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Abstract

We present conditioned slicing as a general slicing
framework for program comprehension. A conditioned
slice consists of a subset of program statements which
preserves the behavior of the original program with re-
spect to a set of program executions. The set of initial
states of the program that characterize these execu-
tions is speci�ed in terms of a �rst order logic formula
on the input variables of the program. Conditioned
slicing allows a better decomposition of the program
giving the maintainer the possibility to analyze code
fragments with respect to di�erent perspectives. We
also show how slices produced with traditional slicing
methods can be reduced to conditioned slices. Condi-
tioned slices can be identi�ed by using symbolic execu-
tion techniques and dependence graphs.

1 Introduction

The comprehension of an existing software system
consumes from 50% up to 90% of its maintenance
time. Comprehending a software system can be de-
�ned as the process of abstracting higher level descrip-
tions of the system - which employ typical application
domain concepts and terms - from lower level descrip-
tions, like control-
ow/data-
ow oriented documents.
The goal of the abstraction process is therefore the
production of a software model that includes objects
and inter-relations from the real world domain, while
omitting less signi�cant details of the programming
domain. For years researchers have devoted their ef-
forts trying to understand how programmers compre-
hend code and several program understanding models
have been proposed. von Mayrhauser and Vans in [23]
provide a useful survey about six cognition models,
compare them, and identify the their key features.

The common feature of all cognition models is
that they employ existing knowledge to produce new
knowledge about the mental model of the software
under consideration. Both a `technical' knowledge
(knowledge of programming language, environment,
techniques, models) and a `semantic' knowledge (ap-
plication domain expertise) are used during the pro-
cess. This knowledge is exploited during the compre-
hension process for reconstructing the mapping be-
tween software descriptions at di�erent abstraction

levels. All models agree that comprehension proceeds
either top-down, or bottom-up, or a combination of
these two. The model developed by von Mayrhauser
and Vans integrates the former models as components.

The top-down model of program comprehension is
typically invoked when code under consideration is fa-
miliar. In this case a domain knowledge is available,
therefore a description of the conceptual components
of the application domain and of the way they inter-
act is provided. The programmer understands code
by exploiting this knowledge to formulate hypotheses
about the meaning of the program segments being an-
alyzed. Each hypothesis must be con�rmed by scan-
ning code for beacons. Beacons consist of pieces of
code implementing typical data structures and algo-
rithms that the programmer recognizes and correctly
associates to its current hypotheses. Hypotheses are
iteratively re�ned, producing new sub-goals to be ver-
i�ed by scanning code again. The process halts when-
ever each component of the application domain has
been identi�ed in code.

The bottom-up model of program comprehension
is vice-versa invoked when the code under consider-
ation is completely new to the programmer. The �rst
mental representation of the program she builds is
a control-
ow abstraction called the program model.
The program model is created via the chunking of
microstructures into macrostructures and via cross-
referencing. Starting from the program model, a fur-
ther model can be abstracted which maps the control-

ow knowledge about code to the real world domain
knowledge. The generation of this model proceeds
by associating single program objects of the program
model (like statements, data, blocks of statements,
subroutines, and so on) with actions and entities of
the real world. The process continues by formulating
new hypotheses to aggregate these plans into higher
order plans.

The integrated model by von Mayrhauser and
Vans [23] is based on the idea that code comprehen-
sion involves both top-down and bottom-up activities.
The process does not proceed either in the top-down
direction, or in the bottom-up, but rather continu-
ously switches between these two approaches. The in-
tegrated model includes four main components, that
are the top-down model, the situation model, the pro-



gram model, and the knowledge base. The �rst three
constitute comprehension processes while the fourth is
needed to reconstruct the �rst three. The knowledge
base stores any new and inferred knowledge, that is
used to produce the other models.

The common feature of all these models consists
of the iterative mechanism of formulating hypotheses
and validating (or refusing) them. While formulat-
ing hypotheses always requires domain knowledge and
expertise, validating them essentially means scanning
the code looking for signi�cant beacons. This can be
an expensive task : software is a complex artifact,
often composed of di�erent parts interconnected and
interacting in complex ways. Furthermore, such in-
teractions are sometimes delocalized and, as Letovsky
and Soloway [18] have established, programmers have
di�culty in understanding code with non local inter-
actions. When they scan code, programmers imple-
ment several tasks which span from tracing to chunk-
ing, from slicing and data-
ow analysis to functional
and calling dependencies analysis. All these tasks are
needed in order to dominate the complexity of soft-
ware artifacts. Chunking, for instance, is an abstrac-
tion mechanism used in bottom-up approaches which
allows code chunks to be associated with more ab-
stract descriptions. Code chunks are grouped together
to form larger chunks, until the entire program is un-
derstood. In this way a hierarchical internal seman-
tic representation of the program is built from the
bottom-up.

A technique that programmers may use when scan-
ning code for beacons is program slicing. In the orig-
inal Weiser's de�nition, program slicing consists of
�nding all statements in a program that directly or
indirectly a�ect the value of a variable occurrence.
This leads to a subset of program statements - the
slice - that captures some subset of the program be-
havior. The slice isolated is easier to be analyzed than
the original program as it represents a sub-component
of the whole program. Two main slicing de�nitions
have been introduced in literature, static slicing [25]
and dynamic slicing [16]. These techniques have been
successfully employed for program comprehension dur-
ing di�erent maintenance tasks, like program analy-
sis, testing, debugging. While static slicing is use-
ful for isolating and supporting the comprehension of
code implementinga functionality, dynamic slicing has
been used in debugging for identifying the statements
a�ecting the value of a variable on a program exe-
cution that reveals an incorrect behavior. However,
for code implementing a complex functionality which
behaves di�erently depending on the input to the pro-
gram, static slicing could produce slices that are too
large and di�cult to understand, while dynamic slic-
ing usually produce slices that can result too simple
and not signi�cant for the comprehension process.

Di�erent de�nitions of slicing have been proposed
in the literature for specifying program slices that are
correct with respect to a set of input to the program.
For example, quasi-static slicing [22] assigns a �xed
value to a subset of the input variables and analyzes
the program behavior while the other input variables
vary. Simultaneous dynamic slicing [11] combines the

use of a set of test-cases with program slicing: it ex-
tends and simultaneously applies to a set of test-cases
the dynamic slicing technique, thus selecting program
statements corresponding to a particular program be-
havior observed from speci�c test-cases. Quasi static
slicing and simultaneous dynamic slicing use two dif-
ferent approaches to specify a set of initial states of
the program with respect to which the behavior of the
function can be observed. However, some function be-
havior could be characterized by relations between in-
put values that cannot be expressed by a pre�x of the
input or by a set of test cases. In order to identify pro-
gram slicing corresponding to any function behavior,
a more general model which allow the speci�cation of
any initial state of the program is required. This can
be done using a �rst order logic formula which maps
a subset of the input program variables onto a set of
initial states to the program. We call conditioned slice
the slice obtained by adding such a condition on the
input variables to the slicing criterion [5].

In this paper the role of conditioned slicing as a gen-
eral program comprehension framework that includes
all slicing paradigms is described. In section 2 static
and dynamic slicing are recalled by describing their
use in program comprehension. Section 3 outlines the
need in program comprehension for identifying func-
tion behaviors with respect to a set of input to the
program. In section 4 a formal de�nition of condi-
tioned slicing is presented and its use as general slicing
framework is outlined. Techniques for �nding condi-
tioned slices are also introduced. Concluding remarks
are discussed in section 5.

2 Program Slicing
Program slicing has been introduced by Weiser [25]

as a program decomposition technique based on the
analysis of the control and data 
ow. Experimental
studies show that most programmers try to identify
program bugs by using slices of the program composed
of statements which a�ect the computation of inter-
est [24]. A survey about program slicing techniques
and their applications can be found in [21].

In this section we describe two basic approaches to
program slicing, called static slicing [25] and dynamic
slicing [16]. The di�erence between them is that a
static slice is de�ned with respect to all the execution
paths of the program (both feasible and infeasible),
while a dynamic slice only takes into account a par-
ticular execution path obtained from one input to the
program.

2.1 Background

A one-entry/one-exit program can be modeled as a
graph, whose nodes represent program statements and
whose edges represent transfer of the control. In this
section some basic de�nitions about 
owgraph analy-
sis are recalled.

De�nition 2.1 A digraph is a tuple G = (N;E), where
N is a set of nodes and E � N � N is a set of edges.
A path from node n to node m of length k is a list of
nodes hp1; p2; : : : ; pki such that p1 = n, pk = m, and
8i; 1 � i � k � 1; (pi; pi+1) 2 E.



De�nition 2.2 A 
owgraph is a triple FG = (N;E; n0),
where (N;E) is a digraph, n0 2 N , and 8n 2 N there
is a path from n0 to n.

De�nition 2.3 A hammock graph is a quadru-
ple HG = (N;E; n0; ne), with the property that
(N;E; n0) and (N;E�1; ne) are both 
owgraphs,
where E�1 = f(m;n) j (n;m) 2 Eg.

In the following we will associate any one-entry/one-
exit program P with its set of variable V and a ham-
mock graph HG = (N;E; n0; ne).

A program path from the entry node n0 to the exit
node ne is feasible if there exist some input values
which cause the path to be traversed during program
execution1. A feasible path that has actually been
executed for some input can be mapped onto the val-
ues the variables in V assume before the execution of
each statement. Such a mapping will be referred to as
state trajectory [25]. An input to the program univo-
cally determines a state trajectory.

De�nition 2.4 A state trajectory of length k of a pro-
gram P for input I is a �nite list of ordered pairs
T = h(p1; �1); (p2; �2); : : : ; (pk; �k)i, where pi 2 N ,
1 � i � k, hp1; p2; : : : ; pki is a path from n0 to ne,
and �i, 1 � i � k, is a function mapping the variables
in V to the values they assume immediately before the
execution of pi.

2.2 Static Slicing

Weiser [25] de�nes a static program slice as any
executable subset of program statements which pre-
serves the behavior of the original program at a pro-
gram statement for a subset of program variables.

De�nition 2.5 A static slicing criterion of a program
P is a tuple C = (p; V ), where p is a statement in P
and V is a subset of the variables in P .

A slicing criterion C = (p; V ) determines a projec-
tion function which selects from any state trajectory
only the ordered pairs starting with p and restricts the
variable-to-value mapping function � to only the vari-
ables in V .

De�nition 2.6 Let C = (p; V ) be a static slicing criterion
of a program P and T = h(p1; �1); (p2; �2); : : : ; (pk; �k)i
a state trajectory of P on input I. 8i; 1 � i � k:

Proj0C(pi; �i) =

�
� if pi 6= p
h(pi; �i j V )i if pi = p

where �i j V is �i restricted to the domain V , and � is
the empty string. The extension of Proj0 to the entire
trajectory is de�ned as the concatenation of the result
of the application of the function to the single pairs of
the trajectory:

ProjC(T ) = Proj0C(p1; �1) � � � Proj
0
C(pk; �k)

1We assume program termination.

A program slice is therefore de�ned behaviorally as
any subset of a program which preserves a speci�ed
projection of its behavior.

De�nition 2.7 A static slice of a program P on a static
slicing criterion C = (p; V ) is any syntactically correct
and executable program P 0 that is obtained from P
by deleting zero or more statements, and whenever
P halts on input I with state trajectory T , then P 0

also halts on input I with state trajectory T 0, and
ProjC(T ) = ProjC(T

0).

The above de�nition di�ers from the original de�ni-
tion of slice given in [25], because it requires that the
instruction p always appears in the static slice. This
is not a limitation, in particular if program slicing is
used for program comprehension. Indeed, program-
mers can be easily confused if the instruction p of the
slicing criterion is not included in the slice, particu-
larly if p is in a loop [16].

As an example of static slice, let us consider the
program in Figure 1. The static slice on the slicing
criterion C = (32, fsumg)2 is shown in Figure 2.

Although the problem of �nding minimal static
slices is undecidable, Weiser proposes an iterative al-
gorithm [25] based on data 
ow and on the in
uence
of predicates on statement execution, which compute
conservative slices, guaranteed to have the properties
of the de�nition above. The slice is computed as the
set of all statements of the program that might af-
fect directly or indirectly the value of the variable
in V just before the execution of p. Program slices
can also be computed using the program dependence
graph [10] both at intraprocedural [20] and interproce-
dural level [12]. An enhanced slicing algorithm based
on dependence graphs [6] also allows the computation
of correct slices in the presence of goto statements.

Static slicing can be used in program comprehen-
sion to identify the subset of a program correspond-
ing to a functionality [8, 17, 19]. In this case, the
set of variables V in the slicing criterion corresponds
to the set of output variables of the function, while
the statement p corresponds to the last statement of
the function. The process of identifying a slicing cri-
terion requires the knowledge of the data model and
how it has been traced onto the program variables.
Whenever this is not available, human knowledge and
expertise is required to abstract it from code. Also,
the identi�cation of the statement of the slicing crite-
rion is based on code analysis. Some authors proposed
di�erent de�nitions of slice that include in the slicing
criterion the set of input variables of the function [17]
or an initial statement [8], in order to stop the com-
putation of the slice whenever the code implementing
the expected function has been identi�ed.

2.3 Dynamic Slicing

Program slicing has been �rst proposed as a tool
for decomposing programs during debugging, in or-
der to allow a better understanding of the portion of

2Where it is not ambiguous we will refer to statements by

using their line numbers.



1 main() {

2 int a, test0, n, i, posprod, negprod,

possum, negsum, sum, prod;

3 scanf("%d", &test0); scanf("%d", &n);

scanf("%d", &a);

4 i = posprod = negprod = 1;

5 possum = negsum = 0;

6 while (i <= n && a <= n) {

7 if (a > 0) {

8 posssum += a;

9 posprod *= a; }

10 else if (a < 0) {

11 negsum -= a;

12 negprod *= (-a); }

13 else if (test0) {

14 if (possum >= negsum)

15 possum = 0;

16 else negsum = 0;

17 if (posprod >= negprod)

18 posprod = 1;

19 else negprod = 1; }

20 i++;

21 scanf("%d", &a);}

22 if (i <= n) {

23 sum = 0;

24 prod = 1; }

25 else {

26 if (possum >= negsum)

27 sum = possum;

28 else sum = negsum;

29 if (posprod >= negprod)

30 prod = posprod;

31 else prod = negprod; }

32 printf("%d \n", sum);

33 printf("%d \n", prod); }

Figure 1: Example program

code which revealed an error [24, 25]. In this case the
slicing criterion contains the variables which produced
an unexpected result on some input to the program.
However, a static slice very often contains statements
which have no in
uence on the values of the variables
of interest for the particular execution in which the
anomalous behavior of the program was discovered.

Korel and Lasky [16] propose a re�nement of static
slicing, called dynamic slicing, which uses dynamic
analysis to identify all and only the statements that
a�ect the variables of interest on the particular anoma-
lous execution. In this way the size of the slice can be
considerably reduced, allowing a better understand-
ing of the code and easier localization of the bugs.
Another advantage of dynamic slicing with respect to
the static approach is the run-time handling of arrays
and pointer variables. While in the static slicing each
de�nition or use of any array element is treated as a
de�nition or use of the entire array (because of the dif-
�culty of determining the values of array subscripts),

1 main() {

2 int a, test0, n, i, possum, negsum, sum;

3 scanf("%d", &test0); scanf("%d", &n);

scanf("%d", &a);

4 i = 1;

5 possum = negsum = 0;

6 while (i <= n && a <= n) {

7 if (a > 0)

8 possum += a;

10 else if (a < 0)

11 negsum -= a;

13 else if (test0) {

14 if (possum >= negsum)

15 possum = 0;

16 else negssum = 0;}

20 i++;

21 scanf("%d", &a); }

22 if (i <= n)

23 sum = 0;

26 else if (possum >= negsum)

27 sum = possum;

28 else sum = negsum;

32 printf("%d \n", sum);

Figure 2: Example static slice

in dynamic slicing any array element can be individ-
ually treated, so allowing to further reduce the size of
the slice. Moreover, it is possible to determine which
objects are pointed to by pointer variables during pro-
gram execution.

From a formal point of view, a dynamic slice is de-
�ned with respect to a particular trajectory [16]. In
this case, the slicing criterion refers to a statement in
a particular position in the state trajectory. However,
we will always refer to the last occurrence of a state-
ment in a trajectory. In this way the only di�erence
between static and dynamic slicing is that a dynamic
slice is required to preserve the behavior of the origi-
nal program on only one input, where the static slice
must be correct on any input. In another work [11] this
is implicitly assumed, while Agrawal and Horgan [1]
compute dynamic slices with respect to the last state-
ment of the program. A backward slice (both static
and dynamic) is also considered with respect to the
last statement in the semantic approach to program
slicing [22].

De�nition 2.8 A dynamic slicing criterion of a pro-
gram P executed on input I is a triple C = (I; p; V ),
where p is a statement in P and V is a subset of the
variables in P .

De�nition 2.9 A dynamic slice of a program P on
a dynamic slicing criterion C = (I; p; V ) is any syn-
tactically correct and executable program P 0 that is
obtained from P by deleting zero or more statements,
and whenever P halts on input I with state trajectory
T , then P 0 also halts on input I with state trajectory



1 main() {

2 int a, test0, n, i, possum, negsum, sum;

3 scanf("%d", &test0); scanf("%d", &n);

scanf("%d", &a);

4 i = 1;

5 possum = negsum = 0;

6 while (i <= n && a <= n) {

7 if (a > 0)

8 possum += a;

20 i++;

21 scanf("%d", &a); }

22 if (i <= n) { }

26 else if (possum >= negsum)

27 sum = posum;

32 printf("%d \n", sum);

Figure 3: Example dynamic slice

T 0, and Proj(p;V )(T ) = Proj(p;V )(T
0).

For example, let us consider the program in
Figure 1. Figure 3 shows the dynamic slice
on the slicing criterion C = (I, 32, fsumg), where

I = htest0 = 0, n = 2, a1 = 0, a2 = 2i3.
Korel and Lasky [16] propose an iterative algorithm

based on dynamic data 
ow and control in
uence to
compute a subtrajectory T 0 of T that meets the de�-
nition, and from which the slice can be reconstructed.
The algorithm also requires that if any occurrence of
a statement (within a loop) in the trajectory is in-
cluded in the slice, then all other occurrences of that
statement be automatically included in the slice. This
requirement ensures that the slice extracted is exe-
cutable. Other approaches based on dynamic depen-
dence graphs [1, 13] produce more re�ned slices, con-
sidering only the occurrences of statements in the tra-
jectory that a�ect the computation of the variables in
the slicing criterion. The resulting slice is not neces-
sarily an executable subset of the original program,
but it is still useful for the purposes of program un-
derstanding during debugging and data-
ow testing.

3 Understanding Function Behaviors

The traditional static and dynamic slicing models
consider subsets of the program with respect to ei-
ther all possible executions or just one execution, re-
spectively. However, a program function can behave
di�erently depending on particular inputs to the pro-
gram. For example, the price and the insurance costs
for renting a car might depend on the type of the car,
on the age of the client and on the duration of the
renting period. Whenever the knowledge about the
application domain is available, the maintainer can
attempt to understand these di�erent function behav-
iors, by isolating the portion of code corresponding to
each of such behaviors. Hypotheses about the condi-
tions that characterize these behaviors can be formu-

3The subscripts refer to the di�erent occurrences of the input

variable a within di�erent loop iterations.

lated and expressed in terms of particular inputs to
the program.

Traditional static slicing techniques might isolate
too large code components which include all the pos-
sible behaviors of the function. On the other hand,
dynamic slicing is only suitable to identify a code frag-
ment with respect to one input: the produced slice
could be too small to be generalized and considered as
the code fragment implementing the desired behavior.
In order to capture a set of program executions corre-
sponding to a particular behavior of a program, two
variants of slicing have been proposed in the literature.
The �rst method, called quasi static slicing [22], speci-
�es the set of initial states of the program by assigning
an initial value to a subset of the input variables. The
second method, called simultaneous dynamic program
slicing [11], explicitly uses a set of test cases, each of
which corresponds to an initial state.

3.1 Quasi Static Slicing

Venkatesh [22] proposes a notion of slice that falls
between static and dynamic slices. The motivation of
such a slice, called quasi-static slice arises from appli-
cations in which values of some inputs are �xed while
the behavior of the program must be analyzed and un-
derstood when other input values vary.

De�nition 3.1 Let Vin be the set of input variables
of a program P and V 0

in � Vin. Let I
0 be an input for

the variables in V 0
in. A quasi static slicing criterion of

a program P is a quadruple C = (V 0
in; I

0; p; V ), where
p is a statement in P and V is a subset of the variables
in P .

De�nition 3.2 Let Vin be the set of input variables
of a program P and V 0

in � Vin. Let I
0 be an input for

the variables in V 0
in. A completion I of I0 is any input

for the variables in Vin, such that I0 � I.

Each completion I of I0 identi�es a trajectory T . We
can associate I0 with the set of trajectories that are
produced by its completions. A quasi static slice is
any subset of the program which reproduces the orig-
inal behavior on each of these trajectories.

De�nition 3.3 A quasi static slice of a program P
on a quasi static slicing criterion C = (V 0

in; I
0; p; V )

is any syntactically correct and executable program
P 0 that is obtained from P by deleting zero or
more statements, and whenever P halts on input I,
such that I0 � I, with state trajectory T , then P 0

also halts on input I with state trajectory T 0, and
Proj(p;V )(T ) = Proj(p;V )(T

0).

It is straightforward to see that quasi static slic-
ing includes both the static and dynamic paradigms.
Indeed, when the set of variables V 0

in is empty,
quasi static slicing reduces to static slicing, while for
V 0
in = Vin a quasi static slice coincides with a dynamic

slice.
As an example, let us consider the program in Fig-

ure 1. The quasi static slice on the slicing criterion
C = (ftest0g, 0, 32, fsumg) is shown in Figure 4.



1 main() {

2 int a, test0, n, i, possum, negsum, sum;

3 scanf("%d", &test0); scanf("%d", &n);

scanf("%d", &a);

4 i = 1;

5 possum = negsum = 0;

6 while (i <= n && a <= n) {

7 if (a > 0)

8 possum += a;

10 else if (a < 0)

11 negsum -= a;

20 i++;

21 scanf("%d", &a); }

22 if (i <= n)

23 sum = 0;

26 else if (possum >= negsum)

27 sum = possum;

28 else sum = negsum;

32 printf("%d \n", sum);

Figure 4: Example quasi static slice

A quasi static slice is constructed with respect to an
initial pre�x I0 of the input sequence. This is closely
related to partial evaluation or mixed computation [2],
a technique to specialize programs with respect to par-
tial input. Partial evaluation has been used for the
comprehension of Fortran programs [3]. By specifying
the values of some of the input variables, techniques
such as constant propagation and simpli�cation can be
used to attempt to reduce expressions to constants. In
this way, the values of some program predicates can
be evaluated, allowing not executed branches (for the
particular partial input) to be discarded. The reduced
program is easier to understand than the original one,
because details which are not interesting for the partic-
ular computations under consideration are eliminated.

Partial evaluation can be considered a complemen-
tary technique to program slicing, aiming to under-
stand old programs which have become very complex
due to extensive maintenance [3]. Quasi static slicing
has the characteristic to combine together program
slicing and partial evaluation, so allowing a better re-
duction of the program with respect to the slicing cri-
terion.

3.2 Simultaneous Dynamic Slicing

A di�erent approach to the de�nition of a slice with
respect to a set of executions of the program has been
proposed by Hall [11]. This new slicing technique com-
bines the use of a set of test cases with program slicing.
The method is called simultaneous dynamic program
slicing because it extends and simultaneously applies
to a set of test cases the dynamic slicing technique [16]
which produces executable slices that are correct on
only one input.

De�nition 3.4 Let fT1; T2; : : : ; Tmg be a set of state
trajectories of length k1; k2; : : : ; km, respectively, of
a program P on input fI1; I2; : : : ; Img. A simul-

1 main() {

2 int a, test0, n, i, possum, negsum, sum;

3 scanf("%d", &test0); scanf("%d", &n);

scanf("%d", &a);

4 i = 1;

5 possum = negsum = 0;

6 while (i <= n && a <= n) {

7 if (a > 0)

8 possum += a;

10 else if (a < 0) {}

13 else if (test0)

14 if (possum >= negsum)

15 possum = 0;

20 i++;

21 scanf("%d", &a); }

22 if (i <= n) { }

26 else if (possum >= negsum)

27 sum = possum;

32 printf("%d \n", sum);

Figure 5: Example simultaneous dynamic slice

taneous dynamic slicing criterion of P executed on
each of the input Ij , 1 � j � m, is a triple
C = (fI1; I2; : : : ; Img; p; V ), where p is a statement in
P , and V is a subset of the variables in P .

De�nition 3.5 A simultaneous dynamic slice of a
program P on simultaneous dynamic slicing criterion
C = (fI1; I2; : : : ; Img; p; V ) is any syntactically correct
and executable program P 0 that is obtained from P
by deleting zero or more statements, and whenever P
halts on input Ij , 1 � j � m, with state trajectory Tj,
then P 0 also halts on input Ij with state trajectory
T 0j , and Proj(p;V )(Tj) = Proj(p;V )(T

0
j).

For example, let us consider the program in Fig-
ure 1. Figure 5 shows the simultaneous dynamic
slice on the slicing criterion C = (I1, I2, 32, fsumg),
where I1 = htest0 = 0, n = 2, a1 = 0, a2 = 2i and
I2 = htest0 = 1, n = 2, a1 = 0, a2 = 2i.

A simultaneous program slice on a set of test cases
is not simply given by the union of the dynamic slices
on the component test cases. Indeed, simply union-
ing dynamic slices is unsound, in that the union does
not maintain simultaneous correctness on all the in-
puts [11]. An iterative algorithm is presented [11]
that, starting from an initial set of statements, incre-
mentally constructs the simultaneous dynamic slice,
by computing at each iteration a larger dynamic slice.

This approach can be used in program compre-
hension for the isolation of the subset of the state-
ments corresponding to a particular program be-
havior. It can be considered a re�nemenrt of the
method proposed by Wilde et al. [26] that con-
sider the problem of locating functionalities in code
as the identi�cation of the relation existing be-
tween the ways the user and the programmer see
the program. From the user point of view, a pro-



gram consists of a collection of, possibly overlap-
ping, functionalities FUNCS = ff1; f2; :::; fNg while
the programmer's view consists of a collection of pro-
gram components COMPS = fc1; c2; :::; cMg. The
problem is the identi�cation of the components in
COMPS which contribute to implement a function-
ality in FUNCS, i.e., the construction of a rela-
tion IMPL � COMPS � FUNCS. The link be-
tween components and functionalities may be pro-
vided by test cases. A test case Ti exhibits a set
of functionalities F (Ti) = ffi;1; fi;2; :::g which can be
identi�ed by a system user. On the other hand, a
test case also exercises a set of program components
C(Ti) = fci;1; c1;2; :::g which can be identi�ed by in-
strumenting the code and monitoring its execution.

Both deterministic and probabilistic techniques
have been proposed to analyze the traces resulting
from the program execution [26]. However, while these
approaches are cost-e�ective, very practical and easy
to implement and use, they are only good to �nd com-
ponents that are unique to a particular functionality.
In general, the method lacks in precision, because the
software component identi�ed could be too large and
include more functionalities than the one sought. Si-
multaneous dynamic slicing can be considered as a
re�nement of methods for localizations of functions
based on test cases [26], because it takes into account
the data 
ow of the program and then allows the re-
duction of the set of selected statements.

4 Conditioned Slicing

Quasi static slicing and simultaneous dynamic slic-
ing use two di�erent approaches to specify a set of
initial states of the program with respect to which ob-
serve the behavior of the function. In simultaneous
dynamic slicing the set of initial states is �nite, while
for quasi static slicing it might be in�nite. However,
the quasi static slicing paradigm does not include si-
multaneous dynamic slicing, because it only uses a
pre�x of the input and does not consider a �nite set of
values for a variable. On the contrary, some function
behavior could be characterized by relations between
input values that cannot be expressed by a pre�x of
the input. For example, it would be desirable to ob-
serve the program whenever the value of some input
variables falls in a (possibly in�nite) range of suit-
able values. As further example, the transaction for
moving money from or to an account could consider-
ably depend on the relation between the amount to
be moved and the total amount of the account. Such
relations can be expressed neither as a pre�x of the
input nor as a (�nite) set of test cases.

In order to identify program slices corresponding to
any function behavior, we need a more general model
which allows to specify any initial state of the pro-
gram. This can be done using a �rst order logic for-
mula which maps a subset of the input program vari-
ables onto a set of initial states to the program. The
slice resulting by adding such a condition on the in-
put variables to the slicing criterion will be referred
to as conditioned slice. Conditioned slicing is able to
identify slices with respect to any subset of program

1 main() {

2 int a, test0, n, i, possum, negsum, sum;

3 scanf("%d", &test0); scanf("%d", &n);

scanf("%d", &a);

4 i = 1;

5 possum = negsum = 0;

6 while (i <= n && a <= n) {

7 if (a > 0)

8 possum += a;

20 i++;

21 scanf("%d", &a); }

22 if (i <= n)

23 sum = 0;

26 else if (possum >= negsum)

27 sum = possum;

32 printf("%d \n", sum);

Figure 6: Example conditioned slice

executions. In the following we will show how this
model can be used as a framework to switch between
di�erent slicing paradigms.

De�nition 4.1 Let Vin be the set of input variables
of a program P , V 0

in � Vin and F 0 be a �rst or-
der logic formula on the variables in V 0

in. A condi-
tioned slicing criterion of a program P is a quadruple
C = (V 0

in; F
0; p; V ), where p is a statement in P and

V is a subset of the variables in P .

The formula F 0 identi�es a set of input to the pro-
gram and consequently a set of state trajectories.

De�nition 4.2 Let Vin be the set of input variables
of a program P , V 0

in � Vin and F a �rst order logic
formula on the variables in V 0

in. Let IS
0(F ) be the set

of input I0 for V 0
in that satis�es the formula F . The

input set IS(F ) of P with respect to F is the set of
input I to the program such that I is a completion of
some I0 2 IS0(F ).

Each I 2 IS(F ) identi�es a trajectory T . A condi-
tioned slice is any subset of the program which repro-
duces the original behavior on each of these trajecto-
ries.

De�nition 4.3 A conditioned slice of a program P
on a conditioned slicing criterion C = (V 0

in; F; p; V )
is any syntactically correct and executable program
P 0 that is obtained from P by deleting zero or
more statements, and whenever P halts on input I,
where I 2 IS(F ), with state trajectory T , then P 0

also halts on input I with state trajectory T 0, and
Proj(p;V )(T ) = Proj(p;V )(T

0).

For example, consider the program in Fig-
ure 1. The conditioned slice on the slicing criterion
C = (V 0

in, F , 32, fsumg), with V
0
in = fng

S
1�i�n faig

and F = (8i, 1 � i � n, ai > 0), is shown in Figure 6.



Notice that any slicing criterion can be expressed
as a conditioned slicing criterion. Therefore, con-
ditioned slicing can be used as a general frame-
work including all slicing methods. Any slice can
be identi�ed by suitably specifying a set of vari-
ables, a program point and a condition on the
program input corresponding to a set of initial
states. For example, the static slicing criterion
(32, fsumg) can be expressed as (;, true, 32, fsumg)
and the dynamic slicing criterion (I, 32, fsumg),
where I = htest0 = 0, n = 2, a1 = 0, a2 = 2i,
is (V 0

in, F , 32, fsumg), where V
0
in = ftest0, n, a1, a2g

and4 F = (test0 = 0 ^ n = 2 ^ a1 = 0 ^ a2 = 2).
The quasi static criterion (ftest0g, 0, 32, fsumg)
can be expressed as (ftest0g, test0 = 0, 32, fsumg);
the simultaneous slicing criterion (fI1, I2g, 32, fsumg),
where I1 = htest0 = 0, n = 2, a1 = 0, a2 = 2i and
I2 = htest0 = 1, n = 2, a1 = 0, a2 = 2i, is
(V 0

in, F , 32, fsumg), where V
0
in = ftest0, n, a1, a2g and

F = ((test0 = 0 ^ n = 2 ^ a1 = 0 ^ a2 = 2) _
(test0 = 1 ^ n = 2 ^ a1 = 0 ^ a2 = 2))
Conditioned slicing was �rst introduced by Canfora

et al. [5] to isolate function behaviors in code for soft-
ware reuse. Algorithms based on the program depen-
dence graphs heve also been provided for extracting a
conditioned slice. However, human interaction is in-
tensively required to trace the condition of the slicing
criterion into the program variables and predicates.
The method can be improved by using formal method
tools, such as symbolic executors [14, 9] and theorem
provers, e.g. [4].

4.1 Finding Conditioned Slices

Intuitively, a conditioned slice can be identi�ed by
�rst simplifying the program with respect to the con-
dition on the input and then computing a slice on the
reduced program. A symbolic executor can be used to
compute the reduced program, also called conditioned
program in [5].

While in traditional execution the values of pro-
gram's variables are constants, in symbolic execution
they are represented by symbolic expressions, i.e., ex-
pressions containing symbolic constants. For example,
the value v of a variable x might be represented by
\2 � �+ �", where � and � are symbolic constants.
Moreover, unlike a program state in traditional exe-
cution, a symbolic state is a pair hState, PCi, where
State is a set of pairs of the form hM , �i, M and �
being a memory location and its symbolic value re-
spectively, and PC is a �rst order logic formula called
path-condition.

The path-condition represents the condition which
must be satis�ed in order for an execution to follow the
particular associated path on the control 
ow. Indeed,
while the evaluation of a predicate in traditional exe-
cution unequivocally allows the selection of the branch
to follow, the symbolic evaluation of a predicate might
generate two possible executions. For example, the
execution of the predicate in line 7 of the program in

4The symbols ^ and _ denote the logical and and or,

respectively.

Figure 1, in the symbolic state:

hS1, P1i = hfha, �1i, htest0, �i, hn, 
i, hi, 1i,

hposprod, 1i, hnegprod, 1i,

hpossum, 0i, hnegsum, 0i,

hprod, undefi, hsum, undefi,g,

1 � 
 ^ �1 � 
i

produces the two symbolic states:

hS2, P2i = hfha, �1i, htest0, �i, hn, 
i, hi, 1i,

hposprod, 1i, hnegprod, 1i,

hpossum, 0i, hnegsum, 0i,

hprod, undefi, hsum, undefi,g,

1 � 
 ^ �1 � 
 ^ �1 > 0i

hS3, P3i = hfha, �1i, htest0, �i, hn, 
i, hi, 1i,

hposprod, 1i, hnegprod, 1i,

hpossum, 0i, hnegsum, 0i,

hprod undefi, hsum, undefi,g,

1 � 
 ^ �1 � 
 ^ �1 � 0i

Notice that the two path-conditions carry the con-
ditions that must be satis�ed in order to follow the cor-
responding branches, respectively. The path-condition
can be used to discard infeasible paths. This is in
particular true whenever the symbolic execution of
a program is made with an initial non trivial path-
condition. Indeed, let us suppose to symbolically ex-
ecute the program in Figure 1 with the initial path-
condition5 8i; 1 � i � 
; �i > 0, where �i is the input
symbolic value for ai, 1 � i � 
, and 
 is the input
symbolic value for n. The symbolic state before the
execution of the predicate in line 7 will be:

hS01, P
0
1i = hfha, �1i, htest0, �i, hn, 
i, hi, 1i,

hposprod, 1i, hnegprod, 1i,

hpossum, 0i, hnegsum, 0i,

hprod undefi, hsum, undefi,g,

(8i; 1 � i � 
; �i > 0) ^ 1 � 
 ^ �1 � 
i

Due to the initial condition, the path-condition P 0
1 im-

plies the condition �1 > 0 obtained from the evalua-
tion of the predicate in line 7 in the state S01. There-
fore, the false branch can be discarded and the exe-
cution will continue on the true branch with symbolic
state unchanged.

The evaluation of such implications is in general an
undecidable problem and requires human interaction.
However, in most cases the symbolic expressions can
be simpli�ed and these implications can be automat-
ically evaluated by a theorem prover. Figure 7 shows
the conditioned program resulting from the symbolic

5The initial path-condition corresponds to the condition

F = (8i, 1 � i � n, ai > 0) of the example slicing criterion,

from which the conditioned slice in Figure 6 is obtained.



1 main() {

2 int a, test0, n, i, posprod, negprod,

possum, negsum, sum, prod;

3 scanf("%d", &test0); scanf("%d", &n);

scanf("%d", &a);

4 i = posprod = negprod = 1;

5 possum = negsum = 0;

6 while (i <= n && a <= n) {

7 if (a > 0) {

8 possum += a;

9 posprod *= a; }

10 else if (a < 0) {

11 negsum -= a;

12 negprod *= (-a); }

20 i++;

21 scanf("%d", &a);}

22 if (i <= n) {

23 sum = 0;

24 prod = 1; }

25 else {

26 if (possum >= negsum)

27 sum = possum;

29 if (posprod >= negprod)

30 prod = posprod;

32 printf("%d \n", sum);

33 printf("%d \n", prod); }

Figure 7: Example conditioned program

execution of the program in Figure 1, with the ini-
tial path-condition. Notice that whenever the condi-
tion F = (8i, 1 � i � n, ai > 0) holds true, the pred-
icates possum >= negsum and posprod >= negprod
also hold true and then their false branches are not
considered for inclusion in the conditioned program.

Problems can arise in symbolic execution of loops,
whenever the current path-condition does not imply
neither the loop condition nor its negation. While in
general a solution for this problem requires the deter-
mination of a suitable loop invariant which allows to
continue the symbolic execution at the end of the loop
(see [7] for a survey of such techniques), for the pur-
pose of conditioned slicing we only need to know which
statements can be executed within the loop, in order
to construct the conditioned program. In this case, the
symbolic execution of a loop can be driven by the user
that can decide the number of time the loop must be
executed. This interaction also allows a better com-
prehension of the program. Indeed, whenever the user
chooses the path to follow, the path-condition is mod-
i�ed accordingly. For example, for the while loop of
the program in Figure 1, one loop execution is needed
for discarding infeasible paths with respect to the ini-
tial condition. In some cases the user can also try to
generalize the sample executions and recover a loop
invariant for the sake of precision.

Dependence graphs have been used to construct
both static [20, 12] and dynamic [1] slices. On the
same line, dependence graphs can be used to com-

pute conditioned slices. A �rst simple solution consists
of marking all the statements of a dependence graph
that are symbolically executed with the initial path-
condition. Then a conditioned slice can be computed
by backward traversing control and data dependence
edges between marked edges and including in the slice
all the statements and predicates reached by this tran-
sitive closure [5].

However, this solution only considers static depen-
dencies and might produce overly-conservative slices.
As an example, let us consider the following piece of
code:

1. x = y + 2;
2. if (a > 0)
3. x = y * 2;
4. z = x + 1;

From a static point of view, the def-use dependencies
(1, 4, x) and (3, 4, x) are represented on a program de-
pendence graph. Therefore, a static slice on the slicing
criterion (4, fzg) will include the whole code fragment.
On the contrary, a conditioned slice on the slicing cri-
terion (Vin, C, 4, fzg), where the condition C is such
that C ) a > 0, should not include the statement in
line 1. Indeed, whenever the condition C holds true,
the statement in line 3 is always executed and then no
path generating the dependency (1, 4, x) is executed.
However, the technique described above will consider
all the static dependencies between marked nodes of
the dependence graph and therefore will include the
statement in line 1 in the conditioned slice.

To overcome this problem, a di�erent approach con-
sists of marking the data dependencies for which there
exists a path traversed during symbolic execution.
The conditioned slice can be obtained by only consid-
ering the marked nodes and edges during the backward
traversal of the dependence graph. As an example,
the symbolic execution of the code fragment above,
will mark all the statements and the data dependency
(3, 4, x), but not the data dependency (1, 4, x). This
allows to discard the statement in line 1 that cannot
be reached on marked edges.

5 Conclusion

In this paper the role of conditioned slicing as a
general framework for program comprehension that in-
cludes all slicing paradigms has been addressed. The
main slicing techniques introduced in the literature,
static slicing [25], dynamic slicing [16], quasi-static
slicing [22], and simultameous dynamic slicing [11]
have been considered and their limitations in support-
ing the comprehension of code implementing complex
functionalities have been outlined. Because such func-
tionalities behave di�erently depending on the input
to the program, a more general slicing model is re-
quired that allows to identify program slices corre-
sponding to any function behavior. Conditioned slic-
ing allows to specify any set of initial states of the
program by using a �rst order logic formula.

Program slices can then be identi�ed with respect
to any subset of program executions. A conditioned
slice can be extracted by �rst simplifying the program



with respect to the condition on the input, and then
computing the slice on the reduced program. A sym-
bolic executor [9, 14] can be used to compute the re-
duced program, while program dependencies are ex-
ploited for isolating the program slice. We are cur-
rently implementing conditioned slicing for C pro-
grams in Prolog environment. A �ne-grained represen-
tation for C programs, called the Combined C Graph
(CCG) [15] (consisting of an abstract syntax tree com-
bined with a control 
ow graph and program depen-
dencies) is used to perform both symbolic execution
and program slicing [7, 15].
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