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Abstract:

Recent p+ A — p+ X data are analyzed within the context of
the multi-chain and additive quark models. We deduce the average
energy loss of a baryon as a function of distance traversed in nuclear
matter. Consistency of the multi-chain model is checked by compar-
ing the predictions for p+ A — &% + X with data. We discuss the
space-timme development of baryon stopping and show how longitudi-
nal growth limits the energy deposition per unit length. Predictions
are made for the proton spectra to be measured in nucleus-nucleus
collisions at CERN and BNL. Finally, we conclude thart the stopping
domain for cantral collisions of heavy ions extends up to center of
mass kinetic ¢nergies K E. & 3 £ 1 AGev.
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1. Introduction

Initial interest in hadron-nucleus collisions focused on the space time develop-
ment of multiparticle production|1]. The main role of the nucleus was to act simply
as a microscopic detector sensitive to distance scales < 10 fm. The most important
qualitative feature that emerged from those studies is the validity of the formation
zone concept{2]-[4]. That concept follows from time dilation and the upcertainty
principle and states that the formation of a secondary particle with rapidity y
and transverse mass m, cannot be localized within a distance {{y,p.) ~ e'/m_
of the interactinn point. This exponential growth of length scales is also referred
to as longitudinal growth and explains why naive intranuclear cascade models(5]
systematically over predict the charged particle multiplicities{G] in proton-nucleus
reactions at high energies.

Renewed interest in hadrom-nucleus reactions has been stimulated by new
data|7] on p + 4 — p + X at 100 GeV. In addition to providing new tests for
competing multiparticle production models{8{-{15], these data may have important
consequences for gquark gluon plasma(QGP) production in nucleus-nucleus colli-
sions{18]. In particular. the first analysis[17] of that data indicaced that the stop-
ping power of a nucleus could be much greater than first expected. This may imply
that energy and baryon densities much higher than previously thought|18] could
be achieved in central nuclear collisions. Understanding nuclear stopping power
is therefore essential in assessing whether high batyon demsity QGP could be pro-
duced in nuclear collisions ir the epergy range 17 - 100 GeV per nucleon (AGeV).
Since that pioneering paper{17] several other works[19]-[22] have addressed the nu-
clear stopping problem. In this paper we apply the Malti Chain Model[9] and the
Additive Quark Model[13}-[15] to gain further insight into this problem.

The primary aim of this paper is to deduce the stopping power of nuclear
matter to high energy protons. We evaluate several quantitative measures of that
stopping power. Oune is the average energy fraction the leading proton retains
after traversing a thickness, z, of nuclear matter. Another measure is the average
rapidity loss of a baryon, {Ay),, as a function of nuclear thickness. In contrast
to previous works, we can test the consistency of our methods by comparing our
caleulations for p+ A — #%4X as wellas p+A — p+X with the data. Furthermore,
our method treats pp reactions on the same footing as pA and AB reactions. A
fit to the available data determines the one physical parameter, a = 3 £ 1, of our
model that controls the inelasticity in multiple collisions. In the terminology of
Ref.|20] this parameter implies a momentum degradarion length 4, = 8 %2 fm at
100 GeV. .

The second aim of this paper is to clarify the space time Jdevelopment of the
stopping process. In particular we find that longitudinal growth limits the energy
deposition per unit length and is the main factor, not the stopping power, that
determines the boundaries of the stopping domain for nuclear collisions. We show
that the length scales associated with secondary particle production and baryor
stopping need not coincide. We find that baryon stopping and secondary particle
production can occur within a Lorentz contracted nuclear volumes in the cm frame
only up to center of mass kinetic energies ~ 3 & 1 AGeV. Hewever, by that en-
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ergy. baryon and energy densities in excess of one order of magaitude above their
ground state values can be achieved in central collisions of heavy nuclei. Therefore,
production ¢f baryon rich quark gluon plasmas with nuclear collisions at relatively
low energies is consistent with our stopping power analysis.

The organization of this paper is as follows: In section 2 the assumptions.
physical picture, and equations that define the Multi-Chain Model are reviewed.
In section 3 we apply the model 1o ft the pA — ¥ and p4 — p data{7]. Thereby
we determine the one physical parameier of the model. In section 4 we amalyze
the space-time development of stopping and estimate the boundary of the stopping
domain for nuclear collisions. In section 5. we predict the leading proton rapid-
ity density for nuclear collisions that may eventually be measured{16] at CERN
and BNL. In section 6, aun independent determination of nuclear stopping power
obtained from fitting the data with the Additive Quark Model gives additional con-
fidence in the extrapolated stopping power to nuclear depths ~ 14 Fm. Concluding
remarks are then presented in section 7.

2. The Multi-Chain Model
2.1. Assumptions

There 1s much uncertainty about the low transverse momentum processes that
lead to multiparticle production in high energy hadron-nucleus collisivns. That
uncertainty obviously is deeply routed iu the upsolved ponperturbative problems
associated with large distance seales in QCD. It is therefore not surprizing that
there exist such a large number of phenomenological models ia the literature. The
wain virtue of the present model[9] is that it cleanly separates geometrical effects
from dynamical opes, and the dynamies is characterized by one physical param-
eter. Since geometrical effects are separated, this model treats hadron-hadron,
hadron-nucleus collisions on the same footing. Furthermore, it provides a conve-
nient extrapolation ool to predict nucleus-nucleus reactions.

The simplifying assumptions of the multi-chain model are

1. The transverse momentum distribution is independent of incident energy,
nuclear size, aud longitudinal momentum.

2. The probability that a hadron undergoes exactly n interactions is given by
Glaunber theory.

3. The reaction involves two stages that determine the longitudinal momentum
distributions of the particles: a fast multiple interaction stage and a time
dilated fragmentation stage leading t~ secondary hardon production.

4. The fragmentation stage is independent of the pumber of interactions in-
volved in the first stage.

5. The multiple collision dynamies sczles with energy. lu particular, the log-
gitudinal momentum distribution depends only on the scaling light cone
variable

E +
= ._(_.-_p’l._ = ¥ " Vmax (2_1)
(B + P )ouas
where Yoa = yo + log(mx/m_) is the maximum rapidity that a particle
with transverse mass m, = (m? + p’)''? can have.

6. Projectile and target fragmentation processes are independent.

The above assumptions are surely too strong but are consistent with present
phenomenology [8]-{17], {19'-{22] and considerably simplify the formalism,

A physical picture consistent with the above assumptious can be formulated in
terms of partons and color strings. The incoming proton is regarded as a composite
object with many pirtons sharing the incident momentum. As that proton passes
through a tatget nucleon omne of its partens may chanyg» color due to an interac-
tion with a partoa of the target. The color exchange can he viewed as a string
flip whereby the colur string connmecting the target parton to the spectater tarzet
partons apd the string connecting the projectile parton to the spectator projectile
partons interchange so that the spectator targef partons Tow codlect to the projoc-
tile parton and the spectator projectile partous now conuect to the target parten.
In this pictute an interaction creates two strings which streteh with time11237
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We refer to the string connecting the spectator target partons with the interacting
projectile parton as a target chain.

In proton-nucleus collisions, we regard the nucleus as a parton filter that siits
out a certain number of partons from the projectile. That sifting occurs by pro-
moting virtual partons to their mass shell and creating independent target chains.
Because of time dilation the color fields in each chain neutralizes via pair produc-
tion over a distance scale proportional to the energy of the projectile parton that
formed that chain {see section 4). The spectator partons also drag a string behind
them|23] that neutralizes over a large distance scale. That peutralization and re-
combination process is assumed to produce the leading secondaries, including the
leading proton.

The crux of the problem is to specify how the parton filter works, i.e., what is
the distribution of energy fractions of the partons thart interact in the target. That
distribution specifies the stopping power of high energy protons, the information
that we want to extract from the pA data. In order to characterize that distri-
bution ib terms of as few a parameters as possible we adopt the simple algorithm
proposed in Ref.[9]. That algorithm specifies that the energy fraction of interacting
partons falls off according to a geometrical progression, z; = a'~!/{1 + a)/, where
a 2> 1 is the phenomenological parameter of the model. We adopt this algorithm
mainly because of the simplicity of the resulting formalism in the next subsection
and because it can adequately accounts for the A dependence of the current data.
In section & we check that our conclusions about nuclear stopping power are rela-

tively model independent by refitting the data in terms of a model with different
assumptions.

2.2. Formalism

We translate now the above assumptions into the equations that define the
model. First, we consider the invariant proton inclusive cross section. Assumption
1 on transverse factorization implies that

dirPAPx aN
Es = cr.m(A)fpg(p;)d—y(A) ) (2.2)

where o, i3 the absorption cross section, r, is the final proton to baryon ratio,
g{p.) is the normalized transverse momentum distribution, and dN/dy is the nor-
malized rapidity deasity. We note that the present data(7] shows that rog(p.) is
independent of atomic number and rapidiry for z > 0.3 and p_ ~ 0.3 GeV /¢ within
20% accuracy.
Assumption 2 allows us to decompose dN/dy into a standard multiple collision
series
4N A
ok 3 Pyn)@n(z. z0) (2.3)
=

where P4(n} is the Glauber probability[24] that n target nucleons interacted with
the incident proton:

& !
Paim) = [ S T A (- N )

)

with N,(b) being the average number of interacting target mucleous at impact
parameter b as given by

Na(b) :af‘,:"/d;pA(:,b) . (2.5)

Note that realistic nuclear densities, p4, lead to rather large values of the single

collision probability {Z 0.2) even for the heaviest nuclei due to their diffuse surfaces.
In terms of N,{b) we can also express

Tunl4) = [ &1~ (1 NaB)/4)4) (2.6)
Assumptions 3 and 4, concerning the separation of the reaction into two stages,

imply that the probability density, Q.(z.z;), of finding a proton with light cone
fraction z after n target nucleons have been struck can be written as

>

H

Qna(z. 1) = f dx'Foa{7, 2o} fpl2 /2 2a/2") (2.7)
where F,(z, 2y} is interpreted as the probability density that the spectator projectile
partons retain a light cone fraction x after n projectile partons have interacted in
the target. With the definition Fy(z,z0) = §(z — 1), the function fo(z, 2o) must
correspond to the invariant discribution of protons in pN collisions at incident
rapidity yo = log(1/zq). A convenient parameterization of the p+ 2 — p+ X data
is

folz,z0) = z/(1-zo) . {2.8)

We emphasize that our model says nothing about = - the fragmentation function
J»{z). Our model only specifies the A dependence of pA reactions using pp reactions
as input.

Since zg is the minimum light cone fraction in the target frame, these functions
are normalized as

Ldy

A Qe m) =1, (2.9)
i d 4 ,
/ ) =1, (2.10)
g X

1
f dfFo( z0) = 1 . (2.11)
0

Note that the scaling assumption 5 holds strictly only at asymptotic energies where
zo — 0. For finite energies we include only the minimal deprndence of these
functions on z, required by overall energy conservation as in Ref.|21].

Note that Eq.(2.7) neglects the contribution from target fragmentation. To
motivate this recall that empirically the recoil proton in pp collisious is distributed
as ¢~¥. Consequently, for the rapidity range of interest, y 2 4, there is less thap
a five perceat contribution to dN/dy from target recoil nuclrous. Baryon pair
production is also negligible for the erergies considered here.
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The dynamical information in this model is contained in the dependence of F,
on n. For simplicity we adopt the scaling algorithm of Ref.[9%:

Fo(z.24) = le %I\'(z/z".ro/z')F,,_l(z'.zg) R (2.12)

where K(z,:20) is a scastering kernel that specifies the probability density that a
projectile parton carrying a light cone fraction 1 — = of the available light cone
energy £* = m_/z interacts with a target parton.

Following Ref.{9} we parameterize K as

aze”!
K(z, 20} = = (2.13)
g
which is obviously normalized as
1
f d:R(z ) =1 . (2.14)
0

All the dynamical information in this model is therefore contained in the one pa-
rameter a. As we show in the next subsection in terms of a the fractional energy
loss per interaction is 1/{1 + a). and the final baryon rapidity loss per interaction
is 1/a. Since Eq.(2.12) leads to a geometrically decreasing fractional energy left in
the spectator parton cloud as a function of the interaction number, we refer to it
89 a “geometrical” filter. It is imporiant to emphasize that Eq.(2.12) says nothing
about the space-time points of the n interactions. It is a purely momentum space
equation. In section 4 we will consider possible extentions of this model to coordi-
nate space. However, for the analysis of the pA data we do not yet need to specify
the space-time picture behind (2.12).

With Eq.{2.13), the solution to Eq.{2.12) forn > 1 is

1 aze! 1-z23\"
Folz, zo) = 2 . 2.
sl = T3 [bg(z"—:s)] (215]

We can now compare our model to others in the literature. In Rcf.}'Zl] only the
case @ = 1 was considered. That corresponds to the incoberent cascade limit where
each interaction in the target is treated as if it were a pN collision in free space.
In Ref.|22] the same ansatz to K{:,0) was used. but in that model the two stages
of the reaction in assumption 3 were not considered. Therefore, their formalism
could not be directly applied to pA ~ cX, where c i5 any other fragmeunt thaz a
proton. In Refs.[10],[20] a different parameterization, K{z,0) = 1 — A + AS(1 ~ z)
was used but in a formalism that treats pp and pA on diffierent footings and pion
and proton production oun different footings.

It is also instructive to compare the geometrical algnrithm in Eq.{2.12) with
one corresponding to a perhaps more intuitive “arithmetic” filter. The anithmetic
filter is one where the probability that n partous interact with energy fractions
Zy, -+, Z, can be expressed as an uncorrelated product

X W (ry) Bz (L =2y~ = 2,) . (2.10)

With Eq.{2.16), all n interacting partans carry the same average energy fraction,
%,. Only energy conservation forces , to decrease with increasing n. Tbis cor-

responds to the equipartition model 1 in Ref.[9]. In terms of W {z). F.[z} would
then be given by

Fu(z) = X,,fdz\~~d;c,,ﬂ'(z.)---W(z,.)6(l— P N - A &1

We refer to this as an arithmetic Riter because the average euergy fraction retained
by the spectator partons after n interactions decreases approximately linearly with
n rather than geometrically. However, because of the ackwardness of the the delta
function constraint above, analytic formulas for the arithmetic filter are rather
cumbersome. The geometric filter has the advantage of incorporating energy con-
servatlon in a simpler manner analitically. Otherwise, there is no deep reason to
prefer the geometrical flt»r over the arichmetical one.

An important advauntage of the present formalism is that by incorporating as-
sumption 3 into Eq.{2.7) we treat p+ A — ¢+ X for any fragment ¢ and any nucleus
A > 1 on the same footing and that one parameter, «, fixes all those reactions.
The basic input to this model are the measured p + p — ¢ +.X distributious and
the known nuclear geomertries. The multi~chain model is then a convenient extrap-
olation tool for pA and AB collisions with the absolute minimum of parameters.
That at least one paraieter is needed was shown by Woung|2L] by the inability of
the incoherent cascade medel (@ = 1) to fit the new data|7]. As we show in sectivn
3 oue parameter, @ x 3. is in fact enough to fit the 100 GeV data.

Unlike the leading proton which is assumed to emerge only from the recom-
bination of the projectile spectator partous. energetic pions can emerge not only
from chat fragmentation process but also from the hadronization of target chains.
This is because pair production mear the end of targer chains can easily lead to
meson jormation and only much less frequently to baryon formatiou. In analogy
to Egs.{2.2,2.3,2.7) we therefore have

dga_pA~l=.\'

EFE = ga{A)ge(p ) 3 PalrllQiT(2) + T () {2.18)

whete Q’,’,’ inctudes the {ragmentation of the projectile as well as the the hadroniza-

. o 5 .
tion of the last chain. and T deseribes the hadrorzization of the *° target chalu.
Surpressing the zo dependences of all functions we can write

~ 3
QT (2) =/} A’ Fpy(£) fee (2]2]) {2.19)

Since Fofs) = §{1 ~ z), we sec that f, curresponds to the rapidity density of pins
in pp — #X. For simplicity we parameterize that data as
flz) =l =x) +ep{l =2} . {220y

Again we emphasize that our model says nothing about the fragnientation funct us
f.0r). Those must be taken directly from pp — oX data. Ouly the (2} are
speeifisd in onr modsl




With the above parameterization, the first term with a; = 3 represents the
contributions from projectile fragmentation, and the second term with a3 =~ 9
represents the contribution from the hadronization of the target chain. With this
interpretation, T; in Eq.(2.18) is given by

Ti(e) = [ de'Fioa(a)enlt - /7). (221)

2.3. Measures of Stopping Power

We can now apply the above formalism to evaluate several measures of nuclear
stopping power. One important measure is the mean rapidity loss, {Ay),, suffered
by a baryon after having traversed a thickness 2 of nuclear martter at saturation
density, ps = 0.145 Fm™>. Apother important measure is the average fractional

energy, (z);, retained by the projectile spectator partons after traversing a thickness
z.

We denote the average of a function of z over a normalized distribution D{z)
by

(o(2lo = [ aralz)Dla) | (222)

The average of that function as a function of atomic weight is then

{o(z)}a = Z Pa(n){g(z)}a (2.23)

where {g{z)}). is given by Eq.{2.22) with D{z) = Qa.(z)/z. In order to evaluate av-
erages as a function of nuclear thickness z, we use the Poisson limit of the binomial
distribution to specify fluctuations of the collision number to get

(alahs = (g + 5 2 ey (224)

in terms of the proton mean free path A.
‘We consider here only the high energy limit zo ~ 0. In that limit we have

(z'")p.=(z"'),.~(zM)p__,=( g ) , (2.25)

a+m

(:"’)n=( = \)H L {2.26)

atm m+1

We see from Eq.(2.26) that the case o = 1 indeed corresponds to the incoherent
cascade limit where in particular {2}, = {1/2}". This relation also shows that the
fractional energy loss of the projectile parton cloud per collision is just 1/{1 + a).
Applying Eq.(2.25) for n = m = 1, we see that the spectator partons retain a
fraction o/(1 + a} of the incident energy. The final baryon after recombination.
however, is observed in pp collisions on the average with {z); =~ 1/2. Therefore,
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the recombination process must leave the fnal baryon with a fraction my/m® =
(L +a)/{2a) of the energy of the spectator partons. This shows bow the effective
mass, m°. of the spectator parton cloud musc depend on a in our model.

Eq.(2.25) also shows that the average energy fraction, 2, of the i** chain in
this model falls off according to

2= {z)n, = {2 =0 (L+a) . (2.27)
Calculating next the average rapidity loss moments, we find that in the zo — C

limit
{(Ag)a = —(og {Z2))a

= (n ~ 1J{Ay)k + {Qy)y, (2.28)
=(n~{)fa+l,
(Aghn =n(n-1)/a* +2(n=1)/a+2 , (2.20)

where we neglected terms of order log(m/m_). The average rapidity loss moments
for impact parameter averaged pA collisions is then just given by the above expres-
sions with n and n? replaced by their averages, (n)a = v and {n}4 over Py(n)
respectively.

The average rapidity loss as a function of nuclear thickness is given by

(Ay): = ad

(1—e) {2.30)

R~

e

~)1 2z a'—lz(l—e"“\)< {2.51)

- 1 /:
A¥) == (2] +5%
(ar) ol (.\ ald *
These relations show that 1/« is the mean rapidity loss per interaction.

Finally, we note that the average fractional momentum carried by the spectator
projectile partons after traversing a nuclear thickness - is given by

{z), = exp ( ———"——) : (2.32)

TR

The leading baryon ends up with only a fraction my/m* = (1 + a}/(2a} of that
energy because of the effective mass of the spectator partou cloud.



3. Empirical Stopping Power of Nuclel
3.1. Nuclear Geometry

The use of accurate nuclear densities to compute P,(n) in Eq.(2.4) is importaat
because the 2 — 1 limirt of the proton inclusive cross section is directly proportional
to Pa(1):

dN
lim z—— = P,(l)} . 3.1
= = Pa) (1)

-1

Therefore, the non-diffractive component to the leading proton rapidity denpsity
near the kinematic limit is fixed by geometry alone aud is indepradent of the
dynamics. Since sharp sphere approximations to nuclear densities grossly uuderes-
timate the probability that waly one interaction occurs in heavy nuclel, simplified
treatments of puclear geometry could lead to erronious dynamical information from
z 2 0.3 data.

A sufficiently accurate approximation to nuclear densities is given by the Wood-
Saxor form

palr) = Px{L + exp[(r = Ra)/a}} " (3.2)

where 3, is determined by normalization, and the parameters R and d are chosen
as

Ry=1104"% - 16:47'% Fm , (3.3)
d =034 Fm . (3.4)

We compared P,{n} computed with the above density to those computed by
H.Sato{25 using density depeudent Hartree-Fock and found agreement within 10%
accuracy. We chose 0% = 32 mb as the inelastic pN cross section. Furthermore,
Table 3.1 shows that this densicy leads via Eq.{2.6] to satisfactory agreement be
tween the calculated and measured|26) reaction cross sections. Also listed in the
Table are values of P4{1), P.(2), and v, = {n), for various nuclel. In practice we
terminated the series in Eq.{2.3} at n=15.

For comparison, we note that the densities employed in Ref.21i l=ad te 10%
larger values of P4(1) and c.{pA). This led to invariant cross sections thac are
20% larger than ours at high z. In the calculations of Ref.{19] only the term
n = {n), was corsidered in Eq.{2.3). The neglect of surface and fluctuation effects
is partially responsible for the large {17 Fm) momentum degradation length that
was obtained in Ref.{19]. In Ref.[20] diffuse surface effects were neglectel, but siuce

[CA Jodexp) [oqltheo) T P11 [ P2y [ o0
12 232 225 057 | v2s |17
27 409 411 0.45 | 0.24 |21
64 764 765 0.34 | 0.22 {2.7
108 1101 1105 0.28 n.19 | 3.1
zn7l 1730 1126 222 | u1d (23

Table 3.1: Reaction cross sectious and Glauber probabilities
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their method treated pp and pA collisivns differently, they were able to it the data
by introducing a normalization factor. Finally, we note that in the pioneering work
of Ref.{17] only a very crude treatment of geometry was considered. An important
objective of the present work is to reduce the uncertainties associated with such
trivial geometrical effects.

3.2. Implications of 100 GeV Proton Spectra

In Fig.1 we compare our caleuniated invariant proton inclusive cross sectivus (o
the dataf?] at 100 GeV /e, Tor these caleulstions we used the parameterization of
the transverse momentumn distributisn of Ref.(9] and took the proton to baryon
ratio r, = 0.53. This gives rg(p_} = 0.8876 for the p_ = 0.3 GeV/c relevant to
the data.

In Fig.l the case a = 1 verifies the finding of Wong]21} that the incohereut
cascading cannot account for the A dependence of the data. The data indicate
thac the probability of small energy loss is greater than predicted by incohereur
cascade. The partial transparency of nuclei can be parameterized in our model by
setting @ > 1. Taking into account the uncertainties associated with vur model
assumptions and those of the data, we see that

a=3%1 (3.5)

leads to a satisfactory fit to the A dependence of the data over the measured x
region. Note that the r = 1 intercept is independent of o in accord with Eq.(3.1).
This value of & is in agreement with the value deduced in Ref.{20]{22] using a less
geperal formalism.

To emphasize the limited kinematic domain covered by the preseut data. we
show in Fig.2 the normalized rapidity distributions for a = 3. We ako caley-
lated dN/dy for collisions with the vuter (dashed) and inner (dashed-dot) halves
of the nucleus for comparison to the extrapolations by Busza and Goldhaber{17}.
This separation into inner and outer half is accomplished by restricting the range
of impact parameter integration below and above the impact parameter. .. cotre=
sponding 10 one half of the reaction cruss section. Compariug the dashed-dot curve
in T1g.2b with the corresponding oue in Fig.3 of Ref.[17] we find a substantial dif-
ference. The peak of our curve is shifted by one unit of rapidity less thaa their
extrapolation. This is a consequence of their cruder treatment of grometry and
their constraint that dN/dy vanish at z = 1. It would be very nseful to measure
the multiplicity dependence of the proton distibutions to test more severely these
geometrical effects.

Having determined the range of o compatible with the proton vields, wo show
the average rapidity loss, (Ag).. as a functiou of unclear depth ia Fig.s. Whil-
we differ with the extrapolated distributies of Ref.]17] for the inner half impact
parameters, we Hud in agreemeut with Ref.17) that the maximum rapidity shft
induced by heavy nuclei is

Symar = (DY) imiFm = 25205 . {2.6)
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This capidiry shift may oceur when a proton traverses the entire diameter of a heavy
nucleus, It is important to keep in mind, however, that the above extrapolation has
yet 1o be tested experimentally by more detailed measurements involving associated
multiplicity triggers. The impact parameter averaged data yield {Ay) 4 as indicated
by the symbols in Fig.3. For finite nuclet we took the average nuclear depth to be
z =1, % 2.08 Fm. The Pb data thus only tests nuclear stopping to average depths
of ~ 8 Fm.

3.3. Consistency with Pion Spectra

To check the copsistency of our model we compare next the calculated invariant
pion inclusive cross sections with data. For these calculations used the following
fit to the pp — #*X data

PN g (0.3)f,-(2) = 35(1 = z)° + 18(1 ~ z)>® mb/GeV? , (3.7)
20,03} f,-{x) = 31.8(1 = 235 + 4.59(1 ~ 2}>% mb/GeV? . (2.8}

The pp — = data were fit with this functional farm to allow fat a simple calculation
of the target chain contributions T;{z} in Egs.{2.18,2.21}.

In Fig.4 we ses that the A dependence of the 7 is well accounted for in the
measured r region. However, we see that while the A dependeunce of the =~ spectra
is reproduced for 4 > 12, the pp — #*X data are systematically lower than the
solid curve which is obtained in this case by demanding the best overall fit to the
nuclear data. Conversely. if we insisted on fitting the pp data by reduciag the
normalizatioa in Eq.(3.7) by a factor ~ 2/3. then all the calculated nuclear curves
would be systematically below the data. Private communication with W.Busza
indicated that it is possible that for the reaction p+p — =~ +.X certain experimental
systematic effects could fead to underestimating the normalization in this changel.
Another reason why p4 — 5~ dara may require a larger p.N — 7" is the apparent
isospin dependence of =~ production. It was noted in Ref.{21] that in the region
z > 0.3 the pn — = cross section is about a factor of two greater than the
pp — 77 cross sections. While those data are also suspect, such an isospin effect
could account for the difference between the pp — 7~ data and the solid curve. On
the other band, it appears['.’l[, that the pp — 77 and pn — =~ cross sections are
approximately the same. Thus no isospin eflect is expected in that chanpel

Finally we note that the pA — =* data at r = 0.9 are systematically higher
than the calculations. This is likely to be due to the neglect of diffractive contri-
butions in our model{13]. Such diffractive contributions would also be expected in
p+A—-n+X.

The successful reproduction of both the normalization and the shapes of the
pion yields saould be contrasted with the incoherent cascade model{21! that over-
predicted those yields by a factor of 7. This is due to the neglect of longitudinal
growth in the cascade medel. Qur stasting point via Eq.(2.18) explicitely incorpo~
rates that effect by including only one projectile fragmentation process according
to assnmptica 3 io sectica 2.1. Unfortunately. this high x Xinematica) domaia is
Dot very seusitive to the multi-chain aspect of our model. Target chains produce
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pions mostly in the z < 0.3 region. On the plus side, the data are, however. sen-
sitive to the energy loss mecbanism since the ratio of pion cross sections for Pb
and p targets varies by a factor of three in the measured r region for =7. The
agreement of our calculations with the pion data shows that the energy loss of a
proton deduced by ftting the proton data with a = 3 is cousistent with both the
leading pion and proton spectra.

3.4. Deviations from Scaling

While we have seen that the 100 GeV/c data on leading protons and pions
could be well reproduced in our model by one fixed parameter, a = 3. the s-aling
assumption must break down at sufficiently low energy. In Fig.5 we compare onr
calculations for p+A4 — p+ X with data|27] taken at 24 GeV'. For that calculation
we took r, = 0.75 and g(p. ] from a fit to the 24 GeV pp — p.X data of Blobel et
81{28]. The data and calculations correspond to fixed angle § = 17 mr. The three
curves show cases a = 1 (solid), 3 (dashed), and 6 (dot-dashed). While none of
the curves provides a good fit, the data seem to indicate a bigger energy loss than
expected from the ¢ = 3 curve (i.e., the integral of the measured distributions
between 0.1 < r < 1 is less than the integral of the calculated distributions).
Further support for this conclusion has come from preliminary p4 — p.X data;20!
at 17 GeV, where the normalization of the high z proton density seems to be in
fact a factor of two smaller than thar of the data displayed in Fig. 5.

These data therefore indicate that the stopping power of nuclei at ~ 20 GeV is
greater than a¢ 100 Gev. In terms of our phenomenological parameter a, a valte
closer to unity may be necessary at these lower energies. For the purposes of the
present paper, we shall not try to incerporate such scaling violations by modifying
the model but only note their existence. Fortunately, we find in the gext section
that our conclusions about stopping domain of nuclear collisions are aot especially
sensitive to such violations.

14



4. Space-Time Development of Stopping
4.1. Momentum Degradation Length

From the pA data we could deduce how much energy is lost by the leading
barvon after traversing a certain thickness of nuclear matter. Our analysis confirms
earlier estimates|7),{19)-{22) that about 90% of the incident energy of a proton conld
be lost after traversing 14 Fm of nuclear matter. However, until now the question
of where that energy is deposited has not been seriously addressed. Obviously the
data provide constraints only on the momentum space aspects of models, which
in our case is the value of o. The space-time development of stopping and energy
deposition is largely unconstrained by the available data. However, for applications
to nuclear collisions it is necessary to know not only how much energy is lost but
also where that energy is deposited. In this section we consider the space-time
picture of enerzy loss and deposition in the context of the multi-chain model. We
pay paticular attention to the effect of time dilation and longitudinal growth,?]
|3] {4] on the space time development of particle production. We show below that
this basic phenomenon, neglected in previous studies on stopping power, limits
the maximum energy that can be deposited into a nucleus. Furthermore, that
maximum energy deposition is relatively insensitive to dynamical assumptions.

Taking fluctuations of the number of interactions into account, we found in
Eq.(2.32) that the average emergy fraction retained by the spectator projectile
partons decreases exponentially with nuclear thickness traversed. This implies

that dE £
E [~ ‘—A—P B (4.1)

where E(:) is the energy left in the projectile spectator cloud at depth 7 in the
matter, and i, is the “womentum degradation length"{20] as given by

,={l+a)lx~8x2Fm . {¢.2)

If we ignore fluctuations as in Ref.[20], then 1 + o above is replaced by 1/log{1 +
1/a). For o = 3 Buctuations enhauce A, by only 15%.

While Eq.{2.32) relies on the assumption that the stoppiny dynamics scales
with energy, Eq.(4.1) is more general if we let A, depend on energy. The value of
4, in Eq.(4.2) has been deduced from data at laboratory energies ~ 100 Gev. For
lower energies we expect according to Fig.5 that A, decreases as o decreases. For
comparison, our value of A} is a factor of two larger than if incoherent cascading
were valid[21]. It is also 60 larger than dednced in Ref.[20] beciuse they neglected
fluctuations and used the toral rather than the inelastic pp cross section for esti-
mating A. {their revised results to be published are in accord with ours). On the
other hand, our value is a factor of two smaller than deduced by Hwa([19], where

only the roughest geometrical considerations and dynamical approximatious{?()}
were considered.

Stopping the baryon in a ftame that moves with rapidity y with respect to the
lab means that £ iz the lab is reduced to m® cosh(y), where m* is an effective mass.
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Recall from section 2.4 that in our model the fraction of the energy of the spectator
partons that is carried away ultimately by a baryon is f = (1 +&)/{2a) = 2/3. By
denning m* = my/[f. we thus guarantee that on the average the projectile nucleon
ends up at rest in that frame. Since E{z) = Ege™* 4» from Lq.(4.1), the thickness

of nuclear matter required to reduce the rapidity of a nucleou from yy to y is
L{y) = L~y =6y} (4.2)

where §y = log(1/f) =~ 0.4. For y = 0 the approximation E ~ m_¢¥/2 used in
Eq.(4.3) is not good enough. The stopping distance in the laboratory frame is
given ratlier by

L{0) =~ 4, log(Eqfm”) . (4.4}

Solving for Ay = y — ¥ from Eq.(4.3), we ncte that Ay = Lj\, +dy in-
creases slower with L than if we used {Ay)p from Eq.(2.30). This is because the
distribution of energy loss is so wide that the average rapidity loss tends to over
estimate the average energy loss for a given o. Within the large uncertainties in
the present determination of a, however, this distinction is net so cruciall To be
on the conservative side we use Eq.(4.2) in applications to nuclear collisions.

For application to collisions of symmetric nuclei {A+A). we are interested iv
reducing the incident rapidity by only 1/2 since such a rapidity shift applied to
both target and projectile nucleons would lead to stopping of all baryons in the
center of mass system. The thickness of nuclear matter required to stop baryons
in the ¢m system is thus estimated to be

L* = L{y/2) = A, 0/2 - 6y) . (4.5)

4.2. Effect of Longitudinal Growth

We now turn to the problem of how to reconcile the slow {log Ey) inerease of
these stopping Jdistances with the concept of longitudinal growth{2l. Because of
Lorentz time dilation, the formation time of a secondary particl? increases linsarly
with the energy of that particle [3). Therefore, at a distance 2 into the matter ooly
particles with rapidities{3}(4]

¥ < log{2:/n) (4.6)

could have come on shell. The proper time for formation of hadrons is estimated to
be ry = 1 Fm. Recall [2] that Eq.(4.6) also follows {rom the uncertainty principle
in terms of light cone variables (2. =t % 2.q9. = E 2 4.)

. 2h
Ar. -
At].:

(4]

Therefore the production of a particle with rapidity y and trausverse mass m
cannot be localized on the average within a distance Az ~ ¢¥/my of the interaction
point. Note that this is in spite of the fact that at any fized time the 2 conrlizate
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of a high energy particle with a rapidity wave packet of width Ay can be measured
with great accuracy, ie, Az ~ 2h/{m_e*Ay) as y — cc. What we cannot localize
well is the production point of the particle, not its wavepacket once it has been
formed. This exponential growth with rapidity of the uncertainty in the production
point is referred to as longitudinal growth. We see that 7 = 2/m  ~ 1 Fm even
for point like partons due to limited p. ditributions. For point like particles the
transverse Compton wavelength sets the minimum uncertainty in the proper time
for its formation. Time dilation then increases the uncertainty in the formation
time in any other frame.

To see what limitations longitudinal growth places on the energy deposited per
unit length et Pr(z;y)d: be the formation probability of a secondary with rapidity
y at some paint between z and z 4 §z downstream from the interaction point. A
simple form of P; that incorporates Eq.(4.6) is

Pz = azl'm‘?(-' - (= X)UNO(L + X)) ~ 2} X6 - ey)) (48]

where /y) = rysinh(y) = e¥/m_ is the average production point of a particle with
rapidity ¥, »nd x€{y)/\/3 is rms width of the production region. The parameter
x < 1 controls the magnitude of fuctuations about the average production point.

For an interaction at point zp, the energy deposited at z in the form of on shelf
secondaries is
dE™

dy
== [ayPis - zme cosh(y) 7~ . (4.9)

where d.V/dy is the final rapidity densirty of secondaries. Since the empirical dN/dy
is only a slowly varying function of y in the central region, we see that longitudinal
growth implies that dE™ /d: is approximately a constant|30] given by

m. JdN\ 1 1+ Gev
o= (B0 S (22X L 2 (4.1%)
o \dy [ 2x 1-x fm
Note that Buctuations around the average production point enhance dE>=/d:.
The approximate constancy of dE>/d: also follows naturally from the string
model. A string produced in a collision corresponds to a color flux tube that
streches out with time. The constant color electric field £ in that tube leads to
a constant energy per unit lemgth ¢ x £2. In the color Selds of that tube the
Schwinger mechanism produces pairs that neutralize the field. Since a pasticle
with energy ¢ cannot be emitted from the string before the kinetic energy loss,
oz, exceeds ¢, longitudinal growth is automatically satisfed. Furthermore, the
empirical string tension. ¢ = L Gev/fm. gives an energy loss similar to Eq.{4.10}.
The energy deposition per nnit length can be approximately constant of course
only aver a finite range. That range is fixed simply by enersy couservation. For a
target chain carrying an energy fraction z, energy conservation fixes its “length”,
Lt} to be
Uz} =xEyfo | (4.11)
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where Ep is the incident energy. At the point where the string is streched tc
length £{z) all the kinetic energy of the leading parton has been converted intc
potential energy. That potential epergy is in turn converted via the Schwinger
mechanism into energy of pairs that are formed in the color neutralization process.
A target chain formed atv depth z, therefore leads to an approximately constant
energy deposition per unit length over a finite range zp < & < zg + £(z), so that

g%xﬂ'”(:":u)(}(:wl(r)— 2} - (4.12)

Sumining over all target chains leads then to the estimate

dE™

= o300z z)e(si + Lz} = 2)) (4.13)

i
where the average denoted by {--) is over the multi ‘city of target chains, their
production points z;, and their energy fractions z;.

To Eq.{4.13) we must still add the contribution to the energy deposition due tc
the recombination and neutralization of the projectils chain. We do this formally
by extending the sum from i = 0 to i =¥, where ¢ = 0 refers to the contribution
of the projectile chain. Thus, =, is point from which fragments frem the projectile
chain start to materialize, and {(zq) = £(1 — z, — -++ — zx) Is the distance over
which the projectile string neutralizes. With this convention, note that the total
length of all chains is just the naive longitudinal length scale

I

() = Eofo . {4.14)

n

v

From this it is clear that an important feature of multi-string models is the oc-
currence of multiple length scales that are smaller than the naive length scale,
Eo/a.

What we must mext specify is the dietribution of 24, ---,zy and Xpjo---, Ix
as well as of . The distribution over N is given by a Poisson from Glauber
theory, such that {N) = 2R/\, where 2R is the thickness of nuclear matter. The
distribution of the fractional energies. 71,+- -, zx, carried by the X target chains is
comgletely specified in our model as

Kl-zn)K{l~z/l1-2)}
1 {(L~1z))

Dalzv - 2n) = (4.15)

This distribution leads 1o the average fractional energies, ¥;, of target chains given

The distribution of interaction points, . on the other hand, is not specified
by the model as formulated thusfar. Fitting the momentum space Jata does pot
requir: knowledge about the =. Agaln we emphasize that those data provide
information rly on euergy loss and not on energy depositiou. Thus. strickly
speaking the pA data are not enough to determine the epergy depasition that
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is crucial to applications to nuclear collisions. Note that the maximum energy
deposition in a finite nucleus is not even beunded by the energy loss because some of
the energy carried by the spectator partons can also end up within the nucleus {term
i =01in (4.13)). On the other hand, the eneryy deposition could be significantly
smaller than the euergy loss because the lengths of several chains could exceed
the nuclear thickness. To estimate the energy deposition we consider two extreme
models for the dis:ribution of production points, z;.

The first model for that distribution follows naturally from multiple collision
theory. In such a framework interactions occur scquentially iavolving successively
smaller and smaller energies. Therefore, the first chain, carrying on the average
the highest eaergy fraction #, = 1/(1 + a), would be produced first (5; ~ A). Then
the second chain would be created after another mean free path. ecc. Such a time
ordered sequence of intetaction points corresponds to a distribution

N! .
SN(ZX,'N,ZN;ZR) = E—R_)‘:"Tot:z - zl] "-H(SN - Z(\'_l] N (4.16)

where 2R is again the thickness of the nuclear slab and 0 < z; < 2R for all i. With
Eq.{4.16) the average production point of chain i is {=;) = 2Ri/(N +1).

A second possibility for the distribution of interaction points is suggested by
the parton model. In that model partous are assunied to have very large mean free
paths. Ounly because there are so many of them that a few can neverthess interact
inside 2 nnite nucleus. In that picture the z; are thus uniformly distributed over
the nuclear thickness. Such a distribution thus corresponds to

Sn(z1, -+, 28 2R) = (2R)V . (4.17)

On the average, there is an interaction every 2R/(N + 1) as with the time or-
dered distribution (4.16). However, with {4.17) there is no correlation between the
interaction point and the enerZy of the chain.

Clearly, (4.16) leads to an upper bound on the estimate for energy deposition,
because the first few chains that carry the largest fractional energies have the
longest range within the nuclear matter to meutralize. Conversely, (4.17) leads to a
lower bound since some of the time the shorter chains are allowed to be produced
before the longer ones. Comparing the energy deposition resulting from (4.16) with
taat resulting from (4.17) will give an indication of the theoretical uncertainty in
those estimares.

Consider first the time ordered case corresponding to (4.16). On the average,
the energy of a chain produced at depth = is given by E{z)/(1 + a). Therefore, its
length is approximately

i2) = tae™*/r | (4.18)
where £, = Eof{{1 + a)o). Fig.6 illustrates the range of nuclear depths over which
different target chains neutralize in this case. A given target chain n neutralizes
on the average between n < 2 £ n + (n)). Note that the length of all chains
increases lineatly with the incident energy and that those lengths are twice as long
for the case @ = 1 as for a = 3 because the average energy lost forming target
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chains is twice as large in the former case. The peculiar shape of the solid curves
results from the interplay between che linear growing and expogentially decreasing
contributions to the end point of the neutralization range for different chains, For
a fixed energy and a there exists a minimum depth, *, below which none of the
chains have yet neutralized. That depth as given by

s g|—Fo
U (P e S | o

grows only logarithmically with incident energy.

Since each chain contributes approximately a copstant v to dE> /d:, we can
estimate the total energy deposition per unit length by notiz ; that a new chain is
created on the average every mean {ree path A and summing over all contributing
chains via dE= d

tdzy .
— x| Ol lz)—2) . 4.20
— o [" 2200+ Ha) - 2) (420)

For z < z* the total energy deposited per unit length simply increases linearly[30],
dE=[d:n T z<s . (4.21)

This linear growth is illustrated in the bottom part of Fig.6. For : > z*, dE>/d:
decreases rapidly as fewer chains coptribute. Note the little kizk in the curves
that occurs at z = L(0] = 4,log(E,/m=*) corresponding to the stopping Gistance
in the laboratory frame as given by Eq.(4.4). For z > L(0) the integration over
zq in Eq.(4.20) terminates at L(0). Nevertheless, dE™ [dz continues to be finite
because not all target chains can neutralize so fast. For E; = 50 GeV and a = 1.
for example, the baryon stops on the average at a depth L{0) = 17.5 Fm while
target chains continue to produce secondaries until the first chain is neutralized at
depth ~ 25 Fm. Tp this example linear growth of dE® /d: ceases at =" = 12 Fm.

The most striking feature to note in Fig.6 is the insensitivity of dE™ [d: to
the value of . Even though the hadronization range of any particular chain is
sensitive to @, the net sum of all chains is rather stable with respect to changing
a. Tt is also obvious from the dE™/d: curves that the energy deposited per unit
length eventually saturates as the incident energy increases. At a fixed depth z,
dE™[dz saturates at g2/X for incident energies satisfying =* > = Therefore, the
total energy deposited within a finite nucleus of thickness 2R saturates at

E®(2R) < 20R¥/) , (4.22
with the upper bound being reached at incident energy
(1+a)o2R if 2R <),
Ey=E"'= , (4.23)
(L4 a)adpel®R-40 i 2R >y,

The maximum energy that a proton can deposit in nuclear matzer of thickness
2R = 14 Fm is thus £® = 45 GeV which is reached for incident energios Ey >
E*t % 60— 80 GeV fora x> 1~3.
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Consider now the alternate possibility, Eq.(4.17), where the assumption about
the time ordering of the production point z; is removed. In this case, each z; is
uniformly distributed between 0 < z; < 2R. Consequently, chain i contributes to
the energy deposition per unit length an amount

(-‘%;)' no :R g—;B(: - )0z + E(z) - 2) . (4.24)

This integral leads to a trapezoid shape in the range 0 < z < 2R + £(z;). Of more

interest however is the total energy depositior into nuclear matter of thickness 2R.
That is given by

oR £z;) > 2R
EF(2R) = . (4.25)
of(z:)(1 - 8(z;)/(4R))  &(z:) < 2R

We see from (4.25) that at sufficiently high energies, when the £(z;] generally
exceed 2R for every chain, the sum over the &~ 2R /A chains gives the same total
energy deposition as in Eq.(4.22)! Therefore, we draw the important conclusion
that the maximum energy deposition in a finite nucleus does not depend on the
distribution of the z; nor on the distribution of the ;. For a nuclear thickness
of 14 Fm, that maximum energy deposition is ~ 45 GeV. We note, however, that
this estimate depends on the effective string tension & & 1 GeV/Fm and the
assumption that the sirings add incoherently. The assumpticn that strings add
incoberently is juscified oaly if the color electric charge at the end of the strings is
random. Clearly, a random walk in color space leads to an average color electric
field squared, {£?), that grows only linearly with the number of interactions. Hence,
the effective numnber of strings grows only linearly with nuclear dzpth although large
fuctuations about rhe average can be expected.

While the maximum energy deposition asymptotically does not depend on the
details of those distributions, the maximum energy deposition in the baryoa stop-
ping region does. That i3 because in the baryon stopping region. some of the chains
bave lengths less than 2R, and therefore the energy deposition from those chains
depends on their production points, z;. The maximum energy deposition in the
baryon stopping region is estimated in the next section.

4.3. The Stopping Domain of Nuclear Collisions

In the context of nuclear collisions we are interested in stopping baryons in the
mid-rapidity or nucleon-nucleon center of mass system. The condition for stopping
a nucleon in the mid-rapidity {rame due to 2 zero impact parameter collision with
a nucleus of radius R is L* < 2R, where L* is given by Eq.(4.5). This limits the
energy per nucleon in the center of mass t: be

NenMy ~ mycosh(2R/4, +5y) . (4.20)

Of course the same condition is obtained by requiring that the stopping distancs in
the center of mass system be smaller than the Lorentz contracted radius, 2/%qm.
For a finite impact parameter b, 2R is replaced by 2/(R? — b?).
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In Fig.(7) the thickness, L*, of nuclear matter required to reduce the incident
lab rapidity 2y.m to yem 15 shown by the solid curves labeled B for both @ = ! and
3. For a = 3 the cm stopping distance exceeds the diameter of the heaviest nuclei
for Yom ~ 4. Fora =2, L* > 14 Fm for v.m > 6. If we could extrapolate the
a =1 curve indefinitely, then L* > 14 Fm only for 4. > 14. Recall that 7, = 6
corresponds to the extrapolated upper bound on the stopping energy in Ref.{17].

While there is considerable sensitivity of the value of v, for which L* > 14 Fm,
something striking occurs at Yo, ~ 4 regardless of the value of a. In addition to
showing L*, Fig.(7) shows the boundaries of the target chain hadronization regions
for the first and last chain in the case that the interactions are time ordered such
that 2 =~ iA.. Curves labeled 1 show the end point

my 5
H = A et 4.27
t{gem) +2(T(l+ﬁ)e { )
of badronization of the first varget chain. Curves labeled 2 show the end point of
the last target string formed atr L* as given by

22{yem) = L* + H{L*) . (4.23)

The energy lost by the incident hadron is deposited into the target in the form
of secondary particles over a region extending to the larger of curves 1 and 2.
For lower energies the hadronization of the last striug defines thar boundary. For
higher energies the first string extends further tban the last string. This is simply a
consequence of longitudinal growth since the length of the first chain is proportional
to the incident laboratory energy while the last chain is proportional to the center
of mass energy. On the other hand, L* only grows lozarithmically wich energy.
When either curve 1 or 2 exceeds the diameter of the nucleus, a fraction of
the available energy in the cm is lost to secondaries produced outside the nuclel.
We define the stopping domain of nnclear collisions as that energy range where
not only the baryons come to rest in the cm but also where miost of secondary
particles can be reabsorbed within tae Loreutz contracted nuclear volume. Ouly
if the secopdaries resulting from the color neutralization processes are produced
within the nuclear volume can they contribute to heatin - . :e high baryon density
fireball in the cm frame. We see frem Fig.(7) that the stopring domaiu for the
heaviest nuclei therefore extends only up ta center of mass kivetic energies

KE.,$3=1GeV/A , (1.29)

relatively independent of the precise vaine of .

The total energy deposited within siclear mateer of thickness : is showa in
Fig.{8) for the time ordered case. That energy. E™{s). as obrained by intezrating
Eq.(4.20) np to a given depth 2, is shown in upi's of the energy losse El L =
E;y — m*® cosh(y,/2). necessary to stop a baryon in the i system. For a maxinuim
nuclear thickness 12 — 14 Fm, indicated by the shiuded reglon. all the energy Toss
pecessary to reduce the incident rapidity by one 5ulf can be deposieed witlim e
prclear volume as long as the nciden: laboratory ruergy s bebav ~ 20~ 50 AGeV,
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By 100 AGeV only ~ 1/2 of the necessary energy can be deposited within the
heaviest nuclei found in nature. Ounce again note the remarkable insensitivity of
these curves to variations of a between 1 and 3.

The relative insensitivity of the stopping domain to dynamical assumptions is
a consequence of longitudinal growth. In the case @ = 1 the euergy lost {orming
target chains is twice as large as in the case a = 2 Therefore, the rapidity of the
baryon is reduced in only a fraction of the distance that is necessary in the a = 3
case. However, the catch is that the hadronization region of target chains extends
then twice as far as in the a = 3 case. Therefore, the stopping domain in the o =1
case is limited by the energy at which energetic pions start being produced outside
the auclear volume due to time dilazion. Ou the other hand. in the @ = 3 case
the stopping domain is limited by the euergy at which the nuclear thickness is no
longer sufficient to bring the baryons to res: in the cm frame.

The above estimates are only upper bounds because they are based on the as-
sumptioa, Eq.(4.16}, that the chains are produced sequentially. Furthermore, they
neglect the effects of fuctuations in the number of chains, their energy fractions,
and production points. To study such eflects we have written a Monte-Carlo pro-
gram to evaluate the ensemble average in Eq.(4.13) sampling the number of chains
from a Poisson. the z; from the distribution (4.15), and z; from either {4.16) or
(4.17). We have also included the contriburion from the projectile chain assuming
2p = 2 in {4.13). Further details of the algorithm and results will be published
elsewhere. Here we only quote the final results of such calculations in Table 4 2.
In that table the average energy loss and deposition in nuclear matter of thicknes:
14 Fm is given as a function of incident energy, Eo. (Units are in GeV'). Cases
a = 1 and 3 are again counsidered. The upper and lower estimaies for the en-
ergy deposition are obtained using (4.16) or (4.17) respectively. Note that while
the energy loss is greater for a = 1, the energy deposition is smaller in that case
because the chains are longer. Note also the saturation of the energy deposition
above Ey > 50 GeV. The most remarkable point is again the relative insensitivity
of the total energy deposition to variations in o and the distribation of the z;. The
maximum average energy deposition in 14 Fm of nuclear matter is thus ~ 30 = 10
GeV. We also found that the rms fluctuations about that average are fairly large
{~ 10 GeV). However, in nuclear collisions those fuctuations are reduced by .47

This Moute-Carlo study is therefore consistent with the estimate Eq.{4.29) for
the upper bound of the nuclear stopping domain. The error bars quoted in (4.29}
therefore correctly reflect the theoretical uncertainties in the preseut estimates.

Just beyond the stopping domain (K E.., 2 3) the situation is more uncertain.

Ey | 30 50 | 100 ]
a=3[E., | 24 40 80

)

Egeo { 22-26 | 29-33 | 38-42
a=11{E., 27 47 95
Eo. | 1622 | 2026 | 25.31

Table 4.2: Average energy loss and deposition (see text)
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If « ~ 1 is appropriate at those energies, then there could exist a ~urious inter-
mediate energy region. 3 < KE,, < 6, where baryons would stop on the average
in the mid rapidity frame but an ever increasing {raction of the energy is lost to
fast secondary pions prodnred outside the Lorentz contracted nu~lear volume. For
a = 3, such an intermediate region would not exist. Experimental information in
this energy domaia is obviously needel.

We can now estimate the mmaximum barvon and euerey densities that could be
reached in the stopping demain. Simple kinematic considerations{31] aloue indicate
that in the stopping domain the baryon deusity could reach

gy ~8%2,, (4.30)

and the eaergy density could reach
€= YemMNp ~ 5= 3Gev/’fm’ s {4.31)

where we input our estimare ., 2 4 as the bonndary of the stopping domain. In
fect. baryon and energy densities up to twice as high could be reached 300 if shock
corditions could be reached. On the minus side, not all the secondaries produced in
the nuclear volume will be reabsorbed in the H:oball due to their finite interaction
mean free paths. The leakage of some secondaries would probably compensate for
any extra compression beyond the kinemarical minimum (4.20). In any case, energy
Jdepsities in excess of one order of magnitude above the ground state value should
be easily accessible in central collisions of heavy nuclei at energies KE, = 3 =1
AGeV (KE,, ~ 17 —50 AGeV). The unique feature at these energies is that
the baryon deasity reaches the maximum value that could ever be attained in a
laboratory via nuclear collisions.

24



5. High Energy Nuclear Collisions

In this section we make predictions for the nucleon rapidity distributions in the
projectile fragmentation region for nuclear collisions heyornd the stopping domain.
The extension of the Multi-Chain Model to B + 4 — ¥ + X, where both B and A
are nuclei has been carried out in Ref.[32]. With the assumptions in section 2, the
invariant nucleon inclusive cross section for nuclear collisions can be written as

d,aBt‘_’.’\.l\ d\.g,.

Ed—p,- =0g49(p. ) , (5.1)

where the rapidiry deasiry is given by a multiple collision series in analogy to
Eq.(2.3) as

4N Ba B A
Egj = le Pga(m.n)Quma(z) . (5.2)
m=in=t

{Charge exchange and isospin efects will not be considered here.For a distribution
of nuclear collision impact parameters. B{b), the probability that m projectile
nucleons interact with n target nucleons is given by the usual Glauber expression

PgArﬂ.n):fdsz(b)f \\PB m,8)Py(n.b—a} , (5.3)

where Pg(m.s) is the binomial probability that m projectile nucleons’ interact at
relative impact parameter s:

B!
Folm.o) = gy Nelel/BI"(L - Nals)/ )T (541

Recall that Ng(s)/B with Ng given as in ©q.(2.5) is just the a priori probability
of finding a projectile nucleon in an infinitely long cylinder of area oY at relative
impact parameter a. The product PgP, in Eq.{5.3) is then just the probability of
finding m projectile and n target nucleons in that same cylinder when the nuclear
collision impact parameter is b. Thercfore, Q,., must be normalized to m +
n. In Eq.(5.3) 054 does not correspond to the reaction cross section but rather
to a normalization factor insuring that $©8_ TA | Pg(m.n) = 1. The Glauber
reaction tross section is given by

_ d*s Nplsl V(b - s}\"* .
A_[d’bB(b){l—(l—/F—B——A———) } . (5.5)

Recall that the inclusive nucleon cross section is normalized as
BA—=NX _ ,BA .
/da =0, 4B+4), {5.6)

apd that it is convenient to decompose B = W+ Sp and 4 = Wit 5y where By

is the average number of interacting or wounded nuclaons and Sy =D -Tyis the
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average number of noninteracting or spectator nucleons in the projectile nucleus
B, and similarly for the target A. From the above relations it is clear that

g = / auf\

with '4 given by interchanging 4 and B above.

The above relations clearly separate the cumbersome but well understood ge-
ometrical aspects of nuclear collisions from the sought after dynamics specified by
the distributions Q.a(z). It is clear that proton nucleus data(7} provide informa-
tioo only on @y, (r} as given by Eq.{2.7}. In this paper we explote the consequences
of only the simplest assumption- namely, that in the m projectile nucleons fragmient
independent of one another, i.e.,

d"s

< Vals) {1~ (1- Nab-s)/a)} (5.7)

Qm,n(z) = leﬁ(x) . (55)

As emphasized in Ref.[22] it is far from obwvious that such an independent fragmen-
tation assumption is valid. There is as yet no nuclear collisivn data to test this
assumption. Since such data will be available within a few years {at CERN and
BNL), we have calcalated the leading nucleon rapidity deasity under this assump-
tion using the value of o = 3 determined from pA data. The bope is that deviations
fror our predictions may help uucover possible new phenomena in nuclear colli-
sions. For example, if a locally equilibrated quark gluon plasma is formed in the
fragmentation regions as current speculations siggest(4]/30f, then there could be
deviatious from our predictions.

With Eq.(5.8), the leading baryon rapidity density is given by

d.\'HA A
T & (B ~Rg)Qo(z) + Wa Y Paa(m)@a(z) | (5.9
n-l
where FbB(b) s Vyls)
a5 -
Pﬂﬂ‘")=/—;t—'fa.:\ Tp [almbeel (o1

where & is chosen to normalize T2, Pg (n) = 1. and @, is wiven by B {2.7).

In Fig.9 our predictions for the leading baryon rapidity density in ceprral nu-
clear collisions are shown divided by the atomic number of the beam puclens. Note
that only the projectile fragmentation distibutions are showu. Aecording toonz
assnmption on the independence of the target and projectils fragmientatinn reqons
the target fragmentation contribution is additive ani would substantially mudify
only the lower half of the rapidity regioa. We define central ~ollisions via an im-
pact parameter cut 8{b) = #{2 Fm~b). Experimentally, sn-h anmpact paruneter
range is selected via appropriate associated multiplicity euts,

The most obvious point to be noted comparing the ditferent seacti-ns s thnt
asymmetric systems like O+Pb offer a more stringent tost of auclaas stapp.ae pawer
than symmetric systems. This is due to the rather lazge aurfee oot o b
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even the heaviest nuclei. A central U+U collision stil) involves a substatial number
of interactions near the surface where only one or two multiple collisions occur.
In a central O+Pb collsion, on the other hand, every projectile nucleon traverses
~ 12 Fm of nuclear matter. Therefore, it is not surprising that O+Pb exhibits che
largest rapidity shift of the reactions shown.

From the point of view of new phenomena, deviations fram predictions in cen-
tral U+U collsions could be most interesting. With such large nuclei multiple final
sta: interactions could lead to local equilibrium and, hopefully. 1o a high baryon
density quark gluon plasma state in the fragmentation regions. However, our calcu-
lations clearly demonstrate that there will always be a substantial source of back-
ground due the nuclear halo in collsions of identical nuclei that would contaminate
possible signatures of that state. In order to reliably subtract that background.
the nuclear stopping dynamics, via @,,,, must be first understood by extensive
studies with light nuclear beams.
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6. Additive Quark Model

We showed in section 3 that the available data at 100 GeV could be understoud
in terms of one phenomenological parameter & a 3 related to the momeotum
degradation length via Eq.(4.2). However, we have repeatedly pointed out the
limitations of the current phennmenology. In particular, we have stressed that
the extrapolated stopping power function in Fig.3 for nuclear depths > § Fm
is not tested by the current data. To help gange the uncertainties involved, we
sLow in this seetion that the 130 GeV data can be also understood withiu the
framework of the Additive Quark Model (AQM){12}{13]'15]. Remarkably. we find
that the extrapolation to 14 Fm with this model is consistent with the multi-chain
extrapolations. This gives us futber confidence in those extrapolations.

In the AQM the incident proton is thought to be composed of three costituent
quarks. As the proton passes through a nucleus 1,2 or 3 of those quarks get
“wounded” due to interactions. The fnal observed proton arises from the frag-
mentation of the wounded projectile. In contrast to the Multi-Chain Model the
fragmentation probability is allowed to depend explicitely on the number of quarks
that were wourded in the projectile. In effect the multiple collision series in Eq.(2.3)
is terminated at the term n = 3. The prohabilities P, (i) are reinterpreted as the
probabilities, Pea(s), chac 1,2, or 3 constituenc quarks interact in the nucleus. The
Q. are regarded as unknown fragmentation functions to be determined by fitting
data.

The probability that i projectile constituent quarks are wounded is given in
analogy to Eq.{2.4} by

Poi) = | T = ) (6)

where p,4(b) is the probability that a constituent quark interacts at impact pa-

rameter b .
peald) =1 —(1 -0 fdzps(z, b)/A)
(6.2)
~1 - e—a'NNA{h?,’vNN
and the reaction cross section is given by
ot = [ @b~ (1= pralb))') . (6.3)

In the spirit of that model we take the constituent quark-nucleon cross section to
be oyn = 10 mb. The probabilities for wounding quarks are shown in Fig.10 as
a function of AY3. For these calculations we used the Weod-Saxon parameters of
Ref.[32]. Use of the parametes in Eqs.(3.3.3.4] lead to the same probabilities within
10%. This is the order of magnitude uncertainty in the choice of o,y in any case.
Note how large is the probability that only one constituent quark interacts even
for Pb. Note further that we have set Pyx(i} = &,y as in Refs.{13]{L5] althouch a
strict application of Eq.{6.1) to A=1 would yield P,y(1) = 0.8 — 0.9, This is an
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additional model assumption that is necessary in order to fit the A dependence of
the data from A=1 to A=208. With this assumption Q;{z) should correspond to
the p+p — p +.X distribution. In fact we did not constrain @, to equal the proton
target data. but rather we determined the Q; at each valie of z by a minimum ? it
to all six {A=p.C.AL,Cu.Ag,Pb) reactions. Such a method was used in Refs.[13][15]
to fit A inclusive data.

With a three parameter fit to six data points at each value of z we found
obviously a very shallow x* minimum with enourmous uncertainties and correla-
tions among the Q;. However, the results suggested that in the measured z range,
the contribution to dN/dy from collsions involving three wounded quarks could he
neglected. Therefore, we tried a fit constraining Qs = 0 as in Refs.[13]{15]. The
invariant proton distributions, zd®N;/dzd*p_, for i = 1 (solid dots) and { = 2 (open
dots) as determined from such a fit are shown in Fig.11. The solid lines represent
linear least square fits to those distzibutions. We find that we can parameterize
those invariant distributions for z > 0.3 and p, = 0.3 GeV/c in (GeV [c}~? units
by

zd®N)fdzd?p, = 0.11 +0.24z ,

zd®N,y/dzd?’p, x0.35(1-z) , (6.4)
zd®Ng/dzd®p, ~0 .

With the above fragmentation functions the invariant proton inclusive cross section
in the AQM is

dis pA—pX

4N, 3N, ) (6.5)

— = zo™ )
Edp3 zo?] (PA(l)dzd";h —+ PA(')dzd'-‘p-

In Fig.12 the solid curves calculated from the above relation are compared to the
Busza data{7]. We find that the Additive Quark Model can reproduce the data as
well as the Multi-Chain Model. Of course, there is a much larger degree of freedom
in the AQM through three arbitrary fragmentation functions.

For purposes of this paper the important question is what this fit implies about
nuclear stopping power. Unfortunately, the data only go down to xr = 0.3, and the
model provides no clues of how to extrapolate the fragmentation functions to low z.
Thus, strictly speaking the nuclear stopping power remains undetermined from the
available data! We can, nevertheless, try to estimate it in the spirit of Ref.[17] by
extrapolating Eq.(6.4) to a lower cutoff z.. We took z. = 0.073, corresponding to
an extrapolation to mid rapidity. With this extrapolation we found that the average
momentum fraction carried by the leading proton is z; = 0.45 and z, =~ 0.25 if
one or two quarks are wounded :espectively. With a form of Q5 compatible with
it being negligible for z > 0.3, the leading proton would carry only a fraction
z3 < 0.15 of the incident energy if all three quarks were wounded. These results
are therefore compatible with

It
7, = (2) . (6.6)
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With Eq.(6.6) the avernee momentum fraction carried by the leading proton after
traversing a thickness - of nuclear marter is

1, —ai) -
(:),xg\lﬂbe M (6.7)

where A, & 7 Fm is the mean free path of a constituent quark in nuclear matter.
For = 14 Fm, Eq.{6.7) gives ()} ~ 0.18. In comparison, the Multi-Chain Mode]
extrapolation via Eq.{2.32) to 14 Fm gives () = 0.19 for a nucleon inelastic mean
free path A = 2.08 Fmn. It is remarkable how stable is this extrapolation to major
changes in the model assumptions as lony as the 100 GeV data are used to coustrain
the parameters of the models. For comparison, the incoherent cascade model, which
fails to reproduce the data, would give {z) ~ 0.03.
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7. Concluding Remarks

The main purpose of this paper was to extract as much information on nuclear
stopping power as possible from the limited data{7] on p+ 4 — p+ X at 100 GeV',
Making several strong assumptions concerning transverse factorization and scaling
dynamics, we applied the Multi-Chain Model[9] to extract one physical paramerer,
a = 3% 1, by fitting the invariant cross sections for A=p.C,Al.Cu.Ag, and Pb
at p. = 0.3 GeV/c and z > 0.3. This parameter was shown to be related to
the momentam degradation length. 4, = 8 £ 2 Fm. that controls the exponential
decrease of the final baryvon energy fraction as a function of nuclear thickness. We
pointed out, however, that the phenomenon of longitudinal growthi2] implies that
energy loss via multiparticle production occurs over an ever increasing length scale
proportional to the energzy. By analyzing the space time development of particle
production in the Multi-Chain Model we were led to conclude that there are in
fact multiple length scales associated with the hadronization scales of the different
target chains created during the collision. This follows because hadron nucleus
collisions involve several independent processes due to the composite nature of
hadroms: each subprocess involving only a fraction of the incident emergy. The
longest of those chains was found to be on the average 1/(1+ a) smaller tkan the
naive longitudinal length scale[2]-]4] given by Ey/o.

Tke second purpose of this paper was to apply the empirical stopping power to
determine the upper bound or the stopping domain in nuclear collisions. To this
paper we defned the stopping domain to be that energy range in which collisions
of slabs of nuclear of thickness 14 Fm lead a0t only to the stopping of most baryons
in the center of mass system but also the production of most of the energetic secon-
daries within the Lorentz contracted nuclear volume {14/~.n). For this we had to
extrapolate to lower epergies and greater nuclear depths than covered by the cur-
rent data. We found in section 3.4 that we should expect violations from the simple
scaling hypothesis, but that those violations tend to increase the stopping power
of nuclei at lower energies. Unfortunately, there is insufficient data at present to
determine the precise form of the energy dependence of those violations. There
fore, in estimating the boundary of the stopping domain in nuclear collisions we
varied the parameter of our model from o =1 to 3 to cover the large uncertainties
associated with scaling violations. We found, however, that because of longitudinal
growth the bound on the stopping domain, K E.., L3z AGeV, was relatively
independent of the value of . We showed further that the extrapolation to nu-
clear depths ~ 14 Fm was stable against variations of the model assumptions by
considering limitations on the number of target chains and by varying the assump-
tions on projectile fragmeatations via the Additive Quark Model[12]]13){15]. This
gave us further confidence about our estimate of KET*. A Monte-Carlo study
also showed that within the errors quoted, the maximum stopping energy does not
depend sensitively on the unknown distribution of the interaction points.

Beyond the maximum energy for stopping the situation is less clear. Eventually,
at very high energies K E,, X 100 AGeV the fragmentation regions and central
region separate although the nuclei shatter over several units of rapidity. The
energy range above the stopping domain ~ 3 -5 AGeV is most likely characterized
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by large fluctuations. Some collisions may accidently lead to complete stopping,
while others only to shattering. [n this region the notion of an averaye collision
may not be useful. The stopping domain has the advantage that the maximum
baryon and energy densities are more or less fixed by kinematics. With maxiinum
stopping energies K E., on the order of a few AGeV, our analysis is consistent
with previous expectations{16!-{18] that baryou densities aud energy densities on
the order of 10 times those found in ground state nuclei conld indeed be achieved in
central collisions of heavy nuel i. Whether that energy density is enough to reach
the quark-gluon | lasma phase remains an exciting opeu question.

Finally. there is a clear need for more extensive data to help resolve some of the
many remaining uncertainties assoclated with nuclear stopping power. Systematic
measurements as a functisu of energy o the range 20 to 400 GeV are imporiaat to
map out the scaling violaticas. Also important are measurements of inclusive cross
sections with associated multiplicity triggers to probe stopping power to greater
depths z ~ 14 Fm. Finaly, central collision studies with light ouclear beams are
necessary to test linear extrapelations from pA reactions and look for possible non-
lincar effect. We have made pr=dictious for central nuclear collisions to establish a
baseline in looking for novel effects.
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Figure Captions:

1. Invariant proton inclusive cross sections{?] for p+A — p+X at 100 GeVasa
funcrion of light cone z for fixed p_ = 0.3 GeV/e. Solid curves are calculated
using the multi-chain model. The incoherent cascade{21) corresponds to the
curves for a = 1. The effect of increasing nuclear transparency is shown by
cases o = 2,3,4. Note that pp and pA are treated on the same footing.

[

. Leading proton rapidity deasity as a function rapidity measured iu pro-
jectile frame. All curves correspond to a = 3 and the C and Pb target
data are deduced from Ref.|7] assuming r,g(0.3) = 0.8873. Solid curves are
for impact parameter averaged results, while dashed and dashed-dot curves
correspond to outer half {6 > b.) and inner half {b < bc) collisions respec-
tively. Here b, is chosen to be the impact parameter cut leading to 1/2 of
the reaction cross section as in Ref.[17].

3. Scopping power of nuclear matter as measured by the mean baryor rapidity
shift as a function of nuclear thickness. This is the asymptotic rapidity shift
{see section 4). Curves for a = 1—4 are shown. Symbols indicate the impact
parameter averaged mean rapidity shifts for the case a = 3 for fuite nuclei
as a function of the average nuclear thickness, v .

4. Inclusive p+ 4 — #= + X cross sections|7] at 100 GeV for p_ = 0.3 GeV/e.
All calculated curves correspond to a = 3.

5. Invariant proton inclusive distributions(27] at 24 GeV for fixed angle, & = IT
mr. Calculations for a = 1,3,6 are shown by solid, dashed, dashed-dot
curves respectively. The pp data are from Ref.{28]

6. Top graphs show the color neutralization region of different target chalius in
the laboratary frame. Chain n is formed at depth = = n) {dashed line} and
is neutralized between nA < x € z.(n}), where z.{z) (solid curves) is given
by Eq.{4.13). The curves are labeled by the incident laboratory energy in
GeV. The bottom two graphs show the energy deposition per unit length.
Eq.{4.20) in the form of on-shell secondaries as a function of nuclear depth.
The linear increase of dE™[dz up to some depth z* given by Eq.(4.19) is
a cansequence of longitudinal growth and the approximate constancy of
the rapidity density dN/dy of secondaries produced in the neutralization
process. Comparing cases a = 1 (left side) and a = 3 righr side shows that
dE™[dz is not very semsitive to uncertainties io a.

7. The laboratory distance scales involved in stopping baryons and producing
secondaries are shown as a function of center of mass kinetic energy for
@ =1 and 3. Curve B gives the depth of nuclear matter, E4.{4.5). required
to halve the rapidity of the incident baryon. Curve 1 shows the extent
of the badronization region of the first target chain via Eq.(4.27). The
hadronization of the last target chain occurs between curve B and curve 2
as given by Eq.(4.28). The crossing of the shaded region by any curve locates
the end of the stopping domain of nuclear collisions. Below that point not
only do most of the baryons stop but also most of the energetic secondary
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10,

1L

particles are produced within the Lorentz contracted auclear volume ia the
center of mass frame.

. Total energy deposition as a function of nuclear depth in units of the vnerey,

E}, = Eq~ m"cosh{y,/2), pecessary to reduce the rapidity of an incidect
proton by one half. i.e., stop the proton in the mid-rapidity frame. Dasked
aud solid curves correspond to cases o = 1 and 3 respectively and are
obtained by integrating dE ¥ /dz in Fig.{G) from 0 to z. Curves are labeiad
by iocident laboratory energy E, in GeV. The stopping domain of nuclear
collisions is limited to energies such that the ravio reaches unity before 14
Fm.

. Predicted nucleon rapidity densities for central nuclear collisions in the pro-

jectile frame. Central ccllisions are Jefined by inteszating impact param-
cters ouly up to 2 Frmn. The rapidity densities are divided by the atumic
number of the projectile aucleus. Ounly the projectils fragmentation con-
tributions are shown. The dashed, solid. dashed-dot curves correspround to
a = 2,3.4 respectively.

Additive quark probabilities for woundiog 1.2, or 3 constiruent quarks with
effective cross section o n = 10 mb on Wood-Saxon nucleij33,.

Invariant proton fragmentation distributions in the Additive Quark Modeiil2 15

resulting fromm wourding oue (solid dot} or two (open dot) quarhs as decer-
mined by a y? Bt to data{T. Wounding of all three quarks is assumed to
lead to negligible proton production in the measured kinematic range. The
data poiots are obtained by a \* fit to the pd — pX data(7] and lizws
correspord to linear fits.

. Comparison of proton inclusive data{Ti with calculations using the AQN

fragmentation functions of Fig.11 as parameterized by Eq.(6.4).
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