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Abstract. Evolutionary processes such as hybridisation, lateral gene transfer, 
and recombination are all key factors in shaping the structure of genes and 
genomes. However, since such processes are not always best represented by trees, 
there is now considerable interest in using more general networks instead. For ex­
ample, in recent studies it has been shown that networks can be used to provide 
lower bounds on the number of recombination events and also for the number of 
lateral gene transfers that took place in the evolutionary history of a set of molec­
ular sequences. In this paper we describe the theoretical performance of some 
related bounds that result when merging pairs of trees into networks. 

1. Introduction 

Although phylogenetic trees have proven an invaluable tool in studying 
evolution [5], it is now well-accepted that in certain circumstances they 
may not provide an appropriate representation of the evolutionary history 
of organisms (see e.g. [12]). For example, hybridisation, lateral gene transfer, 
and recombination all constitute important evolutionary processes that may 
not be best represented using trees. As a result there has been increasing 
interest in how to represent such processes using phylogenetic networks 
(cf. e.g. [4,6,11,16]). In this setting, we expect that the following concept 
introduced in [2] will prove useful (see also [7, 9, 11, 16, 17] where related 
concepts are presented). 

A hybrid phylogeny or hybrid 1-l ( on a finite set X) is an ordered pair 
(D; ¢,) consisting of a rooted acyclic digraph D = (V, A) and a bijective map 
¢, from X into the set of vertices of V with out-degree zero such that the 
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Fig. 1. A hybrid 1-{ with label set X = {1, 2, 3, 4} and root p. This hybrid has 
hybridisation number 2. Since we will always draw hybrids with arcs directed 
downwards away from the root, in this and all subsequent figures we omit the 
arrow heads of the arcs. 

root has out-degree at least two and, for all vertices v E V - ¢,(X) with 
d-(v) = 1, we have d+(v) ~ 2 (cf. Fig. 1). If JXI = 1, then the digraph 
consisting of a single-root vertex v together with the mapping from X into 
{ v} is also defined to be a hybrid phylogeny on X. The set X represents a 
collection of organisms and is called the label set of 1i. Vertices of in-degree 
at least two are called hybridisation vertices. These vertices represent an 
exchange of genetic information between organisms that we will generically 
call hybridisation events. For a hybrid 1-l on X with root p, the hybridisation 
number of 1-l, denoted h(1-l), is the value 

h(1-l) = ~)d-(v) -1). 
vcpp 

One of the main problems when studying the evolution of certain organ­
isms is to estimate the number of hybridisation events that took place in 
their past, and much work has been done in this direction for recombination 
events (see e.g. (7, 10, 15, 17)), and also some for lateral gene transfer events 
[9, 11]. Indeed, it is well-known that bounds on the number ofrecombination 
events can be obtained by merging trees into networks [14, 16]. In this pa­
per, our main goal is to better understand related bounds for hybridisation 
numbers that can be computed using pairs of trees. 

To describe our main result, we first require some more definitions. Given 
a set X as above, a rooted binary phylogenetic X -tree 7 is a rooted tree 
whose root has degree two and all other interior vertices have degree three, 
and whose leaf set is X (cf. (13)). If IXI = 1, then the rooted tree consisting 
of a single-root vertex labelled by the element in X is a rooted binary 
phylogenetic X-tree. The set X is called the label set of 7 and it is sometimes 
denoted by ,C(T). For technical reasons, given a rooted tree 7, it is useful 
to define the planted tree P(T), which is the tree obtained by adding an 
additional edge to 7, called the root edge, that contains the root of 7 
together with an extra vertex (see Fig. 3 for an example). 

Now, let 7 be a rooted binary phylogenetic X-tree and let 1-l be a hybrid 
such that X <::; C(1-l). Then 1-l displays 7 if 7 is a refinement of a rooted 
subtree of 1-l. Moreover, for two rooted binary phylogenetic X-trees 7 and 
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Fig. 2. A hybrid phylogeny 1-l that displays the trees T and T'. 

T', let 

h(T, T') = min{h(1-l) : 1-l is a hybrid on X that displays T, T'}. 

For example, in Figure 2, a pair of trees T, T' is presented with h(T, T') = 1, 
and a hybrid phylogeny 1-l that displays both of these trees having hybridis­
ation number 1. The number h(T, T') should be regarded as an estimate of 
the minimum number of hybridisation events required to preserve all of the 
ancestral relationships described by T and T'. Note that if Tis isomorphic 
to T', then h(T, T') = 0 as T itself is a hybrid that displays both T and 
T'. Furthermore, if T is not isomorphic to T', then h(T, T') ~ 1. 

Pairs of trees T, T' for which h(T, T') = 1 are strongly related. In 
particular, it is not difficult to show that h(T, T') = 1 if and only if the trees 
T, T' differ by a single (non-trivial) rSPR operation, a tree rearrangement 
operation whose definition we now recall. 

Let T be a rooted binary phylogenetic X-tree and let e = { u, v} be an 
edge of T, where u is the vertex that is in the path from the root of T to 
v. Let T' be the rooted binary phylogenetic tree obtained from P(T) by 
deleting e and then adjoining a new edge f between v and the component Cu 
that contains u as follows. Create a new vertex u' which subdivides an edge 
in Cu, and adjoin f between u' and v. Then suppress the degree-two vertex 
u and delete the root edge. We say that T' has been obtained from T by a 
rooted subtree prune and regraft (rSPR) operation. For example, in Fig. 2, 
the tree T' can be obtained from T by performing a single rSPR operation 
(namely, the operation that cuts off the edge incident with the leaf labelled 
by 2 and reattaches it to the edge incident with the leaf that is labelled 
by 3). If T and T' are two arbitrary rooted binary phylogenetic X-trees, 
then it is always possible to transform T into T' by a sequence of rooted 
subtree prune and regraft operations. Moreover, the minimum number of 
rooted subtree prune and regraft operations required to transform a tree 
T into another tree T' is a metric on the set of binary phylogenetic X­
trees (see (1]). This number is called the rSPR distance and is denoted by 
d,sPR(T, T'). 

The rSPR distance has been used to provide lower bounds for the number 
of recombination events that took place in the evolutionary history of a set 
of DNA sequences (14, 16]. However, as pointed out in (16, Section 3.4] the 
rSPR distance can underestimate the number of events. In the terminology 
that we introduce above, this translates to the fact that the rSPR distance 
between two trees T and T' can underestimate h(T, T'). In this paper, we 
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will prove the following theorem that provides a more precise relationship 
between d,sPR('T, T') and h(T, T'). 

Theorem 1. Let !XI = n ~ 2, and let T and T' be two rooted binary 
phylogenetic X -trees. Then 

d,sPR('T, 7') ::; h(T, T') ::; n - 2. (1) 

Moreover, the bounds on h(T, T') in {1} are sharp and, for all n ~ 4, there 
are trees T and T' with 

h(T, T') - drsPR('T, T') = n - 2 l vnJ - c 

where c = 0 if n is a square, c = 1 if 1 ::; n - l vnJ 2 < vn, and c = 2 
otherwise. 

As can be seen from Theorem 1, d,sPR('T, T') can greatly underestimate 
h(T, T'). Thus in future it will be of importance to find better lower bounds 
for h(T, T'). 

The rest of the paper is organised as follows. In Section 2 we introduce 
our main tool, maximum agreement forests, and prove a key theorem (Theo­
rem 2) that characterises the hybridisation number in terms of this concept. 
Using this theorem, in Sections 3 and 4 we prove two results (Theorem 3 
and Corollary 1) from which Theorem 1 immediately follows. 

2. Maximum Agreement Forests 

In establishing Theorem 1, we also characterise h(T, T') for a pair 'T, T' of 
rooted binary phylogenetic X-trees in terms of a particular type of "agree­
ment forest". Agreement forests are an invaluable tool for analysing and 
understanding tree rearrangment operations such as rooted subtree prune 
and regraft as shown in (1,3]. They were introduced in a slightly different 
form in (8]. 

To state this characterization, we first need some additional definitions. 
Let T be a rooted binary phylogenetic X-tree and let X' be a non-empty 
subset of X. We denote the rooted minimal subtree of T that connects the 
vertices in X' by T(X'). Furthermore, the restriction of T to X', denoted 
TIX', is obtained from T(X') by suppressing any degree-two vertices apart 
from the root. Observe that, as Tis a binary phylogenetic tree, T\X' is also 
a binary phylogenetic tree. 

Let T and T' be two rooted binary phylogenetic X-trees. We define an 
agreement forest for T and T' as follows. For the purposes of the definition, 
we label the root of both P(T) and P(T') by p (see Fig. 3 for an example). 
Furthermore, in addition to the elements in X, we also view p as an element 
of the label set of both P(T) and P(T'). An agreement forest for T and T' 
is a collection {'Tµ, Ti, Tz, ... , 1i,}, where 1p is either the tree containing p as 
an isolated vertex, or a planted rooted tree whose label set includes p, and 
Ti, Tz, ... , 1i, are rooted binary phylogenetic trees such that the following 
hold: 
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(i) The label sets C(T,,), C(Tt), C(12), ... , C(T,,) partition X U {p }. 
(ii) For all i E {p, 1, 2, ... , k }, 7. f'c! 'T\C(Tt) :?! 'T'\C(Tt). 
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(iii) The trees in {'T(C;) : i E {p, 1, 2, ... , k}} and {'T' (C;) : i E {p, 1, 2, ... , k}} 
are vertex disjoint rooted subtrees of 'T and 'T', respectively. 

A maximum agreement forest for 'T and 'T' is an agreement forest in which 
the number of components over all agreement forests for 'T and T' is min­
imised. If {T,,, Ti, 12, ... , 'Tio} is a maximum agreement forest for 'T and 'T', 
we denote this value for k by m('T, 'T'). Observe that if, up to isomorphism, 
'T and 'T' are identical, then m('T, T') = 0. Moreover, it is shown in (3] 
that d,sPR('T, 'T') = m('T, 'T'). To illustrate these definitions, Fig. 4 shows 
a maximum agreement forest Fi for the two rooted binary phylogenetic 
trees shown in Fig. 3. 

We now introduce a particular type of agreement forest that will play 
an essential role in this paper. Again, let 'T and 'T' be two rooted binary 
phylogenetic X-trees. Let F = {T,,, Ti, 12, ... , 'Tio} be an agreement forest 
for 'T and 'T'. Let G :F be the directed graph whose vertex set is F and for 
which (T., 7j) is an arc precisely if i i- j and either 

(I) the root of 'T(C(Tt)) is an ancestor of the root of 'T(C(7j)), or 
(II) the root of T'(C(Tt)) is an ancestor of the root of T'(C(7j)). 

Note that, as Fis an agreement forest, the roots of 'T(C(Tt)) and 'T(C(7j)), 
and the roots of 'T'(C(Tt)) and 'T'(C(7j)) are not the same. We call F a 
good agreement forest if G:F does not contain a directed cycle. A maximum 
good agreement forest for 'T and 'T' is a good agreement forest in which the 
number of components over all good agreement forests 'T and 'T' is min­
imised. This number minus one is denoted by m9 ('T, T'). An example of a 
maximum good agreement forest F2 for the two trees shown in Fig. 3 is 
shown in Fig. 4. Observe that, in this figure, Fi is not a good agreement 
forest for these two trees. Since every good agreement forest is an agree­
ment forest, m('T, 'T') s; m9 ('T, 'T'). As shown by the example illustrated in 
Fig.s 3 and 4, this inequality may be strict. 

Let 'T be a rooted binary phylogenetic X-tree with vertex set V. For all 
v E V, let c( v) denote the subset of X that consists of those elements x for 
which there is a directed path in 'T from v to x. 

Theorem 2. Let 'T and 'T' be two rooted binary phylogenetic X-trees. Then 

h('T, 'T') = m9 ('T, 'T'). 

Proof. First we prove that h('T, 'T') ~ m9 ('T, 'T'). For convenience in this 
part of the proof, we will rewrite 'T and 'T' as Ti and 12· Let 1-l be a hybrid 
that displays both Ti and 12, and has the property that h(1-l) is minimised. 
Because of this minimality, it is easily seen that, for each vertex of 1-l, the 
number of incoming arcs is at most two. Let F be the forest obtained from 
1-l by deleting, for each hybridisation vertex u of 1-l, the two incoming arcs 
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Fig. 3. Two rooted binary phylogenetic trees T and T' without (above) and with 
(below) their roots labelled. 

Pe 
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Ft F2 
Fig. 4. A maximum agreement forest :F1 for T and T', and a maximum good 
agreement forest F2 for T and T'. 

and then suppressing any resulting degree-two vertex. We show by induction 
on h('l-l) that :F is a good agreement forest for Ti and 12 with h(1l) + 1 
components, thus showing that h(Ti, Ti);::: m9 (Ti, 7;,). 

If h(1l) = 0, then Ti and 12 are, up to isomorphism, identical and so 
the result clearly holds. Now let h(1l) = n ;::: 1 and assume that the result 
holds for all pairs of rooted binary phylogenetic X-trees in which h(1l) is 
at most n - 1. Let v be a hybrid vertex of 1l in which 1llc(v) is a rooted 
binary phylogenetic tree Iv on c(v). It is easily seen that there must exist 
such a vertex. Observe that Tv is a rooted binary phylogenetic subtree of 
7i and 12, and so one of the arcs coming in to v, e1 say, is used by 1l to 
display 7i and the other arc coming in to v, e2 say, is used by 1l to display 
1;,. We next define a hybrid 1l' on X, and two rooted binary phylogenetic 
X-trees T{ and T.j. 

Viewing the root p of 1l as a vertex at the end of a pendant edge adjoined 
to the orginal root, 1l' is obtained from 1l by deleting e1 and e2 , and then 
adjoining the root of Iv to p. Similarly, for each i, viewing the root p; of T; 
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as vertex at the end of a pendant edge adjoined to the original root, 'T/ is 
obtained from 'Ti by pruning the rooted subtree Tv and then adjoining the 
root of this subtree to p with a new edge. Evidently, h(7-l') == h(1-l) - 1 == 
n-1. Moreover, as 1-l displays both Ti and Ti., it is also clear by construction 
that 7-l' displays both Ji' and 'f.j. Therefore, by the induction assumption, 
the forest F' obtained from 1-l' by deleting, for each hybrid vertex u of 1-l', 
the two incoming arcs and then suppressing any resulting degree-two vertex 
is a good agreement forest for 'T{_ and T,J, with n components. 

Consider :F' and, in particular, the component 1p of :F' that contains p 
(the root label of 'T{_ and 'f.j). By the maximality of :F', the label set of 1p 
contains c(v). This is easily seen by observing that at most one tree in :F' 
has the property that its label set contains elements of c(v) and X - c(v), 
in which case this tree is /p· Now let :F be the forest obtained from :F' by 
deleting the edge joining p to the root of T,,. Since :F' is a good agreement 
forest for 'T{_ and T,J,, :F is an agreement forest for Ti and 7;.. Furthermore, 
as 7i and Ti. both contain Tv as a rooted subtree, it follows that :F is also 
a good agreement forest for 7i and Ti.. Since :F has n + 1 components, we 
deduce that h(Ti, Ti.)~ m9 (7i, 7;.). 

We now show that h('T, 'T') ~ m 9 ('T, 'T'). The proof is by induction 
on m9 ('T, 'T'). If m9 ('T, 'T') = 0, then, up to isomorphism, 'T and 'T' are 
identical and so h('T, T') ~ m 9 ('T, 'T'). Now let m 9 ('T, 'T') == k and assume 
the result holds for all pairs of rooted binary phylogenetic X-trees in which 
the minimum number of components over all good agreement forests is at 
most k. 

Let :F == {1p, Ti, Tz, ... , 'li,} be a maximum good agreement forest for 
'T and 'T'. Since :F is good, G :F has no directed cycles and so there is a 
vertex of G :F whose out-degree is zero. Without loss of generality we may 
assume that this vertex is 'li,. Note that the vertex 1p in G:F is the unique 
vertex that has in-degree zero. Since 1i, has out-degree zero in G:F, it follows 
that 1i, is a rooted subtree of both 'T and 'T'. Let Xk = X - .C('li,) and 
let :Fk == :F - {'li,}. Then it is easily checked that :Fk is a good agreement 
forest for TIXk and 'T'IXk· Since IFkl < IFI, it now follows by the induction 
assumption that there is a hybrid 1-lk on X that displays both TIXk and 
'T'IXk, and has the property that h(1-lk) ~ k-1. 

Now let 1i be the hybrid on X that is obtained from 1-lk as follows. Since 
1-lk displays TIXk and since 1i, is a rooted subtree of 'T, it is easily seen 
that there is a hybrid that can be obtained from 1-lk by adjoining 1i, with a 
new edge e that connects the root of 1i, and a new vertex that subdivides 
an edge of 1ik· Similarly, there is a hybrid that can be obtained from 1-lk 
by adjoining 1i, using a new edge e' that displays 'T'IXk. Let 1-l be the 
hybrid obtained from 1-lk by adjoining 1i, using exactly the edges e and e'. 
Evidently, 1i displays both 'T and 'T'. Furthermore, as 1i, is a rooted binary 
phylogenetic tree and the vertex of 1-l corresponding to the root of 1i, has 
in-degree two, h(1-l) ~ k. Hence h('T, 'T') ~ k = m 9 ('T, 'T'). This completes 
the proof of the theorem. D 
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3. Lower and Upper Bounds for h(T, T') 

In this section, we establish lower and upper bounds on the value of h(T, T') 
for two rooted binary phylogenetic X-trees T and T'. In particular, we prove 
the following result which is a restatement of the first part of Theorem 1. 

Theorem 3. Let IXI = n, and let T and T' be two rooted binary phyloge­
netic X -trees. Then, for all n ~ 2, 

d,sPR(T, T') :s; h(T, T') :s; n - 2. (2) 

Moreover, the bounds on h(T, T') in {2) are sharp. 

The proof of Theorem 3 is an immediate consequence of Theorem 4 and 
Propositions 1, 2, and 3. The first of these results is established in [3]. Since 
a good agreement forest for two rooted binary phylogenetic trees is also an 
agreement forest for the same pair of trees, Theorem 4 in combination with 
Theorem 2 establishes the lower bound in Theorem 3. 

Theorem 4. Let T and T' be two rooted binary phylogenetic X -trees. Then 

d,sPR(T, T') = m(T, T'). 

The next result establishes the upper bound in Theorem 3. 

Proposition 1. Let T and T' be two rooted binary phylogenetic X -trees. 
Let IXI = n, and suppose that n ~ 2. Then 

h(T, T') :s; n - 2. 

Proof. To prove the proposition, it suffices by Theorem 2 to construct a 
good agreement forest for T and T' with n - 1 components. Let X = 
{x1,x2, ... ,xn}· Let T,, be the restriction ofT to the set {P,Xn-1,Xn} and, 
for all i E {1, 2, ... , n - 2}, let Ii be the rooted phylogenetic tree consisting 
of a single vertex labelled by x;. Since T,, """T'l{P, Xn-1, Xn}, it follows that 

{T,,,7i,7;, ... ,'f,._2} 

is a good agreement forest for T and 7'. Moreover, this forest has exactly 
n - 1 components. D 

The next two propositions show that the bounds in Theorem 3 are sharp. 

Proposition 2. Let T and T' be two rooted binary phylogenetic X -trees. 
Then d,sPR(T, T') = 1 if and only if h(T, T') = 1. 

Proof. The sufficient part is established in [2]. The necessary part is straight­
forward and omitted. D 
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Fig. 5. Two rooted binary phylogenetic trees 'T and ,' on n leaves with 
h('T, ,') = n - 2. 

For the next proposition, we make use of the following lemma. 

Lemma 1. Let 'T and T' be two rooted binary phylogenetic X -trees. Let T,, 
be the rooted tree in a maximum good agreement forest :F for 'T and T' 
whose label set contains p. Then .C(T,,) n X is non-empty. 

Proof. Suppose that .C('T,,) nX is empty. Since :Fis a good agreement forest, 
there is a vertex, 1i say, of G :F \ T,, whose in-degree is zero. It now follows 
that the forest obtained from :F by adding an arc directed from T,, to the 
root of 7i is a good agreement forest for 'T and T' with one less component. 
This contradicts the maximality of :F. D 

Proposition 3. For all n _::=: 2, there exist two rooted binary phylogenetic 
X -trees 'T and 'T' with IXI = n wch that h('T, 'T') = n - 2. 

Proof. Let X = { X1, x2 , ... , Xn}, and let 'T and 'T' be the two rooted binary 
phylogenetic trees shown in Fig. 5. To establish the proposition, it suffices 
to show that m 9 ('T, T') ~ n - 2. 

Suppose that :F is a maximum good agreement forest for 'T and T'. 
Let T,, denote the tree in :F that has p as a vertex label. We begin by first 
making the following elementary, but important observations about :F: 

(i) No tree in :F has a label set that contains at least three elements of X; 
for otherwise, such a tree is not a restriction of either 'T or 'T'. 

(ii) At most one tree in :F has the property that its label set contains two 
elements of X. To see this, suppose that there are two such trees 'T; and 
'T; in :F. Since 'T; and 'T; are vertex disjoint subtrees of both 'T and 'T', it 
is easily seen that neither .C('T;) nor .C('T;) contains p. This implies that 
.C('T;) = {x;,Xj} and .C('T;) = {xk,x1} with i < j < k < l. But then, 
by considering the vertices of 'T and 'T' corresponding to the roots of 
'T; and 'T;, we deduce that G :F contains a directed cycle. Thus :F does 
indeed satisfy (ii). 

(iii) By Lemma 1, the label set of T,, contains at least one element of X. 

Combining (i)-(iii), we deduce that in :F either the label set of T,, contains 
two elements of X and the label sets of the remaining trees in :F are sin­
gletons, or the label set of T,, contains exactly one element of X and there 
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n 
Fig. 6. The rooted caterpillar tree on (1, 2, ... , n). 

is one other tree whose label set is of size two, while the label sets of the 
remaining trees in :F are singletons. In both cases, :F has precisely n - 1 
components and so m 9 ('T, 'T') = n - 2. D 

4. Bounds on the Difference Between d,.spa(T, T') and h(T, T') 

In this section, we establish the second part of Theorem 1. In particular, we 
will show that, for all X with IXI ;::: 4, there exist rooted binary phyloge­
netic X-trees 'T and 'T' such that the difference between drsPR('T, 'T') and 
h('T, 'T') is large relative to the size of X. 

For all n ~ 4, let 'T be the rooted binary phylogenetic tree with label set 
{1, 2, ... , n} as shown in Fig. 6. This tree is an example of a rooted cater­
pillar tree. For our purposes the ordering of the labels are important, thus 
we will call 'T the rooted caterpillar on (1, 2, ... , n). For a permutation rr of 
{1, 2, ... , n }, let T;, be the rooted caterpillar tree on (rr(l), rr(2), ... , rr(n)). 

Now let l be a natural number with 2 ~ l ~ I~ l, and let a and b be 
the unique non-negative integers such that n = al + b and b ~ l - 1. It is 
straightforward to deduce that 

n = (1- b) l y J + b (l y J + 1). 
Set g = l y J and, for 1 ~ j ~ l, set 

I -{((j-l)g+l, ... ,jg), ifl~j~l-b; 
1 - ((j - l)(g + 1) - (l - b), ... ,jg+ j - (l - b)), if 1- b+ 1 ~ j ~ l. 

For all j, we say that I1 is an interval. Furthermore, define 1r1 to be the 
permutation of {1, 2, ... , n} that cuts (1, 2, ... , n) into pieces corresponding 
to the intervals I1 and then rearranges the pieces in the opposite order. In 
other words, 1r1 is obtained from (I1,I1-1, ... ,I1) by removing the brackets 
around each interval. As an illustration, the rooted binary phylogenetic tree 
shown in Fig. 4 is the rooted caterpillar tree T,,3 for n = 8. 

Theorem 5. Let 'T be the rooted caterpillar tree on (1, 2, ... , n). Then, for 
all n ~ 4, we have drsPR ('T, T;,,) = l and h('T, T;,,) = n - I y l · 
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Fig. 7. The rooted binary phylogenetic tree Trr3 for n = 8. 

Proof. Since, for 1 ::'.'. j ::'.'. l, the restrictions of T to Ij, together with an 
isolated vertex labelled p form an agreement forest for T and Trr, , we have 
drsPR('T, Trr,) ::::; l. Furthermore, h(T, Trr,) :S: n - fyl since the restriction 
of the planted tree P('T) to I1 U {p} together with each of the remaining 
elements in { 1, 2, ... , n} labelling isolated vertices is a good agreement forest 
for T and Irr,. 

We now establish the reverse inequalities. Firstly, assume that :F is a 
maximum agreement forest for T and Trr, with at most l trees. If the label 
set of the tree 1p of :F containing p also contains an element x E Ir for 
some r E {1, 2, ... , l}, then all elements not contained in Ir must label an 
isolated vertex in :F. Since Ir contains at most fyl elements, :F has at least 
n - f y l + 1 components. But 2 :S: l :S: rn l and n 2 4, and so n - f y l + 1 2 
l + 1; a contradiction. Thus the tree in :F whose label set contains p consists 
of an isolated vertex. 

Since :F contains at most l trees, there must be a tree 7i say in :F 
whose label set contains an element x; E I; and an element Xj E Ij for 
different intervals I; and Ij. Without loss of generality, we may assume that 
i < j. It follows by construction that, for all x E Im and for all i ::::; m ::::; j 
with x ~ {x;, Xj }, the tree in :F whose label set contains x consists of an 
isolated vertex. But then the forest :F' obtained from :F by replacing those 
isolated vertices and 7i with the restrictions of T to Im for i ::::; m ::::; j is 
an agreement forest. Moreover, this forest contains strictly less trees than 
:F provided II;I, IIil ;:,: 2; a contradiction to the maximality of :F. In the 
remaining case, JI; I = 1, it is easily seen that there is another distinct 
pair of intervals Ii, and Ii' in which there is a tree in :F whose label set 
contains an element of each. Applying the same argument, we again deduce 
a contradiction. It follows that drsPR('T, Trr,)::::; land so drsPR('T, Trr,) = l 

To show that h(T, Irr,) ;:,: n - r Tl, assume that :Fg is a maximum good 
agreement forest for T and Trr, with at most n - fyl components. If there 
is a tree in :F9 whose label set contains elements Xi and Xj such that Xi 
and xi are in distinct intervals, then all remaining elements of X must label 
an isolated vertex in :F9 ; otherwise :F9 is not good. This implies that :F9 
contains at least n - 1 trees; a contradiction. Furthermore, as :F9 is a good 
agreement forest, there is no distinct pair Ti and Tj of trees in :F9 such that 
I.C(Ti) n I;I ;:,: 2 and I.C(Tj) n Iii ;:,: 2 for some distinct intervals Ii and Ij. 
Hence, except for one interval, h say, all elements in X - h label isolated 
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vertices in :F9 • Since h contains at most I Tl elements, :F9 contains at least 
n - IT l + 1 components. This contradiction establishes the inequality and 
thus the theorem. D 

Corollary 1. For every natural number n 2': 4, there are trees T, 1i, 12 
with n leaves such that 

h(T, 7i) 1 lnJ 
drsPR(T, 7i) = 2 2 

and 
h(T, 12) - drsPR(T, 12) = n - 2L vnJ - c 

where c = o if n is a square, c = 1 if 1 :::; n - L vnJ 2 < vn and c = 2 else. 

Proof. The result follows from Theorem 5 with 7i = 1rr2 and 12 = TrrlvnJ. 
D 

We conclude by remarking that, though the maximal difference between 
h and d,sPR can be large for large n, they are equal for n ::,'. 5. 
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