bn), we define its Gram-Schmidt

orthogonalization (b̃1, . . . , b̃n) by

b̃i = π{b1,...,bi−1}⊥ (bi) .

Here, πA is the orthogonal projection on the subspace A and
{b1, . . . , bi−1}⊥ denotes the subspace orthogonal to b1, . . . , bi−1.

2.4 Lattice problems
The following problem plays a central role in this paper.

Definition 3. For ε ≥ 0, σ a function that maps lattices to
non-negative real numbers, and m ∈ N, ε-DGSm

σ (the Dis-
crete Gaussian Sampling problem) is defined as follows: The
input is a basis B for a lattice L ⊂ Rn and a parameter
s > σ(L). The goal is to output a sequence of m vectors
whose joint distribution is ε-close to Dm

L,s.

We omit the parameter ε if ε = 0, the parameter σ if σ =
0, and the parameter m if m = 1. We stress that ε bounds
the statistical distance between the joint distribution of the
output vectors and m independent samples of DL,s.

Definition 4. The search problem SVP (Shortest Vector Prob-
lem) is defined as follows: The input is a basis B for a lat-
tice L ⊂ Rn. The goal is to output a vector y ∈ L with
‖y‖ = λ1(L).

2.5 Starting the sampler
In the sequel, we show a Gaussian “combiner” that takes

many samples from DL,s and returns samples from DL,s/
√

2.
In order to turn this into a sampling algorithm, we will need
to “initialize” it by obtaining Gaussian samples with some
high parameter σ, using, for example, the algorithm of Gen-
try, Peikert, and Vaikuntanathan [16] or the modest strength-
ening in [7]. In particular, we would like to simply use such
algorithms to solve DGSσ for σ < 2poly(n) · λ1(L), so that we
can then apply our combiner poly(n) times to solve DGSs for
s ≈ λ1(L) and therefore solve SVP. Unfortunately, this does
not work. Such algorithms only allow us to sample from
DL,σ if all of the Gram-Schmidt vectors of some input basis
are smaller than ≈ σ. We cannot hope to achieve this even
for σ = 2poly · λ1(L). Indeed, there may not even be such a
basis! Instead, we show that we can sample from a sublattice
for which we can find such a basis, and we show that this
sublattice contains all of the “short” lattice points. The proof
is in the full version.

PROPOSITION 1. There is an algorithm that takes as input a
lattice L ⊂ Rn with n ≥ 2, 2 ≤ r ≤ O(n), M ∈ N (the desired
number of output vectors), and s > 0 and outputs a sublattice
L′ and M independent samples from DL′ ,s in time (2O(r) + M) ·
poly(n). The sublattice L′ contains all vectors in L of length at
most r−n/rs. Furthermore, if

s ≥ (Cr)n/r ·
√

n log n · η0.99(L) ,

then L′ = L.

3. SAMPLING FROM THE DISCRETE GAUS-
SIAN

3.1 A discrete Gaussian combiner
Ideally, we would like the average of two vectors sampled

from DL,s to be distributed as DL,s′ for some s′ < s. Unfor-
tunately, this is false for the simple reason that the average
of two lattice vectors may not be in the lattice! The follow-
ing lemma shows that we do obtain the desired distribution
if we condition on the result being in the lattice. The num-
ber of vectors that we output will depend on the expression
∑ ρs(c)2 where c ranges over all cosets of 2L over L, so we
analyze this expression as well. (Note that, for two lattice
vectors X1 and X2, we have (X1 + X2)/2 ∈ L if and only if
X1 and X2 are in the same coset over 2L. So, the cosets of 2L
arise naturally in this context.)

LEMMA 3. Let L ⊂ Rn and s > 0. Then for all y ∈ L,

Pr
(X1,X2)∼D2

L,s

[X1 + X2 = 2y|X1 + X2 ∈ 2L] = Pr
X∼DL,s/

√
2

[X = y] .

(1)

Furthermore,

∑
c∈L/(2L)

ρs(c)2 = ρs/
√

2(L)
2 .

PROOF. Multiplying the left-hand side of (1) by

Pr
(X1,X2)∼D2

L,s

[X1 + X2 ∈ 2L] = ρs(L)−2 ∑
c∈L/(2L)

ρs(c)2 ,
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we get for any y ∈ L,

Pr
(X1,X2)∼D2

L,s

[(X1 + X2)/2 = y] =
1

ρs(L)2 · ∑
x∈L

ρs(x)ρs(2y− x)

=
ρs/
√

2(y)

ρs(L)2 · ∑
x∈L

ρs/
√

2(x− y)

=
ρs/
√

2(y)

ρs(L)2 · ρs/
√

2(L)

=
ρs/
√

2(L)
2

ρs(L)2 Pr
X∼DL,s/

√
2

[X = y] .

Hence both sides of (1) are proportional to each other. Since
they are probabilities, they are actually equal. In particu-
lar, the ratio between them, ∑c∈L/(2L) ρs(c)2/ρs/

√
2(L)

2, is
one.

In the full version, we show how to use rejection sampling
to sample from the conditional distribution in Lemma 3 to
obtain the following result [1].

PROPOSITION 2. There is an algorithm that takes as input a
lattice L ⊂ Rn, κ ≥ 2 (the confidence parameter), and a sequence
of vectors from L, and outputs a sequence of vectors from L such
that, if the input consists of M ≥ 10κ2 · ρs(L)/ρs(2L) indepen-
dent samples from DL,s for some s > 0, then the output is within
statistical distance M exp(C1n− C2κ) of m independent samples
from DL,s/

√
2 where m is a random variable with

m ≥ M · 1
32κ
·

ρs/
√

2(L)
2

ρs(L)ρs(2L)
.

The running time of the algorithm is at most M · poly(n, log κ).

By calling the algorithm from Proposition 2 repeatedly, we
obtain a general discrete Gaussian combiner.

COROLLARY 1. There is an algorithm that takes as input a
lattice L ⊂ Rn, ` ∈N (the step parameter), κ ≥ 2 (the confidence
parameter), and M = (32κ)`+12n vectors in L such that, if the
input vectors are distributed as DL,s for some s > 0, then the
output is a sequence of 2n/2 vectors whose distribution is within
statistical distance `M exp(C1n − C2κ) of independent samples
from DL,2−`/2s. The algorithm runs in time `M · poly(n, log κ).

PROOF. Let X0 = (X1, . . . , XM) be the sequence of input
vectors. For i = 0, . . . , ` − 1, the algorithm calls the proce-
dure from Proposition 2 with input L, κ, and Xi, receiving
an output sequence Xi+1 of some length Mi+1. Finally, the
algorithm outputs the first 2n/2 vectors of X` (or fails if there
are not enough vectors).

The running time is clear. Fix L, s, and `. For convenience,
let ψ(i) := ρ2−i/2s(L). Note that by Lemma 1 we have that
1 ≤ ψ(i)/ψ(i + 1) ≤ 2n/2 for all i, a fact that we use repeat-
edly below. We wish to prove by induction that Xi is within
statistical distance iM exp(C1n− C2κ) of DMi

L,2−i/2s with

Mi ≥ (32κ)`−i+1 · 2n/2 ψ(i)
ψ(i + 1)

(2)

for all i.
Since M0 = M = (32κ)`+12n and ψ(0)/ψ(1) ≤ 2n/2, it fol-

lows that (2) holds when i = 0. Suppose that Xi has the cor-
rect distribution and (2) holds for some i with 0 ≤ i < `. No-
tice that the right-hand side of (2) is at least 10κ2ψ(i)/ψ(i+ 2)

and that the latter is precisely the lower bound on Mi appear-
ing in Proposition 2. We can therefore apply the proposition
and the induction hypothesis, and obtain that (up to statisti-
cal distance at most (i + 1)M exp(C1n− C2κ)), Xi+1 has the
correct distribution with

Mi+1 ≥ Mi ·
1

32κ
· ψ(i + 1)2

ψ(i)ψ(i + 2)
≥ (32κ)`−i · 2n/2 ψ(i + 1)

ψ(i + 2)
,

as needed.
The result follows by noting that M` ≥ 2n/2ψ(`)/ψ(` +

1) ≥ 2n/2.

3.2 A general discrete Gaussian sampler

THEOREM 3. There is an algorithm that solves 2−Ω(κ)-DGS2n/2

in time 2n+polylog(κ)+o(n) for any κ ≥ Ω(n).

PROOF. On input L ⊂ Rn a lattice, s > 0, and κ ≥ Ω(n),
the algorithm behaves as follows. First, it runs the sampler
from Proposition 1 on L with parameters r, ŝ = 2`/2s, and
M = (32κ)`+2 · 2n, with r and ` to be set in the analysis. It re-
ceives as output a sublatticeL′ ⊆ L and vectors X1, . . . , XM ∈
L′. It then runs the combiner from Corollary 1 with input L′,
`, κ, and X1, . . . , XM and outputs the result.

The running time of the first stage of the algorithm is (2O(r)+
M) · poly(n) by Proposition 1, and by Corollary 1, the run-
ning time of the second stage is M` · poly(n, log κ). Setting
` = 4dlog κ + log2 ne and r = n/ log n, it follows that the
running time is as claimed. Applying the proposition and
corollary again, we have that the output is within statistical
distance exp(−Ω(κ)) of D2n/2

L′ ,s . Furthermore, we have that L′

contains all vectors of length at most r−n/r ŝ >
√

κs.
It remains to prove that DL′ ,s is within statistical distance

exp(−Ω(κ)) of DL,s. Notice that DL′ ,s is a restriction of the
distribution DL,s to L′ and hence the statistical distance be-
tween these two distributions is

Pr
X∼DL,s

[X ∈ L \ L′] < Pr
X∼DL,s

[‖X‖ >
√

κs] < exp(−Ω(κ)) ,

as needed, where we used Lemma 2.

4. SOLVING SVP IN 2N+O(N) TIME
In the full version, we prove the following, using the bound

on the “kissing number” from [20].

PROPOSITION 3. Let L ⊂ Rn be a lattice of rank at least one.
Let

s =

√
2πe
β2n
· λ1(L) ,

where β := 20.401. Then,

Pr
X∼DL,s

[‖X‖ = λ1(L)] ≥ e−β2n/(2e)−o(n) ≈ 1.38−n−o(n) .

Using this, we obtain our SVP algorithm.

THEOREM 4. There is a reduction from SVP to 1
2 -DGS2n/2

.
The reduction makes O(n) calls to the DGS oracle, preserves the
dimension of the lattice, and runs in time 2n/2 · poly(n).
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PROOF. Let D be an oracle solving 1
2 -DGS2n/2

. We con-
struct an algorithm solving SVP as follows. It first runs a
polynomial-time algorithm to obtain d such that λ1(L) <
d < 2n · λ1(L). For i = 0, . . . , 100n, the algorithm calls D
on L with parameter si = 1.01−i · d. Let xi be a shortest non-
zero vector in the output. Finally, the algorithm outputs a
shortest vector among the xi.

The running time of the algorithm is clear. Note that there
exists some i such that ŝ ≤ si ≤ 1.01ŝ where ŝ =

√
πe/n ·

20.099 · λ1(L) (i.e., ŝ is the parameter from Proposition 3). We
assume that the output of D is exactly D2n/2

L,si
when called on

si, incurring statistical distance at most 1/2. For such i, by
Lemma 1 we have

Pr
X∼DL,si

[‖X‖ = λ1(L)] ≥ 1.01−n · Pr
X∼DL,ŝ

[‖X‖ = λ1(L)]

≥ 1.4−n−o(n) .

The result follows by noting that 1.4 <
√

2, so 2n/2 samples
from DL,si will contain a shortest vector with probability at
least 1− exp(−Ω(n)).

COROLLARY 2. There is an algorithm that solves SVP in time
2n+o(n).

PROOF. Combine the reduction from Theorem 4 with the
algorithm from Theorem 3.
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