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Abstract

Four of the six parameters defining the two-loop mr scattering amplitude have been de-

termined using Roy dispersion relations. Combining this information with the Standard \ P T

expressions, vitfuobtain the threshold parameters, low-energy phases and the 0(p4) constants

/[, lr
2.\The result fc(Mp) - (1.0 1 0-1 1 0>0) J( 10~3 (h - 4.1V 1 0.19 ± U.4-j) reproduces the

correct\D-waves but it is incompatible with existing Standard \ P T analyses of A';4 form factors

beyond ©ne loop.
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1. During the last few years there has been a noticeable revival of interest in the high preci-

sion analysis of low-energy 7T7T scattering [1]-[13]. There are at least two reasons for this. First,

it has been shown [13, 1, 3] and repeatedly emphasized [14] that the ~n scattering amplitude

in the threshold region is particularly sensitive to the strength of quark anti-quark pair con-

densation in the QCD vacuum: the smaller the condensate, the stronger the isoscalar .S'-wave

7T7T interaction. The accurate measurement of 5-wave scattering lengths would, indeed, provide

the first experimental evidence in favour of, or against, the standardly admitted hypothesis

according to which the mechanism of spontaneous chiral symmetry breaking is dominated by

the formation of a large < qq > condensate. Within QCD, this hypothesis is by no means

a logical necessity and its experimental test might well become an important step towards a

non-perturbative understanding of the quark-gluon dynamics. The second reason which makes

detailed nn studies topical, is that there are two new high precision experiments currently un-

der preparation: i) The phase shift difference 8Q(E) — 8\(E) at low energies (E < 400MeV)

will be extracted from a new A'u-decay experiment [15] performed with the KLOE detector at

the Frascati ^-factory DA$NE [16]. ii) At CERN, the project DIRAC [17] aims at the mea-

surement of the lifetime of TT+TT" atoms to 10(/c. implying the determination of the combination

of scattering lengths | <ZQ — <ZQ j with a 5% accuracy. On the theoretical side an even better

precision can be reached by a systematic use of chiral perturbation theory [18, 19] (\PT).

The low-energy expansion of the TTTT scattering amplitude .<4(s|tf,u) starts at order 0{p2) given

by Weinberg more than 30 years ago [20]. Subsequently, the one-loop 0{pA) contribution to

.4(.s|f,u) has been calculated by Gasser and Leutwyler [21. 19]. It is given by four low-energy

constants /i, /2, /3, U besides the (charged) pion mass Mn and the decay constant FK. The

present state of the art involves the two-loop O(p6) order and the present letter concerns his

degree of accuracy.

2. The 0{p6) amplitude A(s\t,u) has been first given in Ref. [1] in the form

A(s\t,u) = AKMSF{s\t,u;a,(3]Xi,\2,^X4) + O (jA ^(j1) • U)

The function AKMSF, which depends on the Mandelstam variables s, t, u and on the six pa-

rameters a, /?, Ai, . . . A4, is explicitly displayed in [1]. Here, p denotes the characteristic pion

momentum and A# is the mass scale of bound states not protected by the chiral symmfry.

\H ~ 4nFn ~ 1 GeV. The result (1) holds independently of the strength of the quark con-

densate. The latter merely shows up in the size of the constant a: for standard, large values1

< qq > ~ —(250 MeV)3 one has o ~ 1 and its value increases up to a ~ 4 for |< qq >| decreas-

ing clown to zero. The parameter 0 is less sensitive to the value of the condensate, remaining

1 < qq > denotes the single flavour condensate in the 5(^(2) x SU(2) chiral limit mu — mj — 0 at the QCD

scale v = 1 GeV.



always close to unity. It has been shown [3] that the remaining four constants A1%... A4 can be

rather accurately determined from the existing TTTT scattering data [22] in the intermediate en-

ergy range 0.5 GeV < E < 1.9 GeV using the Roy dispersion relations [23]. The latter explicitly

incorporate crossing symmetry and consequently they strongly constrain the nn amplitude at

low energies. Equating the perturbative formula (1) with the Roy dispersive representation in

a whole low-energy region of the Mandelstam plane, one infers the values of A], . . . A4. whereas

the paramenters a and d remain essentially undetermined. The resulting A.'s are almost in-

dependent of a and (3. Here we quote and use the central values corresponding t o o = 1.04.

(3 = 1.08 [3],

Ai = (-5.7 ± 2.2) x 10~3, A2 = (9.3 ± 0.5) x 10"3,

A3= (2.2 ±0.6) x 10~4, A4 = (-1.5 ± 0.12) x 10"4. (2)

The quoted errors include experimental uncertainties on 7T7T phase-shifts and inelasticities

in the medium energy region and an estimate of the systematic error arising from neglected

higher orders in the low-energy representation (1). The errors due to the uncertainty in the

high-energy behaviour of the nn scattering amplitude are negligible.

3. With the constants A, determined, Eq. (1) allows one to convert new high-precision

experimental information on low-energy TTTT phase shifts and/or threshold parameters into a

measurement of a and j3 and finally, into an experimental determination of the quantity (mu +

rrid) < qq > (the detailed relation between a and j3 and the condensate can be found in

Ref. [1]). Conversely, Eq. (1) can be used to predict, for each value of the condensate, all low-

energy observables. It is of particular importance to assess with as much accuracy as possible

the prediction concerning the standard alternative of a large < qq > condensate. The strength

of the < qq > condensate is conveniently described by the deviation from the Gell-Mann-

Oakes-Renner relation, i.e. by the parameter

m FlMl
- 1 - (3)

m0 2m |< qq

Here, m = | (m u + mj) is the running quark mass and mo is a mass scale characteristic of qq

condensation. The standard alternative of a large condensate corresponds to m0 ^ A//. In this

special case the ratio (3) can be treated as an expansion parameter, m/m0 = O(p2/.\jj) and

the general low-energy expansion becomes the standard chiral perturbation theory (SxPT) [19].

The complete SxPT two-loop calculation of the 7T7r-scattering amplitude has been recently com-

pleted by Bijnens et al. [2]. Not surprisingly, this calculation recovers the formula (1) giving,

in addition, the expressions of the six parameters a, i3, A j , . . . , A4 in terms of i) Mn, Fn, ii) four

O(p4) constants i[{n), lr
2(n), lr

3{n) and lr
4(fi) and finally Hi) six O(p6) constants rj(/z) r£(//)

which appear in the effective lagrangian and are renormalized at a scale /z. These expressions



read
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(These expressions are obtained from the expansions of the parameters 61( . . . , 66 originally

given in [2], which are in one-to-one correspondence with a, (3, Ai, . . . , A4. We prefer to work



with the latter set of parameters for the reader's convenience: explicit formulae for low-energy

observables in terms of a. /3. A, are given in Ref. [1], whereas similar expressions in terms

of the 6,'s are at present not available in the literature). A few points are worth recalling.

/) The parameters a, J, A, are ^-independent. This fact, together with Eq.(lO) fixes the

scale dependence of the low-energy constants rr
{(fi). ii) Eqs. (4)-(9) fix the expansion of the

parameters o, /?, A; in powers of M% and log M% (and/or in powers of the quark mass ???), since

/j(//),.. . ,/£(//) and the r*(fi) are quark mass independent. Contributions of successive chiral

orders to a, (3, A, can be identified by counting the powers of M%/F%. Notice that a and (3 start

by an order O(p2) contribution (a = l,/3 = 1) followed by O(p4) and O(p6) corrections. The

expansions of Ai,A2 consist of 0(p4) and O(p6) contributions, whereas A3 and A4 are entirely

of order O(p6). Hi) The O(p4) constants /3 and l4 belong to the explicit symmetry breaking

sector of the effective lagrangian. They represent the fine tuning of the < qq > condensate to

its presumed large value: in S\PT, the deviation from the Gell-Mann-Oakes-Renner relation

(3) is given by [19]

Similarly, l\ controls the deviation of j3 from 1. On the other hand, the A,'s are independent

of /g ( and only very weakly dependent on /4) reflecting the fact that they are only marginally

sensitive to the size of the < qq > condensate. In the sequel, we complete our definition of the

standard \PT by adopting the standardly used central values of l^ and l^ [19, 2]:

l$(Mp) = 0.82 x 1(T3, 1\{MP) = 5.6 x 1(T3. (13)

Finally, the constants l\ and lr
2 do not describe explicit symmetry breaking effects (they

are coefficient of four-derivative terms in £ (4 ') and they are insensitive to the size of the quark

condensate. They control the parameters Ai and A2.

4. Equations (4)-(9) can be used to predict the parameters a, /3, Aj, . . . , A4 and conse-

quently, all low-energy nn scattering observables, provided the low-energy constants l\,...,l4

and r i , . . . , r6 are determined from the analysis of different processes. This is a path advocated

by the authors of Ref. [2]. In the present letter this kind of analysis will be confronted with

additional experimental information contained in Eq. (2). Bijnens et al. [2] have used the val-

ues (13) for /3 and lA; for l[ and lr
2 they have taken the central values obtained from the S\PT

analysis of A'/4 form factors [25]:

1\{MP) = -5.40 x 10~3, lr
2(Mp) = 5.67 x 10~3. (14)

As for the O(p6) constants rj"(/i), the authors of [2] take r[(lGeV) = 0 and they check that

this approximation confronted with a resonance saturation model produces a negligible error.



With the values (14), and rr
t = 0 at \i = 1 GeV one obtains (in this letter we always use

Fn = 93.2 MeV and Mn = 139.6 MeV):

Q 1.074 , p= 1.105 ,

A! = -8 .91 x 10 ' 3 , A2 = 14.5 x 10~3 ,

A3 = 2.04 x lO- ' , A4 = -1.79 x 10~4

(15)

380

Figure 1: The phase shift difference 8Q — 8] in the energy region of A'/4 decays. The dashed

curve is obtained with the values of Eq. (15) and it coincides with the curve displayed in Fig. 1

of Ref. [2j. The solid line is obtained with the values of Eqs. (2) and (18) while the shaded area

results adding the corresponding error bars quadratically. The experimental points an from

Ref. [33].

For these values of the parameters a, /?, Ai , . . . , A4< one obtains the 5-wave scattering lengths

a° = 0.218, a,Q — a% = 0.259 corresponding2 to the predictions given in Ref. [2]. The resulting

phase shift difference 8® — 8\ (measurable in A/4 decays) is shown as a function of the center of

mass energy as the dashed line in Fig. 1. It reproduces the curve displayed in Fig. 1 of Ref. [2j.

Finally, a few remaining threshold parameters not discussed in Ref. [2] are collected in the first

column of Table 1, using the expressions displayed in Appendix D of Ref. [1].

2 Actually these have to be compared with the numbers given in Eq. (4) of Ref. [2] in parentheses (r|"(l GeV) =
0). The small difference provides an estimate of O(ps) effects: it is entirely due to the fact that the amplitude

of Ref. [1] coincides with the amplitude calculated in Ref. [2] only modulo O(p8) contributions.
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-10a2

-106g
a° - al

10a}

1026|

102a°

103a2

Bijnens et al. [2]

0.218

0.273

0.411

0.709

0.259

0.395

0.785

0.263

0.237

0.428

(0.2156)

(0.271)

(0.4094)

(0.704)

(0.2565)

(0.3956)

(0.784)

(0.267)

(0.2356)

(0.478)

KMSF

0.209

0.255

0.44

0.80

0.254

0.373

0.55

0.16

0.09

0.49

±
±
±
±
±
±
±
±
±
±

0.004

0.010

0.01

0.02

0.004

0.008

0.07

0.02

0.13

0.07

Experiment [26]

0.26

0.25

0.28

0.82

0.29

0.38

0.17

0.13

0.6

±
±
±
±
±
±

±
±
±

0.05

0.03

0.12

0.08

0.05

0.02

0.03

0.30

0.2

Table 1: Threshold parameters of nn scattering (in units of Mn+) in the standard framework

using the two-loop expressions of Ref. [1], App. D. The first column results from the values of

Eq. (15) (set the text for the numbers in parentheses). The second column is obtained in the

same way but taking the values of Eqs. (2) and (18) as input.

The numbers in parentheses are obtained keeping in higher orders only those components

of Q, /3, X\ and X2 that actually contribute at most to the order O(p6). These exactly coincide

with the corresponding predictions one would obtain using the amplitude given in [2]. Among

the latter it is worth noticing the value predicted for the isoscalar D-wave scattering length

a® = 26.3 x 10~4, which is three standard deviations above the value extracted from the analysis

of Roy equations [26]. This disagreement reflects the fact that the value (15) of A2 is significantly

above the value (2) inferred from experimental phase shifts in Ref. [3]. We would like to stress

that both the canonical value a® = (17 db 3) x 10~4 and the determination of the constant

A2 = (9.3 ±0.5) x 10~3 are based on the Roy dispersion relations [23] using the experimental nn

data above 500 MeV as input. Furthermore, in both cases, the dominant contribution comes

from the P-wave in the p(770) region, which explains the relatively small error bars. These

facts suggest that the predictions of Ref. [2] based on (15) have to be revised in order to agree

with the values (2) of the parameters A1?... , A4 and with the standard value of a®. We therefore

proceed as follows: fixing /£ and lr
A according to Eq. (13), we solve Eqs. (6) and (7) for 1\{MP).

l[(Mp) = (-4.0 ±1.0) x 10~3+ [-1.1 r̂ r ; - 6 . 3 r ; : + 2 . 1

lr
2(Mp) = (1.6 ±0.4) x 10~3+

where the values and errors (2) have been used for Aj and A2. Eqs. (16) and (17) are then

inserted back into the formulae (4) and (5) for a and /?. Keeping in mind that a and 3 are

6



sensitive to l\ arid l2 only at next-to-next-to-leading level, the unknown constants ;••'(1 GeY)

are viewed as a source of uncertainty in a and /?. Inspired by naive dimensional analysis [24]

we take in the expressions for a and /3, rj"(l GeV) = (0 ± 2) x 10~4. Adding the corresponding

uncertainties quadratically, we obtain

a = 1.07 ±0.01 (3 = 1.105 ±0.015. (IS)

It should be stressed that the error in Eq. (18) does not include the uncertainty in the low-

energy constants l^ and lr
4. As in the case of the chiral condensate itself, the constant 1'3 has not

yet been determined experimentally and for this reason it is hard to associate an error bar with

it. The values (18) have to be viewed as corresponding to the "standard alternative" of a large

condensate defined by the values (13) of lr
z and l'A. We now use the formulae given in Ref. [l]

to generate the predictions for threshold parameters and phase shifts that correspond to o, (3

(IS) and Ai,... .A4 (2). Adding the errors quadratically, the resulting threshold parameters

are summarized in the second column of Table 1. One observes that the deviations of OQ

and QQ — OQ from their central experimental values are significantly larger than predicted in

Ref. [2]. Notice that now, the D-wave scattering lengths perfectly agree with their Roy-equation

'"experimental" values as expected from the manner the values (2) of the constants A t , . . . . A4

have been obtained.

-15 -

600

Figure 2: The isospin 2, S-wave phase shifts at low energies. The different curves are

obtained with the values (15) (dashed) and the values (2) and (18) (solid). In tht latter case

the shaded area shows the corresponding error band. The experimental points are taken from

Ref. [22].



A similar conclusion holds for the phase shift difference S° — JJ, shown as the solid curve

in Fig. 1 with the error band indicated by the shaded area: the curve displayed in Ref. [2] is

significantly higher, i.e. closer to the experimental central-value points. For illustration, the

phase SQ is also shown in Fig. 2.

5. We finally address the question of interpreting the mismatch described in the previous

paragraph. Its origin clearly appears upon comparing eqs (16) and (17) with the values of the

constants l[2{Mp) extracted in Ref. [25] from the "unitarized" one-loop S\PT R'u form factors

(Eq. (5.10) of [25]). Including errors the latter read:

/J(M,) = ( -5 .4±1.1) x 10"3, J£(Af,) = ( 5 . 7 ± l . l ) x l O - 3 . (19)

The question is how close the expressions (16) and (17) can be brought to these values keeping

at the same time the O(p6) constants r^(l GeV),.. . ,Tg(l GeV) at a reasonable size. If one

proceeds as before treating the r,r's at 1 GeV as randomly distributed around zero with a

standard deviation ±2 x 10~4, one gets:

l\(Mp) = (-4.0 ±1.0 ±1.8) x 10"3 ,

lr
2{Mp) = (1.6 ±0.4 ±0.9) x 10~3 , (20)

or

/l = -0.37 ±0.95 ±1.71 , /2 = 4.17 ±0.19 ± 0 . 4 3 , (21)

where the first error has its origin in Ai and A2 (Eq. (2)), whereas the second error arises from

the presumed uncertainties in the individual r,'s added quadratically. Two cheks of the size of

the constants r, are conceivable. 1) First, one can make a full use of informations contained in

Eq. (2) determining the parameters 1\2{MP) and r£(l GeV),. . -,rg(l GeV) by a simultaneous

fit to Eqs. (6)-(9) and to the constraints rt
r(l GeV) = 0 ± 2 x 10"4. The resulting \2/d.o.f. is

1.9/2 and one obtains

l\{Mp) = (-4.0 ± 0.5) x 10~3, lr
2(Mp) = (2.0 ± 0.3) x 10~3, (22)

compatible with (20), whereas for the r,1s one gets

,.5(1 GeV) = (-0.3 ± 2.0) x 10~4 , rj(l GeV) = (-0.7 ± 0.9) x 10"4 .

(23)

rr
5{l GeV) = (1.5 ± 0.5) x 10"4 , rr

6{\ GeV) = (0.4 ± 0.9) x 10~4 .

This result turns out to be rather stable: if one increases the uncertainties in the r,'s to

±3 x 10~4, the new \2/d.o.f. = 1.24/2, the values (22) become (-4.8 ± 0.5) x 10~3 and

8



(2.1 ± 0.3) x 10 3 respectively, and the changes in the rt's also remain rather modest. On the

other hand, the errors obtained by this procedure (increase of \ 2 by one unit) and shown in

Eqs. (22) and (23) are probably heavily underestimated, ii) Next, it is instructive to confront

the previous discussion with the estimate of the constants r, by resonance saturation as quoted

recently by Hannah [27]:

ri = - 0 . 6 1 x 10~4, r2 = 1 .3xl0- 4 ,

r3 = -1.70 x 10~4, r4 = -1.0 x 10'4 , (24)

r5 = 1.14 x 10~4, r6 = 0 . 3 x l 0 - 4 .

Estimating low-energy constants by resonance saturation does not. in principle, fix the renor-

malization scale f.i at which the estimate is supposed to hold. Actually, if a constant exhibits a

strong scale dependence, its resonance saturation estimate is subject to caution. Interpreting

Eqs. (24) as values of rr
t(fi) at ^ = 1 GeV, one observes a striking coherence with the preceding

analysis: (24) is, indeed, consistent not only with dimensional analysis or with the assump-

tion \rr
t\ < 2 x 10~4 but. moreover it agrees with the fit (23). One can even repeat the fit to

Eqs. (6)-(9) constraining ;\r(l GeV) to the values (24) allowing for a 100% error: the fit is excel-

lent (\2/d.o.f. = 0.91/2) and it yields l[(Mp) = (-4.0±0.5) x lO"3, lr
2{Mp) = (2.1 ±0.3) x NT3,

again compatible with (20) and (22). On the other hand, one finds that between fi = Mp and

ft = 1 GeV, only the constants r4, r5 and r& show a moderate scale dependence: had we

assumed that the values (24) concern the scale /i = Mp (as suggested in Ref. [27]), the compar-

ison with our previous analysis would be less favourable as far as the constant r:i is concerned.

r'3(l GeV) = —4.9 x 10~4 in this case. Notice however that according to Eq. (17) the correction

to the "critical" constant ^(Mp) is dominated by r\ whose scale dependence is rather weak:

r 4 ( l GeW) = rr
4(Mp)-7 x 10~6. (25)

In order that the constant lr
2{Mp) (17) differ from the Ku value (19) by at most two standard

deviations, the constant rr
4(l GeV) would have to be rr

4(l GeV) ~ - 5 x 10~4. This cannot be

excluded but it looks unlikely in the light of the present analysis.

6. The constants /j and I2 (19) have not been obtained from a full two-loop analysis of

A/4 form factors F and G, which is not yet available. Instead, their determination is based on

matching a dispersive representation for the form factor F with the one-loop S\;PT expressions,

(he latter merely serving to fix the subtraction constants. This method of "improving" one-loop

\ PT calculations has been often used in the past [28] and it suffers from a basic ambiguity: one

has to assume that the one-loop and two-loop amplitudes practically coincide in a particular

kinematical point M. Even if one admits the very existence of such a matching point M, the

results can still depend on its choice. In Ref. [25] the matching point has been chosen at the



threshold s* = AMI of the 5-wave amplitude 7r7r —>• A' -f axial current, where sn stands for the

dipion invariant mass squared. We have repeated the analysis of Ref. [25] for other choices of the

matching point between sT = 4MJJ and the left-hand-cut branch point sK = 0. We reproduce

the result (19) and find that it is actually rather insensitive to the matching point except in

the vicinity of the singular point s^ = 0, where the outcome for /j (but not /2) becomes less

stable. For instance, with the matching point at sK = 2A/JJ, we obtain

l[(Mp) = (-4.8 ± 2.1) x 1(T3, F2(MP) = (5.3 ± 1.0) x 10~3. (26)

Given the present state and quality of A'/4 experimental data, it seems hard to ascribe the

discrepancy described above to the S^PT analysis performed in Ref. [25]. On the other hand,

it should be kept in mind that outside the standard framework, i.e. for low values of the

condensate < qq >. the constants l\ and /2 extracted from A';4 data will be modified already

at the one-loop level: since in GyPT the loop contributions are more important, the resulting

central values of | / ] | and |/2| are expected to come out somewhat smaller [29].

7. A few concluding remarks are in order. The past determinations [19, 30, 6, 7] of the

constants l\ and lr
2 have operated within the O(p4) order of \PT. They have shown an apparent

coherence and compatibility with the A/4 analyses of Ref. [25]. This compatibility might be

lost at O(p6) order and we have to understand why. The resonance saturation models are the

only ones that determine the constants / ] i 2 directly, integrating out the resonance degrees of

freedom from an extended effective lagrangian £e//- However, incorporating resonances into

Cefj is not free of ambiguities, especially if one aims at the O(p6) accuracy. On the other

hand, less model-dependent sources of information, such as ~~ £)-waves [19] and/or sum rules

[6. 7] primarily determine the physical parameters Ai,A2. It turns out that this determination

is rather stable and barely affected by switching from order O(p4) to O(p6). At the O(p4)

level, i.e. neglecting in Eq. (1) the two-loop effects and setting A3 = A4 = 0, one would get

from the a2
 a n d a\ experimental central values A] = —6.4 x 10~3 and A2 = 10.8 x 10~3, to be

compared with Eq. (2). In other words, the relationship between D-wave scattering lengths and

the parameters Aj. A2 is almost unaffected by O(pe) effects. The latter however become rather

important in the relationship between A2 and l\. Rewriting Eq. (7) to make the dependence on

/2(.\/p) appear explicitly, one obtains

A2 = {lr
2(Mp) + 5.45 x 10~3} + {0.32 x lr

2(Mp) + 1.7 x 10"3} (27)

where the first (second) curly brackets collect all O(p4) (O(p6)) contributions (r4 has been

neglected). The O(p6) contribution is as large as 30% and it is dominated by double logs,

whose importance has been anticipated by Colangelo [4]. It follows that for a given A2 (D-

waves), the resulting value of /2(A/P) can easily differ by a factor ~ 2 depending whether in

Eq. (27) one includes the O(pe) term or not. Whether the consistency with A';4 form factors can

10



be understood within the large condensate hypothesis remains to be clarified. It might be, for

instance, that at 0(p6) level the A'M form factors also receive an important contribution from

double logs, which the unitarization procedure would not take into account [31]. Independently

of this issue, the main conclusion of this letter is the following: the predictions of S\PT for «".

a° — al and S® — S\ given in Ref. [2] are systematically overestimated as shown in Fig. 1 and

Table 1 of the present paper. A closely related fact is the failure of the values of l\ and lr
2 used

in Ref. [2] to describe the Z)-waves in agreement with Roy equations analyses. This agreement

is nicely recovered if instead the present determinations of Eq. (20) are used. This shows,

once more, that a sensible and sensitive test of QCD in low-energy TTTT scattering should be

based on a global analysis making use of all theoretical constraints and all pertinent low-energy

observables.
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