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Abstract:

Recent p + A — p + X data are analyzed within the context of
the multi-chain and additive quark models. We deduce the average
energy loss of a baryon as a function of distance traversed in nuclear
matter. Consistency of the multi-chain model is checked by compar-
ing the predictions for p — A — -* + A" with data. We discuss the
space-time development of baryon stopping and show how longitudi-
nal growth limits the energy deposition per unit length. Predictions
are made for the proton spectra to be measured in nucleus-nucleus
collisions at CER.N and BNL. Finally, we conclude that the stopping
domain for central collisions of heavy ions extends up to center of
mass kinetic energies KEfm ^ 3 ± 1 AGev.
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1. Introduction

Initial interest in hadron-nucleus collisions focused on the space time develop-
ment of multiparticle production[l). The main role of the nucleus was to act simply
as a microscopic detector sensitive to distance scales ~ 10 fm. The most important
qualitative feature that emerged from those studies is the validity of the formation
zone concept(2j-[4|. That concept follows from time dilation and the uncertainty
principle and states that the formation of a secondary particle with rapidity y
and transverse mass m^ cannot be localized within a distance ^(#,p^) ^ e"/m :

of the interaction point. This exponential growth of length scales is also referred
to as longitudinal growth and explains why naive intranuclear cascade models[5]
systematically over predict the charged particle multiplicities^] in proton-nucleus
reactions at high energies.

Renewed interest in hadron-nucleus reactions has been stimulated by new
data|7] on p + A — p + X at 100 GeV. In addition to providing new tests for
competing multiparticle production models(8|-[l5], these data may have important
consequences for quark gluon plasma(QGP) production in nucleus-nucleus colli-
sions[16]. In particular, the first analysis|l7] of that data indicated that the stop-
ping power of a nucleus could be much greater than first expected. This may imply
that energy and baryon densities much higher than previously thought[18] could
be achieved in central nuclear collisions. Understanding nuclear stopping power
is therefore essential in assessing whether high bai/on density QGP could be pro-
duced in nuclear collisions in the energy range 10 - 100 GeV per nucleon (AGeVj.
Since that pioneering paper[l7] several other works[19]-[22] have addressed the nu-
clear stopping problem. In this paper we apply the Multi Chain Mode![9] and the
Additive Quark Model(13]-[15] to gain further insight into this problem.

The primary aim of this paper is to deduce the stopping power of nuclear
matter to high energy protons. We evaluate several quantitative measures of that
stopping power. One is the average energy fraction the leading proton retains
after traversing a thickness, r, of nuclear matter. Another measure is the average
rapidiry loss of a baryon, (Ay),, as a function of nuclear thickness. In contrast
to previous works, we can test the consistency of our methods by comparing- our
calculations forp+A —• z±+X as well asp+A — p+A' with the data. Furthermore,
our method treats pp reactions on the same footing as pA and AB reactions. A
fit to the available data determines the one physical parameter, a = 3 ± 1, of our
model that controls the inelasticity in multiple collisions. In the terminology of
Ref.|20] this parameter implies a momentum degradation length Ap = 8 ± 2 fm at
100 GeV.

The second aim of this paper is to clarify the space time development of the
stopping process. In particular we find that longitudinal growth limits the energy
deposition per unit length and is the main factor, not the stopping power, that
determines the boundaries of the stopping domain for nuclear collisions. We show
that the length scales associated with secondary particle production and baryon
stopping need not coincide. We find that baryon stopping and secondary particle
production can occur within a Lorentz contracted nuclear volumes in the cm frame
only up to center of mass kinetic energies ~~ 3 ± 1 AGi'V. However, by that on-



ergy. baryon and energy densities in excess of one order of magnitude above their
ground state values can be achieved in central collisions of heavy nuclei. Therefore,
production cf baryon rich quark gluon plasmas with nuclear collisions at relatively
low energies is consistent with our stopping power analysis.

The organization of this paper is as follows: In section 2 the assumptions.
physical picture, and equations that define the Multi-Chain Model are reviewed.
In section 3 we apply the model to fit the pA — ~~ and pA — p data[7[. Thereby
we determine the one physical parameter of the model. In section 4 we an;Uy/.e
the space-time development of stopping* and estimate the boundary of the stopping
domain for nuclear collisions. In section 5. we predict the leading1 proton rapid-
ity density for nuclear collisions that may eventually be measured[lC] at CERN
and BNL. In section 6, au independent determination of nuclear stopping1 power
obtained from fitting the data with the Additive Quark Model gives additional con-
fidence in the extrapolated stopping power to nuclear depths ~- 14 Fra. Concluding
remarks are then presented in section 7.

2. The Multi-Chain Model
2.1. Assumptions

Then1 is much uncertainly about the low transverse momentum processes that
lead to ruultiparticle production in high energy hadrun-nucleus collisions. That
uncertainty obviously is deeply routed in the unsolved ponperturbative problems
associated with large distance scales in QCD. It is therefore not surprizing that
there exist such a large number of phenomenological models ia the literature. The
main virtue of the present modeljOj is that it cleanly separates geometrical effects
from dynamical ones, and the dynamics is characterized by one physical param-
eter. Since geometrical effects are separated, this model treats hadron-hadron.
hadrou-uucleus collisions on the same footing. Furthermore, it provides a conve-
nient extrapolation tool to predict nucleus-nucleus reactions.

The simplifying assumptions of the multi-chain model are

1. The transverse momentum distribution is independent of incident energy,
nuclear size, and longitudinal momentum.

2. The probability that a hadron undergoes exactly n interactions is given by
Glauber theory-.

3. The reaction involves two stages that determine the longitudinal momentum
distributions of the particles: a fast multiple interaction stage and a time
dilated fragmentation stage leading tr secondary hardon production.

4. The fragmentation stage is independent of the cumber of interactions in-
volved in the first stage.

5. The multiple collision dynamics scales with energy. la particular, the lon-
gitudinal momentum distribution depends only on the scaling iight cone
variable

l 1

where y^^x — Ha + logfrn.N-/7™-) *s 'he maximum rapidity that a particle
with transverse mass m^ = (m2 + /?^}1 '2 can have.

6. Projectile and target fragmentation processes are independent.

The above assumptions are surely too strong but are consistent with present
phenomenology [8|-[17], [19'-[22| and considerably simplify the formalism.

A physical picture consistent with the above assumptions can be formulated in
terms of partons and color strings. The incoming proton is regarded as a composite
object with many pixtons sharing the incident momentum. A.s that protou pa-sseb
through a target nucleon one of its partons may chain,"' color due to on interac-
tion with a partoo of the target. The color exchange can be viewed as a string
flip whereby the color string connecting the target parton to the spectator tar<r"t
partons and the string connecting the projectile parton to the spectator projectile
partons interchange so thai the spectator target partons now connect to the projec-
tile parton and the spectator projectile partons now connect to the target part.'u.
In this picture an interaction creates two strings which strct.-h with tii:i-[l 1 ,2C



We refer to the string connecting the spectator target partons with the interacting
projectile parton as a target chain.

In proton-nucleus collisions, we regard the nucleus as a parton filter that sifts
out a certain number of partons from the projectile. That sifting occurs by pro-
moting virtual partons to their mass shell and creating independent target chains.
Because of time dilation the color Selds in each chain neutralizes via pair produc-
tion over a distance scale proportional to the energy of the projectile parton that
formed that chain (see section 4). The spectator partons also drag a string behind
them[23] that neutralizes over a large distance scale. That neutralization and re-
combination process is assumed to produce the leading secondaries, including the
leading proton.

The crux of the problem is to specify how the parton filter works, i.e., what is
the distribution of energy fractions of the partons that interact in the target. That
distribution specifies the stopping power of high energy protons, the information
that we want to extract from the pA data. In order to characterize that distri-
bution in terms of as few a parameters as possible we adopt the simple algorithm
proposed in Ref.[9J. That algorithm specifies that the energy fraction of interacting
partons falls off according to a geometrical progression, 2; = a'~'/(I + a)' , where
a > 1 is the phenomenological parameter of the model. We adopt this algorithm
mainly because of the simplicity of the resulting formalism in the next subsection
and because it can adequately accounts for the A dependence of the current data.
In section 6 we check that our conclusions about nuclear stopping power are rela-
tively model independent by refitting the data in terms of a model wjth different
assumptions.

2.2. Formalism

We translate now the above assumptions into the equations that define the
model. First, we consider the invariant proton inclusive cross section. Assumption
1 on transverse factorization implies that

4'o-pA~'x dS

dp! **" ' dy

where (r^, is the absorption cross section. rp is the final proton to baryon ratio,
ff(Pi-) is 'he normalized transverse momentum distribution, and dN/dy is the nor-
malized rapidity density. We note that the present daca[7j shows that rpg{pL) is
independent of atomic number and rapidity for x > 0.3 and p_ — 0.3 GeV/c within
20% accuracy.

Assumption 2 allows us to decompose dN/dy into a standard multiple collision
series

where P^in) is the Glauber probability[24| that n target nucleons interacted with
the incident proton:

PM=[-^ £—(.
J a \ \\\ \ ~ nVn1

(2.2)

with .VA(6) being the average number of interacting target nucleous at impact
parameter 6 as given by

Note that realistic nuclear densities, pA, lead to rather large values of the single
collision probability (~ 0.2) even for the heaviest nuclei due to their diffuse surfaces.
In terms of <V.t(fr) we can also express

(2.D)

Assumptions 3 and 4, concerning the separation of the reaction into two stages,
imply that the probability density, Qn(x.x,:), of finding a proton with light cone
fraction z after n target nucleons have been struck can be written as

where Fn(x, x0) is interpreted as the probability density that the spectator projectile
partons retain a light cone fraction x after n projectile partons have interacted in
the target. With the definition F0(z,z0) = 6(x — 1), the function fp(x, *u) must
correspond to the invariant distribution of protons in pN collisions at incident
rapidity y0 = l°g(l/zo). A. convenient parameterization of the p + .V — p + X data
is

t ix x J = x/(l — xn) (2 S)

We emphasize that our model says nothing about =_ • the fragmentation function
fp[x). Our model only specifies the A dependence of pA reactions using pp reactions
as input.

Since z0 is the minimum light cone fraction in the target frame, these functions
are normalized as

/'^Qn(^o) = l, (2.9)

fldxFn{x',x0} = 1 •

(2.10)

(2.11)

Note that the scaling assumption 5 holds strictly only at asymptotic energies where
xa — 0. For finite energies we include only the minimal dependence of these
functions on z0 required by overall energy conservation as in Ref.[2l].

Note that Eq.(2.7) neglects the contribution from target fragmentation. To
motivate this recall that empirically the recoil proton in pp collisions is distributed
as e~*. Consequently, for the rapidity range of interest, 8 /^4 , there is less than
a five percent contribution to dN/dy from target recoil nucleons. Baryou pair
production is also negliipble for the energies considered hero.



The dynamical information in this model is contained in the dependence of Fn

on n. For simplicity we adopt the scaling algorithm of Ref.[9;:

where A"(;,:o) is a scattering kernel that specifies the probability density that a
projectile parton carrying a light cone fraction 1 - z of the available light cone
energy E~ = m_/;0 interacts with a target parton.

Following Ref.j9j we parameterize K as

1 — ;?

which is obviously normalized as

d.-A'f.-, .-„) =

(2.13)

(2-14)

All the dynamical information in this model is therefore contained in the one pa-
rameter Q. As we show in the next subsection in terms of a the fractional energy
loss per interaction is 1/(1 T O ) , and the final baryon rapidity loss per interaction
is I /a. Since Eq.(2.12) leads to a geometrically decreasing fractional energy left in
the spectator parton cloud as a function of the interaction number, we refer to it
as a "geometrical"" filter. It is important to emphasize that E().(2.12) says nothing
about the space-time points of the n interactions. It is a purely momentum space
equation. In section 4 we will consider possible extentions of this model to coordi-
nate space. However, for :he analj'sis of the pA data we do not yet need to specify
the space-time picture behind (2.12).

With Eq.(2.13), the solution to Eq.(2.12) for n > 1 is

log (2.15)

We can now compare our model to others in the literature. In Ref.j2l] only the
case Q = 1 was considered. That corresponds to the incoherent cascade limit where
each interaction in the target is treated as if it were a pX collision in free space.
In Ref.[22j the same ansatz to A'(;,0) was used, but in that model the two stages
of the reaction in assumption 3 were not considered. Therefore, their formalism
could not be directly applied to pA —• c.Y, where c is any other fragment than a
proton. In Refs.[l9],j20] a different parameterization, K[;.O) = 1 - A + A5(l - .-)
was used but in a formalism that treats pp and pA on different footings and pion
and proton production on different footings.

It is aJso instructive to compare the geometrical algorithm in Eq.12.12) vt-itb
one corresponding to a perhaps more intuitive "arithmetic" filter. The arithmetic
filter is one where the probability that n partons interact with energy fractions
*!,•••,*„ caa be expressed as an uncorrelated product

With Eq.(2.16), all n interacting partous carry the garni; average energy fraction,
xn. Only energy conservation forces 2n to decrease with increasing n. This cor-
responds to the equipartition model 1 in Ref.[9|. In terms of R'(*). Fn(z) would
then be given by

-x - z, (2.17

We refer to this as an arithmetic filter because tbe average energy fraction retained
by the spectator partons after n interactions decreases approximately linearly with
n rather than geometrically. However, because of the ackwardness of the the delta
function constant above, anah-ric formulas for the arithmetic filter are rather
cumbersome. The geometric filter has the advantage of incorporating energy con-
servation in a simpler manner analitically. Otherwise, there is no deep reason to
prefer the geometrical filter over the arithmetical one.

An important advantage of the present formalism is that by incorporating as-
sumption 3 into Eq.(2.7) we treat p-f A — c + X for any fragment c and any nucleus
A > 1 on the same footing and that one parameter, a, fixes all chose reactions.
The basic input to this model are the measured p -r p — c + X distributions and
the known nuclear geometries. The multi-chain model is then a convenient extrap-
olation tool for pA and AB collisions with the absolute minimum of parameters.
That at least one parameter is needed was shown by Wong|2l] by the inability of
the incoherent cascade model (a = 1) to fit the new data]"]. As we show in section
3 one parameter, a a: 3. is in fact enough to fit the 100 GeV data.

Unlike the leading proton which is assumed to emerge only from the recom-
bination of the projectile spectator partons. energetic pions can emerge not only
from that fragmentation process but also from the hadronization of target chains.
This is because pair production near the end of target chains can easily lead to
meson formation and only much less frequently to baryon formation. In analogy
to Eqs.(2.2,2.3,2.7) we therefore have

-*1
"dp3

(2. IS)

where Q*1 includes the fragmentation of the projectile as well as the the h.idrnuiza-
tion of the last chain, and T, describes the hadroni/.ation of the i" target chain.
Surpassing the j 0 dependences of all functions we can write

Since F0[z) = 5(1 - z). we see that / , corresponds to the rapidity density of pi ms
in pp — T.Y. For simplicity we parameterize that data a«

Again we emphasize th.it our model says nothing about the frarrr.>intatic>u funct: us
/Ax). Those must b- taken dir.'ctly from pp — cX data. Only thf FnU-| are
spi'c-iS.'d in our mod"!.



With the above parameterization, the first term with aj % 3 represents the
contributions from projectile fragmentation, and the second term with a; ^ 9
represents the contribution from the hadronization of the target chain. With this
interpretation, T; in Eq.(2.1S) is given by

(2.21)

the recombination process must leave the final baryon with a fraction my/m* =
(1 -r Q)/(2O) of the energy of the spectator partons. This shows how the etlective
mass, m*. uf the spectator parton cloud muse depend on a in our model.

£q.(2.2S) also shows that the average energy fraction, 2,, of the i'k chain in
this model falls off according to

2.3. Measures of Stopping Power
We can now apply the above formalism to evaluate several measures of nuclear

stopping power. One important measure is the mean rapidity loss, (Aj/).., suffered
by a baryon after having traversed a thickness z of nuclear matter at saturation
density, pa = 0.145 Fm"s. Another important measure is the average fractional
energy, {x),t retained by the projectile spectator partons after traversing a thickness
2.

We denote the average of a function of x over a normalized distribution D[i)
by

{?(*))D = J dxg{x)D(x) ,

The average of that function as a function of atomic weight is then

(2.22)

(2.23)

limit
Calculating next the average rapidity loss moments, wo find that in the 2o

(2.2S)

= ( n - l ) / a + 1 ,

(Ay'),, = n(n - l)/a3 + 2(n - l)/a + 2 , (2.20)

where we neglected terms of order log(m/m_). The average rapidity loss moments
for impact parameter averaged pA collisions is then just given by the above expres-
sions with n and n* replaced by their averages, (n)^ = fA and {n2).\ over P*{ri)
respectively.

The average rapidity loss as a function of nuclear thickness is given by

where (g(x))n is given by Eq.(2.22) with D(x) = Qn(x)/x. In order to evaluate av-
erages as a function of nuclear thickness x, we use the Poisson limit of the binomial
distribution to specify fluctuations of the collision number to get

-(»(*)).) (2.24)

in terms of the proton mean free path A.
We consider here only the high energy- limit i 0 ~ 0- In that limit we have

( i m ) F . = {xm)A-(im) f . . .1 = ^ - ^ J , (2.25)

We see from Eq.(2.26) that the case a = 1 indeed corresponds to the incoherent
cascade limit where in particular (*;„ = (1/2 |" . This relation also shows that the
fractional energy loss of the projectile parton cloud per collision is just l / ( l + a).
Applying Eq.(2.25) for n = m = 1, we see that the spectator partous retain a
fraction o / ( l + Q) of the incident energy. The final baryon after recombination.
however, a observed in pp collisions on the average with ( J ) , =: 1/2. Therefore.

These relations show that I/a is the mean rapidity loss per interaction.
Finally, we note that the average fractional momentum carried by the spectatot

projectile partons after traversing a nuclear thickness ." is given by

{*). = «P ~ (2.32)

The leading baryon ends up with only a fraction m,v/'"- = (1 + ft)/(2n) of th.it
energy because of the effective mass of the spectator parton ol<'Ud.
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3. Empirical Stopping Power of Nuclei
3.1. Nuclear Geometry

The use of accurate nuclear densities to compute -P.-if") in Eq.(2.i) is important
because the i — 1 limit of the proton inclusive cross section is directly proportional
to PA(1):

l i m ^ = P^(l) . (3.1)

Therefore, the non-diffracuve component to the leading proton rapidity density
near the kinematic limit is fixed by geometry alone and is independent of the
dynamics. Since sharp sphere approximations to nuclear densities grossly underes-
timate the probability that ualy one interaction occurs in heavy nuclei, simplified
treatments of nuclear geometry could lead to erronious dynamical information from
x - 0.3 data,

A sufficiently accurate approximation to nuclear densities is given by the TVood-
Saxon form

^ ( r ) = ^ - { l + exp[(r-i2.0/cf]}-1 , (3.2)

where ~pA is determined by normalization, and the parameters R and d are chosen
as

RA = 1.19/i1'3 - 1.61.-T1'5 Fm , (3.3)

d = 0.54 Fm . (3.4)

We compared ^(rc) computed with the above density to those computed bi-
ll.Sato[25j using density dependent Hartree-Fock and found agreement within 10̂ c
accuracy. We chose ^ = 32 mb as the inelastic pN cross section. Furthermore,
Table 3.1 shows that this density leads via Eq.(2.6) to satisfactory agreement be-
tween the calculated and measured[26j reaction cross sections. Also listed in tin;
Table are values of PA(l),PA(2), and uA = (n)A for various nuclei. In practice we
terminated the series in Eq.(2.3) at n=15.

For comparison, we note that the densities employed in Ref.j2.lj lead to 10°^
larger values of P.i(l) and a^.(pA). This led to invariant cross sections that are
20°^ larger than ours at high i. In the calculations of Ref.[lOj only the term
n = [n)A was considered in Eq.(2.3). The neglect of surface and fluctuation effects
is partially responsible for the large (17 Fm) momentum degradation length that
was obtained in Ref.[l9[. In Ref.[20] diffuse surface effects were neglectei, but sine

A
12
27
64
10S
207

o^lexpl

409
7G4
1101
1730

o\A(theo)
225
411
765
1105
1726

0.57
0.45
0.34
0.2S

F.l'21
0.25
0.24
0.22
n.19
1, 15

v \
1.7
2.1
2 7
3.1

their method treated pp and pA collisions differently, they were able to fit the dara
by introducing a normalization factor. Finally, we note that in the pioneering work
of Ref.[17] only a very crude treatment of geometry was considered. An important
objective of the present work is to reduce the uncertainties associated with such
trivial geometrical effects.

3.2. Implications of 100 GeV Proton Spectra
In Fig.I we compare our calculated invariant proton inclusive cross sections to

the data[7] at 100 GeV/c. For these calculations we used the parameterir.atiou of
the transverse momentum distribution of Ref.[9] and took the proton to baryon
ratio rp = 0.53. This gives rpl/(jj_) = 0.SS76 for the p_ = 0.3 GeV/c relevant to
the data.

In Fig.l the cose a = 1 verifies the finding of Wong[2l] that the incoherent
cascading cannot account for the A dependence of the data. The data indicate
that the probability of small energy loss is greater than predicted by incoherent
cascade. The partial transparency of nuclei can be parameterized in our model In-
setting Q > 1. Taking into account the uncertainties associated with our model
assumptions and those of the data, we see that

a = 3 ± 1 (3.5)

leads to a satisfactory fit to the A dependence of the data over the measured x
region. Note that the z = 1 intercept is independent of a in accord with £i].(3.1).
This value of a is in agreement with the value deduced in Ref.[20j[22| using a less
general formalism.

To emphasize the United kinematic domain covered by the present data, we
show in Fig.2 the normalized rapidity distributions for a = 3. We also calcu-
lated dN'/dy for collisions with the outer (dashed) and inner (da_shed-dot) halves
of the nucleus for comparison to the extrapolations by Busza and Goldh^berjnj.
This separation into inner and outer h.-df is accomplished by restricting the range
of impact parameter integration below and above the impact parameter. 6,. corre-
sponding to one half of the reaction cross section. Comparing the dashed-dot cum.'
in I ig.2b with the corresponding oue in Fig.3 of Ref.[17j we find a substantial Jit-
ference. The peak of our curve is shifted liy one unit of rapidity less than their
extrapolation. This is a consequence of their cruder treatment of geometry and
their constraint that d'S/dy vanish at i = 1. It would be very useful to measure
the multiplicity dependence of the proton distibutions to test more severe'.;- these
geometrical effects.

Having determined the range of a compatible with the proton yields. «•> show
the average rapidity loss, (Ay)... as a function of nuclear depth ia Yh;Z. v\ hi'.-
we differ with the extrapolated distributinLS of R.'f.[l"j for the inaer half inipa,-:
parameters, we find in agreement with Ref.jlTJ that the maximum rapidity shift
induced by heavy nuclei is

Table 3.1: Reaction cross sections and Glauber prob.-ibilitii F,» = 2.5 ±0.5 (3.0)
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This rapidity shift may occur when a proton traverses the entire diameter of a heavy
nucleus. It is important to keep in mind, however, that the above extrapolation has
yet to be tested experimentally by more detailed measurements involving associated
multiplicity triggers. The impact parameter averaged data yield (.ij/).* as indicated
by the symbols in Fig.3. For finite nuclei we took the average nuclear depth to be
z = i/, x 2.08 Fm. The Pb data thus only tests nuclear stopping to average depths
of - 8 Fm.

3.3. Consistency with Pion Spectra
To check the consistency of our model we compare next the calculated invariant

pion inclusive cross sections with data. For these calculations used the following
fit to the pp — -±.V data

-!f ff»(0.3)/,-(i) = 35(1 - xf + 13(1 - z)2-' mb/GeV3

+ 4.59(1 mh/GeV2

(3.7)

(3.S)

The pp — s- data were fit with this functional form to allow for a simple calculation
oi the target chain contributions T,(x) in Eqs.(2.18,2.21).

In Fig.4 we see that the A dependence of the sr~ is well accounted for in the
measured x region. However, we see that while the A dependence of the z~ spectra
is reproduced for A > 12, the pp —• I ' . V data are systematically lower than the
solid curve which is obtained in this case by demanding the best overall fit to the
nuclear data. Conversely, if i f insisted on fitting the pp data by reducing the
normalizatioa in Eq.(3.7) by a factor — 2/3. then all the calculated nuclear curves
would be systematically below the data. Private communication with W.Busza
indicated that it is possible that for the reaction p+p — s'+X certain experimental
systematic effects could lead to underestimating the normalization in this channel.
Another reason why pA — ~~ data may require a larger p.V —* z^ is the apparent
isospin dependence of T* production. It was noted in Ref.[21] that in the region
x > 0.3 the pu — ~A cross section is about a factor of two greater than the
pp — -T* cross sections. While those data are also suspect, such an isospin effect
could account for the difference between the pp — ir~ data and the solid curve. On
the other hand, it appears[2l|, that the pp — it~ and pn — TT~ cross sections are
approximately the same. Thus no isospin effect is expected in that channel.

Finally we note that the pA —• z~ data at x % 0.9 are systematically higher
than the calculations. This is likely to be due to the neglect of diffractive contri-
butions in our model[l3j. Such diffractive contributions would also be expected in
p + A — n + X.

The successful reproduction of both the normalization and the shapes of the
pion yields should be contrasted with the incoherent cascade model[2l] that over-
predicted those yields by a factor of 7. This is due to the neglect of longitudinal
growth in the cascade mcdel. Our starting point via Eq.(2.1S) explicitly incorpo-
rates that effect by including only one projectile fragmentation process :iccordiug
to assumption 3 in section 2.1. Unfortunately, this high x kincm.Hir.il dumniu is
not very sensitive to the multi-chain aspect of out model. Target chains produce

pions mostly in the x < 0.3 region. On the plus side, the data are, however, sen-
sitive to the energy loss mechanism since the ratio of piou cross sections fur Pb
and p targets varies by a factor of three in the measured x region for - ' . The
agreement of our calculations with the pion data shows that the euergy loss of a
proton deduced by fitting the proton data with or = 3 is consistent with both the
leading pion and proton spectra.

3.4. Deviations from Scaling
While we have seen that the ICO GeV/c data on leading protons and pions

could be well reproduced in our model by one fixed parameter, a iz 3. the scaling
assumption must break down at sufficiently low energy. In Fig.5 we compare our
calculations for p + A — p + X with data[27| taken at 24 GeV. For that calculation
we took rp = 0.75 and g(p^) from a fit to the 24 GeV pp — pX data of Blobel et
al{2S]. The data and calculations correspond to fixed angle 5 = 17 mr. The three
curves show cases a = 1 (solid), 3 (dashed), and 6 (dot-dashed). While none of
the curves provides a good fit, the data seem to indicate a bigger energy loss than
expected from the a = 3 curve (i.e., the integral of the measured distributions
between 0.1 < x < 1 is less than the integral of the calculated distributions).
Further support for this conclusion has come from preliminary pA -~ pX data[29j
at 17 GeV, where the normalization of the high x proton density seems to be in
fact a factor of two smaller than that of the data displayed in Fig. 5.

These data therefore indicate that the stopping power of nuclei at - 20 GeV is
greater than at 100 Gev. In terms of our pbenomenological parameter a, a value
closer to unity rnay be necessary at these lower energies. For the purposes of the
present paper, we shall not try to incorporate such scaling violations by modifying
the model but only note their existence. Fortunately, we find in the next section
that our conclusions about stopping domain of nuclear collisions are not especially
sensitive to such violations.
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4. Space-Time Development of Stopping
4.1. Momentum Degradation Length

From the pA data we could deduce how much energy is lost by the leading
baryon after traversing a certain thickness of nuclear matter. Our analysis confirms
earlier estimates[7],jl9)-[22) ihat about 90^ of the incident energy of a proton could
be lost after traversing 14 Fm of nuclear matter. However, until now the question
of where that energy is deposited has not been seriously addressed. Obviously the
data provide constraints only on the momentum space aspects of models, which
in our case is the value of a. The space-time development of stopping and energy
deposition is largely unconstrained by the available data. However, for applications
to nuclear collisions it is necessary to know not only how much energy is lost but
sdso where that energy is deposited. In this section we consider the space-time
picture of energy loss and deposition in the context of the multi-chain model. We
pay paticuiar attention to the effect of time dilation and longitudinal growth[2]
[3] [4] on the space time development of particle production. We show below that
this basic phenomenon, neglected in previous studies on stopping power, limits
the maximum energy that can be deposited into a nucleus. Furthermore, that
maximum energy deposition is relatively insensitive to dynamical assumptions.

Taking fluctuations of the number of interactions into account, we found in
Eq.(2.32) that the average energy fraction retained by the spectator projectile
partons decreases exponentially with nuclear thickness traversed. This implies
that

where E[z) is the energy left in the projeciile spectator cloud at depth ; in the
matter, and Ap is the "momentum degradation length"[20] as given by

If we ignore fluctuations as in Ref.[20], then 1 + a above is replaced by l/log(l +
I/a) . For a = 3 fluctuations enhance Ap by only 15?o.

While Eq.(2.32) relies on the assumption that the stopping- dynamics scales
with energy, Eq.(4.1) is more general if we let Ap depend on energy. The value of
A, in Eq.(4.2) has been deduced from data at laboratory energies ~ 100 Gev. For
lower energies we expect according to Fig.5 that Ap decreases as a decreases. For
comparison, our value of Ap is a factor of two larger than if incoherent cascading
were valid[2l[. It is also 60?c larger than deduced in Ref.[20| because they neglected
fluctuations and used the total rather than the inelastic pp cross section for esti-
mating A. (their revised results to be published are in accord with ours). On the
other hand, our value is a factor of two smaller than deduced by Hwa[l9], where
only the roughest geometrical considerations and dynamical approximations[20j
were considered.

Stopping the baryon in a flame that moves with rapidity y with respect to the
lab means that E in the !ab is reduced to m'cosh(y), where m' is an effective mass.

Recall from section 2.4 that in our model the fraction of the energy of the spectator
partons that is carried away ultimately by a baryoo is / = (1 -ta)/{2tt) ^ 2/3. By
denning m" = m.\/f. we thus guarantee that on the average the projectile nudeon
ends up at rest in that frame. Since £(;) = £„«"' 4» from Ei|.(4.1{. the thic!<ui'S5
of nuclear matter required to reduce the rapidity of a nudcou from //o to y is

A,(ya -y - 6y) , (4.3)

where iy = log(l//) a 0.4. For y = 0 the approximation E s: m_e"/2 used in
Eq.(4.3) is not good enough. The stopping distance in the laboratory frame is
given rather by

I(0) = Aplog(£,/m') . (4.4)

Solving for Ay = tto - V from Eq.(4.3), we note that Ay = LJ\P -f 6y in-
creases slower with L than if we used (Ay)t from Eq.(2.30). This is because the
distribution of energy loss is so wide that the average rapidity loss tends to over
estimate the average energy loss for a given u. Within the large uncertainties in
the present determination of a, however, this distinction is not so crucial. To be
on the conservative side we use Eq.(4.3) in applications to nuclear collisions.

For application to collisions of symmetric nuclei (A+A). we are interested in
reducing the incident rapidity by only 1/2 since such a rapidity shift applied to
both target and projectile nucleons would lead to stopping of all baryons in the
center of mass system. The thickness of nuclear matter required to stop baryons
in the cm system is thus estimated to be

4.2. Effect of Longitudinal Growth
We now turn to the problem of how to reconcile the slow [log Eo) increase of

these stopping distances with the concept of longitudinal growth[2|. Because of
Lorentz time dilation, the formation time of a secondary panicle increases linearly
with the energy of that particle [3j. Therefore, at a distance I into the matter only
particles with rapidities[3][4|

y i- log-(2.-/-,) , (4.C)

could have come on shell. The proper time for formation of hadruns is estimated '°
be r0 = 1 Fm. Recall [2] that Eq.(4.6) also follows from the uncertainty principle
in terms of light cone variables ( i - = / i -. 7- = E ~ q:)

i i -

Therefore the production of a particle with rapidity jy and transverse mass IN.
canuot be localized on the average within a distance A-- — e'-'/>»i of the interaction
point. Note that this is in spite of the fact that at any p.zc-.i tin.<• the :. C".T liu.i:.'

15



of a high energj- particle with a rapidity wave packet of width Ay can be measured
with great accuracy, i.e., A; ~ 2A/(m^evAy) as y — cc. What we cannot localize
well is the production point of the particle, not its wavep.icket once it has been
formed. This exponential growth with rapidity of the uncertainty in the production
point is referred to as longitudinal growth. We 3ee that r0 =: 2/m^ ~ 1 Fm even
for point like partons due to limited p_ ditributions. For point like particles the
transverse Compton wavelength sets the minimum uncertainty in the proper time
for its formation. Time diJatioo then increases the uncertainty in the formation
time in any other frame.

To see what limitations longitudinal growth places on the energy deposited per
unit length let Pt(z;y)5z be the formation probability of a secondary with rapidity
y at some point between z and 2 4- 5z downstream from the interaction point. A
simple form of P, that incorporates Eq.(4.6) is

(4.S)

where l[y) = 7bsinh(ji) s: e'/m_ is the average production point of a particle with
rapidity y, and xt{v)/\J3 ' s r m s width of the production region. The parameter
X ~- 1 controls the magnitude of fluctuations about the average production point.

For an interaction at point z0, the energj' deposited at z in the form of on shell
secondaries is

- J 7 - = J dyP^z - zQ;j/)mj.cosh(j/)-j- . (4.9)

where dX/dy is the final rapidity density of secondaries. Since the empirical dXjdy
is only a slowly varying function of y in the central region, we see that longitudinal
growth implies that dE"°jdz is approximately a constant[30] given by

\l-x)
(i.K

Note that fluctuations around the average production point enhance dE"/dz.
The approximate constancy of dEx/dz also follows naturally from the string

model. A string produced in a collision corresponds to a color flux tube that
streches out with time. The constant color electric field £ in that tube leads to
a constant energj' per unit length a oc f!. In the color fields of that tube the
Schwinger mechanism produces paits that neutralize the field. Since a particle
with energj- t cannot be emitted from the string before the kinetic energj- loss,
az, exceeds t, longitudinal growth is automatically satisfied. Furthermore, the
empirical string tension, j s l Gev/fm. gives an energj- loss similar to Eq.(4.10).

The energj' deposition per uuit length can be approximately constant of course
only over a finite range. Thac range is fixed simply by energy conservation. For a
target chain carrying an energj- fraction 1, energy conservation fixes its "length",
Us), to be

where £0 is the incident energj-. At the point where the string is streched tc
length t{i) all the kinetic energj- of the leading parton has been converted intc
potential energj-. Thai potential energj- is in turn converted via the Schwinger
mechanism into energj- of pairs that are formed in the color neutralization process.
A target chain formed at depth z0 therefore leads to an approximately constant
energj- deposition per unit length over a finite range -0 < ; < Zn -f £(*), so that

dz
(.-0 + (4.12)

Summing over all target chains leads then to the estimate

where the average denoted bj- {•••) is over the multi 'city of target chains, their
production points z,-, and their energj' fractions i,.

To Eq.(4.13) we must still add the contribution to the energj- deposition due tc
the recombination and neutralization of the projectih chain. We do this forma!!)
bj" extending the sum from » — 0 to i = -V, where i = 0 refers to the contribution
of the projectile chain. Thus, r0 is point from which fragments from the projectile
chain start to materialize, and / ( J 0 ) = I(1 - X\ - • • • - i.v) is the distance over
which the projectile string neutralizes. With this convention, note that the total
kngth of all chains is just the naive longitudinal length scale

(4.14)

From this it is clear that an important feature of multi-string models is the oc-
currence of multiple length scales that are smaller than the naive length scale,
Eo/c-

What we must next specify is the distribution of -a, • • •, -.v and i,,---,x.\
as well as of .V. The distribution over .V is given by a Poisson from Glauber
theory, such that (A') = 2R/X, where 2R is the thickness of nuclear matter. The
distribution of the fractional energies. 7,, •• -, 2\v, carried by tbf .V target chains is
completely specified in our model as

A'(l - . (4.15)

l{x) = (4.11)

This distribution leads to the average fractional energies, I,-, of target chains given
by Eq.2.27.

The distribution of interaction points, ;,-. on the other hand, i* nut specified
by the model as formulated thusfar. Fitting the momentum space data does Dot
requir.- knowledge about the ;,-. Again we emphasiz: that thosf data provide
information ar.ly on energj' loss .ind not on energj- deposition. Thus, stru-kly
speaking the pA data are not enough to determine th>' energy deposition thai
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is crucial to applications to nuclear collisions. No'e that the maximum energy
deposition in a Suite nucleus is not even bounded by the energy loss because some of
the energy carried by the spectator partons can also end up within the nucleus (term
i = 0 in (4.13)). On the other hand, the energy depoi-'tion could be significantly
smaller than the energy loss because the lengths of several chains could exceed
the nuclear thickness. To estimate the energy deposition wn consider two extreme
models for the distribution of production points, z,-.

The first model for that distribution follows naturally from multiple collision
theory. In such a framework interactions occur sequentially involving successively
smaller and smaller energies. Therefore, the first chain, carrying on the average
the highest energy fraction 2[ = 1/(1 + a ) , would be produced first (:i ~ A). Then
the second chain would be created after another mean free path. etc. Such a time
ordered sequence of interaction points corresponds to a distribution

TV!
~r7 (4.16)

where 2iJ is again the thickness of the nuclear slab and 0 < :,- < 2R for all i. With
Eq.(4.16) the average production point of chain i is (r;) = 2Ri/(X + 1).

A second possibility for the distribution of interaction points is suggested by
the parton model. In that model partoos are assumed to have very large mean free
paths. Only because there are so many of them that a few can neverthess interact
inside a. nnite nucleus. In that picture the z; are thus uniformly distributed over
the nuclear thickness. Such a distribution thus corresponds to

SN{zu---,zN;2R) = [2R)- (4.17

On the average, there is an interaction every 2iJ/(.V + l) as with the time or-
dered distribution (4.16). However, with (4.17) there is no correlation between the
interaction point and the energy of the chain.

Clearly, (4.16) leads to an upper bound on the estimate for energy deposition,
because the first few chains that carry the largest fractional energies have the
longest range within the nuclear matter to neutralize. Conversely, (4.17) leads to a
lower bound since some of the time the shorter chains axe allowed to be produced
before the longer ones. Comparing the energy deposition resulting from (4.16) with
tnat resulting from (4.17) will give an indication of the theoretical uncertainty in
those estimates.

Consider first the time ordered case corresponding to (4.16). On the average,
the energy of a chain produced at depth z is given by £ ( : ) / ( l + a). Therefore, its
length is approximately

t(z) = t.e-"-' , (4.1S)

where la = £0 / (( l + a)<r). Fig.6 illustrates the range of nuclear depths over which
different target chains neutralize in this case. A given target chain n neutralizes
on the average between nX ~ z ~ nX + l(n\). Note that the length of all chains
increases linearly with the incident energy and that those lengths are twice as long
for the case o = 1 as for a = 3 because the average energy lost forming target

chains is twice as large in the former case. The peculiar shape of the solid curves
results from the interplay between the linear growing and exponentially decreasing
contributions to the end point of the neutralisation range for different chains, For
a fixed energy and a there exists a minimum depth, r", below which none of the
chains have yet neutralized. That depth as given by

2* = A, {1 + log
a)<rA,

(4.10)

grows only logarithmically with incident energy.

Since each chain contributes approximate!}- a constant * to dE^/dz, we can
estimate the total energy deposition per unit length by not i i ; that a new chain is
created on the average every- mean free path A and summing over all contributing
chains via

For z < z' the total energy deposited per unit length simply increases liaearly[30j,

This linear growth is illustrated in the bottom part of Fig.6. For .- > z', dE^/d:
decreases rapidly as fewer chains contribute. Note the little kink in the curves
that occurs at z = £(0) = S.plog(E,,/m*) corresponding to the stopping distance
in the laboratory frame as given by Eq.(4.4). For z > 1(0) the integration over
20 in Eq.(4.20) terminates at 1(0). Nevertheless, dE^Jdz continues to be finite
because not all target chains can neutralize so fast. For En = 50 GeV and a = 1,
for example, the ban-on stops on the average at a depth 1(0) = 17.5 Fm while
target chains continue to produce secondaries until the first chain is neutralized at
depth == 25 Fm. In this example linear growth of dE^/dz ceases at ;* = 12 Fm.

The most striking feature to note in Fig.6 is the insensitivity of <iEx/d; to
the value of a. Even though the hadronization range of any particular chain is
sensitive to a, the net sum of all chains is rather stable with respect to changing
a. It is also obvious from the dE^fd: curves that the energy deposited per unit
length eventually satu-ates as the incident energy increases. At a fixed depth r,
dEx/dz saturates at vz/X for incident energies satisfying c* > :. Therefore, the
total energy deposited within a finite nucleus of thickness 2R saturates at

E°°(2R) < 2rrR2/X , (4.22)

with the upper bound being reached at incident energy

+ a)a2R if 2fi < Ap

+ a)<TApe
l"!-A'1;A' if 2/? > A, .

The maximum energy that a proton can deposit in nuclear matter of thickness
2R = 14 Fm is thus E" ^ 45 GeV which is reached for incident energies £„ >
E'" ^ 60 - 80 GeV for a = 1 - 3.

£0 = £" ' =
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Consider now the alternate possibility, Eq.(4.17), where the assumption about
the time ordering of the production point :; is removed. In this case, each ;, is
uniformly distributed between 0 < zt < 2R. Consequently, chain / contributes to
the energy deposition per unit length an amount

(4.24)

This integral leads to a trapezoid shape in the range 0 < z < 2R + t(xi). Of more
interest however is the total energy deposition into nuclear matter of thickness 1R.
That is given by

oR 2R

2R
(4.25)

We see from (4.25) that at sufficiently high energies, when the £(i,-j generally
exceed 2R for ever}" chain, the sum over the a; 2J?/A chains gives the same total
energy' deposition as in Eq.(4.22)'. Therefore, we draw the important conclusion
that the maximum energy deposition in a finite nucleus does not depend on the
distribution of the i; nor on the distribution of the :;. For a nuclear thickness
of 14 Fm, that maximum energy deposition is ~ 45 GeV. We note, however, that
this estimate depends on the effective string tension a a; 1 GeV/Fm and the
assumption that the strings add incoherently. The assumption that strings add
incoherently is justified only if the color electric charge at the end of the strings is
random. Clearly, a random walk in color space leads to an average color electric
field squared, {£-), that grows only linearly with the number of iateractions. Hence,
the effective number of strings grows only linearly with nuclear depth although large
fluctuations about the average can be expected.

While the maximum energy deposition asymptotically does not depend on the
details of those distributions, the maximum energy deposition in the baryon stop-
ping region does. That is because in the baryon stopping region, some of the chains
have lengths less than 2R, and therefore the energy deposition from those chains
depends on their production points, ;;. The maximum energy deposition in the
baryon stopping region is estimated in the next section.

4.3. The Stopping Domain of Nuclear Collisions
In the context of nuclear collisions we are interested in stopping barrens in the

mid-rapidity or nucleoo-nucleon center of mass system. The condition for stopping
a nucleon in the mid-rapidity frame due to a zero impact parameter collision with
a nucleus of radius R is L* < 2R, where V is given by Eq.(4.S). This limits the
energy per nucleon in the center of mass t; be

m,v cosh(2R/AB (4.2GJ

Of course the same condition is obtained by requiring that the stopping distance in
the center of mass system be smaller than the Lorentz contracted radius, /?/•„„.
For a finite impact parameter 6, 2R is replaced by 2^/(R- - b"-).

In Fig.(7) the thickness, L", of nuclear matter required to reduce the incident
lab rapidity 2i/rrr, to ])„„ is shown by che solid curves labeled B for both a = I and
3. For a — 3 the cm stopping distance exceeds 'he diameter of the heaviest nuclei
for -;„, ~ 4. For a = 2, L' > 14 Fm [or ~;tm > 6. If we could extrapolate the
a - 1 cum indefinitely, then L' > 14 Fm only for fm > 14. Recall that i r a K 6
corresponds to the extrapolated upper bound on the stopping energy in Ref.[l7].

While there is considerable sensitivity of the value of i m for which L' > 14 Fm,
something striking occurs at 7 ^ ~ 4 regardless of the value of a. In addition to
showing L*, Fig.(7) shows the boundaries of the target chain hadronization regions
for the first and last chain in the case that the interactions are time ordered such
that j,- 2z jX., Curves labeled 1 show the end point

2<r(l + o )
(4.27)

of hadronization of the first target chain. Curves labeled 2 show the end point of
the last target string formed at L" as given by

z2{ycrn) = L* + i[V) . (4.2S)

The energy lost by the incident hadrou is deposited into the target in the form
of secondary particles over a region extcudiug to the larger of curves 1 and 2.
For lower energies the hadronization of the last striug defines that boundary. For
higher energies the first string extends further than the last string. This is simply a
consequence of longitudinal growth since the length of the Srst chain is proportional
to the incident laboratory energy while the last chaiu is proportional to the center
of mass energy. On the other hand, L* only grows logarithmically vrlzk energy.

When either curve 1 or 2 exceeds the diameter of the nucleus, a fraction of
the available energy in the cm is lost to secondaries produced outside the nuclei.
We define the stopping domain of nuclear collisions as that energy range where
not only the baryons come to rest in the cm but also where most of secondary
particles can be reabsorbed within the Loreutz contracted nuclear volume. Only
if the secondaries resulting from the color neutralization processes are produced
within the nuclear volume can they contribute to heatln ' . :e high baryon density
6reball in the cm frame. We see from Fig.(7) that the stopping domain for the
heaviest nuclei therefore extends only up to center of mass kinetic energies

Eem - 3 ± 1 GeV/A , (4.20)

relatively independent of the precise value of cr.

The to ta l energy deposited within nuclear mar .e r of tbirkuess ; is shown iu
Fig.(S) for the t ime ordered case. Tha t euervfy. E" {;). as obtained by i i i t f j rat ing
Eq.(4 .20) up to a given dep th .-. is shown in t i e r s i'f the energy Ims. £*..„,, =
Ea - m' cosh ( j /o/-) . necessary to stop a baryon in t t e .-in system. For a maximum
nuclear thiclvness 12 - 14 Frn, indicated by the ah :Jed region, all the energy l ' «
necessary to reduce the incident rapidity by one h ilf c;m b'1 il<'p,wu.'i! \vi::im ch-1

nuclear volume as long as the iucidec: labora tory /-L"r?y is b e l ' w - 2 n - 5il Ai ,.'\ .
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By 100 AGeV only ~- i/2 of the necessary energy can be deposited within the
heaviest nuclei found in nature. Once again note the re'narkable inseusitivity of
these curves to variations of a between 1 and 3.

The relative insensitivity of the stopping domain to dynamical assumptions is
a consequence of longitudinal growth. In the case a = 1 the energy- lost forming
target chains is twice as large as in the case a — 2 Therefore, the rapidity of the
baryon is reduced in only a fraction of the distance that is necessary in the a — 3
case. However, the catch is that the hadronization region of target chains extends
then twice as far as in the a = 3 case. Therefore, the stopping domain in the a = 1
case is limited by the energy at which energetic pions start being produced outside
the nuclear volume due to time diladon. On the other hand, in the Q = 3 case
the stopping domain is limited by the energy at which the nuclear thickness is no
longer sufficient to bring the baryons to resJ in the cai frame.

The above estimates are only upper bounds because they are based on the as-
sumption, Eq.(4.16), that the chains are produced sequentially. Furthermore, they
neglect the effects of fluctuations in the number of chains, their energy fractions.
and production points. To study such effects we have written a Montf-Carlo pnv
gram to evaluate the ensemble average in Eq.(4.13) sampling the number of chains
from a Poisson. the *,- from the distribution (4.15). and ;,• from either l4.16; or
(4.17). We have also included the contribution from the projectile chain assuming
; n = -i in (4.13). Further details of the algorithm and results will be published
elsewhere. Here we only quote the final results of such calculations in Table 4 2.
In that table the average energy loss and deposition in nuclear matter of thickness
14 Fm is given as a function of incident energy, Eo. (Units are in GeV). Cases
Q =̂ 1 and 3 are again considered. The upper and lower estimates for the en-
ergy deposition are obtained using (4.16) or (4.17) respectively. Not? that while
the energy loss is greater for Q = 1, the energy deposition is smaller in that case
because the chains are longer. Note also the saturation of the energy deposition
above £0 > 50 GeV. The most remarkable point is again the relative insensir.vity
of the total energy deposition to variations in a and the distribution of the z,. The
maximum average energy deposition in 14 Fm of nuclear matter is thus — 30 ± 10
GeV. We also found that the rms fluctuations about that average are fairly large
(~ 10 GeV). However, in nuclear collisions those fluctuations are reduced by A~' ' .

This Monte-Carlo study is therefore consistent with the estimate Eq.(4.29) for
the upper bound of the nuclear stopping domain. The error bars quoted in (4.29)
therefore correctly reflect the theoretical uncertainties in the present estimates.

Just beyond the stopping domain [KE,m £ 3) the situation is more uncertain.

If a — 1 is appropriate at those energies, then there could rxi^t a "uriuus inter-
mediate energy region, 3 -- KE^ < G, where baryoiis would it op ou the avera^*-
iu the mid rapidity frame but an ever increasing traction of the energy is lust to
fa^t secondary pions protlured outside tbe Lnronrz contraciej nn-lear volunv. For
a — 3, such an intermediate region would not exist. Experimental information in
this energy domain is obviously needed.

We can njw estimate the maximum ban-on ;md ener^/ densities that could be
reached in the stopping domain. Simple kinematic con.sulerarii>us[3l] alone indicate
that in the stopping domain the baryon density couM reach

p '<. 2';m,p, - S i2/),, , (4.30]

and the energy densiry ccukl roach

- 5 = 3G<"v/fms
(4.31)

where we input our estimate ":<»„ ~ 4 as the boundary uf the stopping domain. In
fict. baryon and energy densities up to twire as high could be reached|3n; if shock
conditions could be reached. On the minus side, not all the secondari°s produced in
the nucleai volume will be reabsorned in the fir-'ball due to their finite interaction
mean free paths. The leakage of some secondaries would probably compensate for
any extra compression beyoad the kinematirul minimum (4.3D). In any case, energy
densities in excess of one order of magnitude above the ground state value should
be easily accessible in central collisions of heavy nuclei at energies KErm ^ ^ - 1
AGeV (A"£ioi — 1 7 - 5 0 AGeV). The unique feature at these energies is ;hat
the baryon density reaches the maximum value that could ever be attained ia a
laboratory via nuclear collisions.

Q = 3

a = 1

£,„.,
Ein

Eic.
Ein

30
24

22- 2G
27

16-22

60
40

2&-33
47

20-26

100
80

38-42
95

25-31

Table 4.2: Average energy loss and deposition (see text)
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5. High Energy Nuclear Collisions
In this section we make predictions for the nucleon rapidity distributions in the

projectile fragmentation region for nuclear collisions beyond the stopping domain.
The extension of the Multi-Chain Model to B +A — X + X, where both B and A
are nuclei has been carried out in Ref.[32]. With the assumptions in section 2, the
invariant nucleon inclusive cross section for nuclear collisions can be written as

(5.1)

where the rapidity density is given by a multiple collision series in analogy to
Eq.(2.3) as

J\BA B A

t E E ^ K w W (5)
(Charge exchange and isospin effects will not be considered here.For a distribution
of nuclear collision impact parameters. S(b), the probability that m projectile
nucleons interact with n target nucleous is given by the usual Glauber expression

where PB[m,&) is the binomial probability that m projectile nucleons'interact at
relative impact parameter s:

B:
(5.4)

U that yB{a)/B with -Vfl given as in Eq.(2.5) is just the a priori probability
ding a projectile nucleon in an infinitely long cylinder of area tr£'v at relative

Recall
of finding a projectile nucleon in an infinitely long cylinder of area cr;>" at relative
impact parameter a. The product PBPA in Eq.(5.3) is then just the probability of
finding m projectile and n target nucleons in that same cylinder uhen the nuclear
collision impact parameter is b. Therefore, Qm.n must be normalized to m +
n. In Eq.(5.3) <rB, does not correspond to the reaction cross section but rather
to a normalization factor insuring that £"_ , £*_, ?BA[™, n) = 1- The Glauber
reaction cross section is given by

Recall that the inclusive nucleon cross section is normalized as

(5.5)

(5.G)

and that it is convenient to decompose B = tVn + SB and .4 = n ' < T S<. where tl'B
is the average number of intpraf :io? or wounded nucl'ons and SB = B - WB is tli>-

average number of noninteracting or spectator nucleons in the projectile nucleus
B and similarly for the target A. From the above relations it is clear that
a e g n
B, and si

(5.7)

with WA given by interchanging ,4 and B above.
The above relations clearly separate the cumbersome but well understood ge-

ometrical aspects of nuclear collisions from the sought after dynamics specified by
the distributions Q,nn{z). It is clear that proton nucleus data[7j provide informa-
tion only on Q\,n[x) as given by Eq.(2.7). In this paper we explore the consequences
of only the simplest assumption- namely, that in the rn projectile nucleons fragment
independent of one another, i.e.,

Q,,,Jx) = mQ,Jx) . (5.S)

As emphasized in Ref.'22l it is far from obvious that such an independent fratrmen-
tation assumption is valid. There is as yet no nuclear collision data to test this
assumption. Since such data will be available within a few years (at CER_\ and
BNL), we have calculated the leading nucleon rapidity density under this assump-
tion using the value of a = 3 determined from pA data. The hope is that deviations
from our predictions may help unco>-er possible new phenomena in nuclear colli-
sions. For example, if a locally equilibrated quark gluon plasma is formed in th1'
fragmentation regions as current speculations s igge«t[-fj[30j, then there could be
deviations from our predictions.

With Eq.(5.S), the leading baryon rapidity density is given by

— A^(B- WB)Q0(z)

where
d~-B

V

B

(5.9)

where 5 is chosen to normalize Y.n-i PBA (T0 — !• ani '1 Q<> ^ iri\'t'
In Fig.9 our predictions for the leading baryon rapidity .i•'u
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even the heaviest nuclei. A central U+U collision still involves a substatial number
of interactions near the surface where only one or two multiple collisions occur.
In a central O+Pb collsion, on the other hand, every projectile nucleon traverses
~ 12 Fin of nuclear matter. Therefore, it is not surprising that O+Pb exhibits the
largest rapidity shift of the reactions shown.

From the point of view of new phenomena, deviations from predictions in cen-
tral U+U collsions could be most interesting. With suci large nuclei multiple final
sta:o interactions could lead to local equilibrium and, hopefully, to a high baryon
density quark gluon plasma state in the fragmentation regions. However, our calcu-
lations clearly demonstrate that there wilt always be a substantial source of back-
ground due the nuclear halo in collsions of identical nuclei that would contaminate
possible signatures of that state. In order to reliably subtract that background.
the nuclear stopping dynamics, via <?m,n, must be first understood by extensive
studies with light nuclear beams.

6. Additive Quark Model
We showed in section 3 that the available data at 100 GeV could be understood

in terms of one phenomenological parameter Q a: 3 related to the momentum
degradation length via Eq.(4.2). However, we have repeatedly pointed out the
limitations of the current phenomenology. In particular, we have stressed that
the extrapolated stopping power function ID Fig.3 for nuclear depths > S Fm
is not tested by the current data. To help gauge the uncertainties involved, we
slow in this section that the 100 GeV data can be also understood within the
framework of the Additive Quark Model (AQM)[l2][I3l[l5|. Remarkably, we find
that the extrapolation to 14 Fm with this model is consistent with the multi-ohaiu
extrapolations. This gives us futher confidence in those extrapolations.

In the AQM the incident proton is thought to be composed of three costitueut
quarks. As the proton passes through a nucleus 1,2 or 3 of those quarks get
"wounded" due to interactions. The final observed proton arises from the frag-
mentation of the wounded projectile. In contrast to the Multi-Chaio Model the
fragmentation probability is allowed to depend explicitely on the number of quarks
that were wounded in the projectile. In effect the multiple collision series in Eq.(2.3)
is terminated at the terra n — 3. The probabilities P^i) are reinterpreted as the
probabilities, / ^ ( i ) , chat 1,2, or 3 constituent quarks interact in the nucleus. The
Qn are regarded as unknown fragmentation functions to be determined by fitting
data.

The probability that i projectile constituent quarks are wounded is given in
analogy to Eq.{2.4) by

(6.1)

where pqvi(b) is the probability that a constituent quark interacts at impact pa-
rameter b

() (
(6.2)

and the reaction cross section is given by

(6.3)

In the spirit of that model we take the constituent quark-nucleou cross sectioD to
be crqN = 10 mb. The probabilities for wounding quarks are shown in Fig.10 as
a function of A11'. For these calculations we used the Wood-Saxon parameter* of
Ref.[33|. Use of the parametes in Eqs.(3.3.3.4) lead to the same probabilities within
10%. This is the order of magnitude uncertainty in the choice of uvV in any case.
Note how large is the probability that only one constituent quark interacts even
for Pb. Note further that we have set P,,v(i'l = St.i as in IMs.[l3j(l5i althouck a
strict application of Eq.(6.1) to A = l would yield P,y[l) = 0.S - 0.9. This i- an
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additional model assumption that is necessary in order to fit the A dependence of
the data from A=l to A=20S. With this assumption Q\(x) should correspond to
the p + p — p + X distribution. In fact we did not constrain <?, to equal the proton
target data, but rather we determined the <2; at each value of i by a minimum \ : fit
to all six (A=p.C,Al,Cu.Ag,Pb) reactions. Such a method was used in Refs.[l3][15j
to fit \° inclusive data.

With a three parameter fit to six data points at each value of x we found
obviously a very shallow x ! minimum with enourmous uncertainties and correla-
tions among the Qi. However, the results suggested that in the measured x range,
the contribution to dN/dy from collsions involving three wounded quarks couid be
neglected. Therefore, we tried a fit constraining Q% = 0 as in Refs.(l3j(l5j. The
invariant proton distributions, xd'XJdxcPp^, for i = 1 (solid dots) and i = 2 (open
dots) as determined from such a fit are shown in Fig.ll. The solid lines represent
linear least square fits to those distributions. We find that we can parameterize
those invariant distributions for x > 0.3 and p. =0.3 GeV/c in (GeV/c)"2 units
by

xdsN1/dxJ!p± s; 0.11 + 0.34z ,

zd*Xi/dzcPp_ K 0.35(1-i)

p^ =3 0 .

(6.4)

With the above fragmentation functions the invariant proton inclusive cross section
in the AQM is

With Eq.(0.6) the avcnj" momentum fraction carried by the leading proton after
traversing a thickness - of nuclear matter is

W , ^ i l + e - ^ ) ' , (0.7)

where Xq % 7 Fm is the mean free path of a constituent quark in nuclear matter.
For z — 14 Fm, Eq.(6.7) gives (z) =; 0.18. In comparison, the Multi-Chain Model
extrapolation via Eq.(2.32) to 14 Fni gives (x) r̂ 0.19 for a nucleou inelastic mean
free path A = 2.OS Fin. It is remarkable how stable is this extrapolation to major
changes in the model assumptions as Ion? as the 100 GeV data are used to constrain
the parameters of the models. For comparison, the incoherent cascade model, which
fails to reproduce the data, would give (x) ^ 0.03.

(6.5)

In Fig.12 the solid curves calculated from the above relation are compared to the
Busza data[7]. We find that the Additive Quark Model can reproduce the data as
well as the Multi-Chain Model. Of course, there is a much larger degree of freedom
in the AQM through three arbitrary fragmentation functions.

For purposes of this paper the important question is what this fit implies about
nuclear stopping power. Unfortunately, the data only go down to x = 0.3, and the
model provides no clues of how to extrapolate the fragmentation functions to low x.
Thus, strictly speaking the nuclear stopping power remains undetermined from the
available data! We can, nevertheless, try to estimate it in the spirit of B.ef.[l7] by
extrapolating Eq.(6.4) to a lower cutoff xc. We took xc = 0.073, corresponding to
an extrapolation to mid rapidity. With this extrapolation we found that the average
momentum fraction carried by the leading proton is z, « 0.45 and i? = 0.25 if
one or two quarks are wounded respectively. With a form of Q2 compatible with
it being negligible for x > 0.3, the leading proton would carry only a fraction
x3 — 0.15 of the incident energy if all three quarks were wounded. These results
are therefore compatible with

(0.0)
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7. Concluding Remarks
The main purpose of this paper was to extract as much information on nuclear

stopping power as possible from the limited datajTJ on p-f A — p-r X at 100 GeV.
Making several strong assumptions concerning transverse factorization and scaling
dynamics, we applied the Multi-Chain Model[9] to extract one physical parameter,
a = 3 ± 1, by fitting the invariant cross sections for A=p,C.Al,Cu.Ag, and Pb
at pj_ = 0.3 GeV/c and i > 0.3. This parameter was shown to be related to
the momentnm degradation length. A? = S ± 2 Fm. that controls the exponential
decrease of the final baryon energy fraction as a function of nuclear thickness. We
pointed out, however, that the phenomenon of longitudinal growth:2j implies that
energy loss via multiparticle production occurs over an ever increasing length scale
proportional to the energy. By analyzing the space time development of particle
production in the Multi-Chain Model we were led to conclude that there are in
fact multiple length scales associated with the hadronization scales of the different
target chains created during the collision. This follows because hadron nucleus
collisions involve several independent processes due to the composite nature of
hadrons: each subprocess involving only a fraction of the incident energy. The
longest of those chains was found to be on the average 1/(1 + a) smaller than the
naive longitudinal length scalej2]-[4j given by E$/a.

The second purpose of this paper was to apply the empirical stopping power to
determine the upper bound on the stopping domain in nuclear collisions. In this
paper we deSned the stopping domain to be that energy range in which collisions
of slabs of nuclear of thickness 14 Fm lead not only to the stopping of most baryons
in the center of mass system but also the production of most of the energetic secon-
daries within the Lorentz contracted nuclear volume (l4/--(.rT1). For this we had to
extrapolate to lower energies and greater nuclear depths than covered by the cur-
tent data. We found in section 3.4 that we should expect violations from the simple
scaling hypothesis, but that those violations tend to increase the stopping power
of nuclei at lower energies. Unfortunately, there is insufficient data at present to
determine the precise form of the energy dependence of those violations. There-
fore, in estimating the boundary of the stopping domain in nuclear collisions we
varied the parameter of our model from a = 1 to 3 to cover the large uncertainties
associated with scaling violations. We found, however, that because of longitudinal
growth the bound on the stopping domain, KE^n ~ 3 ± 1 AGeV, was relatively
independent of the value of a. W'e showed further that the extrapolation to nu-
clear depths ~- 14 Fm was stable against variations of the model assumptions by
considering limitations on the number of target chains and by varying the assump-
tions on projectile fragmentations via the Additive Quark Model[l2j[13)[l5|. This
gave us further confidence about our estimate of KE™1. A Monte-Carlo study
also showed that within the errors quoted, the maximum stopping energy does not
depend sensitively on the unknown distribution of the interaction points.

Beyond the maximum energy for stopping the situation is less clear. Eventually,
at very high energies KEm ~ 100 AGeV the fragmentation regions and central
region separate although the nuclei shatter over several units of rapidity. The
energy range above the stopping domain — 3 - 5 AGeV is most likely characterized

by large fluctuations. Some collisions may accidently lead to complete stopping,
while others only to shattering. In this region the notion of an average collision
may not be useful. The stopping domain has the advantage that the maximum
baryon and energy densities are more or less fixed by kinematics. With maximum
stopping energies KE^ on the order of a few AGeV, our analysis is consistent
with previous expectations!l6;-[lSj that baxyou densities and energy densities on
the order of 10 times those found in ground state nuclei could indeed be achieved in
central collisions of heavy nuc! i. Whether that energy density is enough to reach
the quark-gluou plasma phase remains an exciting upea question.

Finally, there is a clear need for nure extensive data to help resolve some of the
many remaining uncertainties associated with nuclear stopping power. Systematic
measurements as a function of energy in the range 20 to 400 GeV are important to
map out the scaling violations. AWo important are measurements of inclusive cross
sections with associated multiplicity triggers to probe stopping power to greater
depths .- ~- 14 Fm. Finally, central collision studies with lig-ht nuclear beams are
necessary- to test linear extrapolations from pA reactions and look for possible non-
linear effect. We have made predictions for central nuclear collisions to establish a
baseline in looking for novel effects.
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Figure Captions:

1. Invariant proton inclusive cross sections[7] for p-f .A — />-*- A" at 100 GeV as a
function of light cone x for fixed p_ = 0.3 GeV/c. Solid curves are calculated
using the multi-chain model. The incoherent cascade;21] corresponds to the
curves for o = 1. The effect of increasing nuclear transparency is shown by
cases o = 2,3,4. Note that pp and pA are treated on the same footing.

2. Leading proton rapidity density as a function rapidity measured in pro-
jectile frame. All curves correspond to a = 3 and the C and Pb target
data axe deduced from Ref.[7) assuming rpg(0.3) = O.SS7C. Solid curves ar"
for impact parameter averaged results, while dashed and dashed-dot curves
correspond to outer half (6 > bc) and inner half [b < bc) collisions respec-
tively. Here 6C is chosen to be the impact parameter cut leading to 1/2 of
the reaction cross section as in Ref.[i7j.

3. Stopping power of nuclear matter as measured by the mean ban-on rapidity
shift as a function of nuclear thickness. This is the asymptotic rapidity shift
(see section 4). Curves for a = 1 — 4 are shown. Symbols indicate the impact
parameter averaged mean rapidity shifts for the case a = 3 for fiuice nuclei
as a function of the average nuclear thickness, uAX.

4. Inclusive p + A — -g- + X cross sections!"] at 100 GeV for p_ = 0.3 GeY/c.
All calculated curves correspond to a = 3.

5. Invariant proton inclusive distributions^"] at 24 GeV for fixed angle, 8 = 17
mr. Calculations for a = 1,3,6 are shown by solid, dashed, dashed-dot
curves respectively. The pp data are from Ref.[2S]

6. Top graphs show the color neutralization region of different target chains iu
the laboratory frame. Chain n is formed at depth j = nX (dashed line) and
is neutralized between nX < : < z^(nX), where zt(;) (solid curves) is given
by Eq.(4.13). The curves are labeled by the incident laboratory energy in
GeV. The bottom two graphs show the energy deposition per unit length.
Eq.(4.20) in the form of on-shell secondaries as a function of nuclear depth.
The linear increase of dE^jdz up to some depth z* given by Eq.(4.19) is
a consequence of longitudinal growth and the approximate constancy of
the rapidity density dSJdy of secondaries produced in the neutralisation
process. Comparing cases a = 1 (left side) and a — 3 right side shows that
dE^jd: is not very sensitive to uncertainties in a.

7. The laboratory distance scales involved in stopping baryons and producing
secondaries are shown as a function of center of mass kinetic energy for
o = 1 and 3. Curve B gives the depth of nuclear matter, Eq.(4.5), required
to halve the rapidity of the incident bary«O- Curve 1 shows the extent
of the hadronization region of the first target chain via Eq.(4.27). The
hadronization of the last target chain occurs between curve B and curve 2
as given by£q.(4.2S). The crossing of the shaded region by any curve locates
the end of the stopping domain of nuclear collisions. Below that point not
only do most of the baryons stop but also most of the energetic secondary

particles are produced within the Lorentz contracted auclear volume in the
center of mass frame.

8. Total energy deposition as a function of nuclear depth in units of the energy,
E^Uv = EQ — mYo3/i(yr,/2), necessary to reduce the rapidity of an incident
proton by one half, i.e., stop the proton in th" mid-rapidity frame. Dashed
and solid curves correspond to case? a = 1 ami 3 respectively and are
obtained by integrating dE^'/il: in Fig.(C) from 0 to ;. Carves are labeled
by incident laboratory energy £,, iu Ge\\ The stopping dom.'iiu of nuclear
collisions is limited to energies such that the ratio reaches unity before 14
Fm.

9. Predicted nucleon rapidity densities for ceutral unclear collisions iu the pro-
jectile frame. Central collisions are ,l<-nD̂ d by inte;~ating impact param-
eters ouly up to 2 Fm. The rapidity densities arc divided by the atomic
number of the projectile nucleus. Only the projectile fragmentation con-
tributions are shown. The dashed, solid, dashed-dot curves cotresprond to
a = 2, 3. 4 respectively.

10. Additive quark probabilities for wounding 1.2. <?T 3 constituent quark> with
effective cross section crty = 10 mb on Wood-Saxon nucleij33r

11. Invariant proton fragmentation distributions in the Additive Quark Mode:|l3]]15
resulting from wounding oue (solid dot] or two (open dot) quarks as deter-
mined by a \2 fit to dataj"'. Wouuding of all three quark1- is assumed to
lead to negligible proton production in the measured kinematic range. The
data points are obtained by a \ ; fit to the pA — p.Y d;ua["j and lin-s
correspond to linear fits.

12. Comparison of proton inclusive data[7j with calculations using the AC;M
fragmentation functions of Fig.ll as parometemed by Eq.(G.4).
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