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1. INTRODUCTION

The purpose of this psper ix to study the behavior of the Wilson
parameter [IJ in V(1) lattice gauge theory with long range gauge invariant
interactions occuring in particular in Jattice gauge theories with fermions
[z]. These theories have been intensively studied amalytically and recently
also numerically by the Monte-Carlo method. The usual groups considercd
in a gauge invariant ficld theory are U(1), SU(N). One way to study the
wodels consiate in doing the "integration out® over the fermionic variables
proposed by matthews and Salam [JJ, [QJ, [5], this "integration out" leads
to an effective action which can bo exprossed as a aum ovor all possible
gavge fio)d loops affected with welpht factors [2]. In the D(1) case the
result is simple, For example in two space-time dimensjon and for Susskind
fermions [b], the lattice fermionic action coupled to a gauge field i=x
given by (sece giJ) :

S = Sg + 3¢

D S = ($‘G(u)q"3
= 5: {T‘i u'"‘iv"’*i Perej - ."i’.'.j ‘-L‘:.j,‘-.-ss §i-a3
LAY T, o -
-t (") 3 ( *’\'vi u—i.j,'siti ‘h-jd. - 1’;1 ‘A":_j';'j_‘ ‘?‘-_3_‘.)
A CR Ol

and q‘ are Crassman variables representing the fermion field. The
couple (3,j) of integers represents the sites of the lattice. The one
component variable th with i+j even or odd can be taken to represent
respectively the field \\" or ?_ J u.';j,-..,;‘ , u."‘i.;_s,i
are the gauge field variables belonging te U(1) and indexed dy links. They
verify u,“" - a‘b," . SG- is the usual Wilson's lattice action.

@ Se = f %‘_ Re [tr Wp ]

r represents an elementary square {(plaguette) of the lattice and W (f)
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is the product of the link variables associated to the plaguette P. To
integrate out ouver the Grassman variahles one uses the well known formujae

(lee[sj)
Jdg 4§ wp(Faq) » W a

Expanding ddetuya ur'ﬂqﬂ“) by random walk techniques [8:', [_9], one
obtains an effective action of the form

(3) S‘n = ]‘E I‘. LS R., [tn'u\-l

vhere U.l. ix the product of the link varjables sarociated to the cloaed
path I" « The corrasponding welght factors J' v (m) dépend on m
andon ¥ ¢ A CSEN AL o™ 1M representing the length of the
path and Z(¥)= 4 according to the geometry of W . For "naive"
fermions the result is similar.

The purpose of this paper is to study the behavior of the Wilson
rarameter ¢ for this kind of action according to different hypothesis on
the interaction I“ [n) in particular the interaction obtained from the
Matthew-Salam expansion. The pure lattice gauge theory with action given
by (2) is known te have 2 linear confinement in two dimension [lD] a lega-
rithmic confinement if three dimension [ll._‘ and is not confining at low
temperature in four dimension [12]. We shall show that if the interaction
does not decrease sufficiently with \\‘l the model can have a confining
behavior at all temperature : this occurs for ferromagnetic interactions,
where Il' > o forall N . In the converse case ve show that if
the interaction decreases rapidly enough with Il then the model has a
confining behavior at all temperature in dimensions two and threc. These
results are stated precisely in Section I1. the proofs are given in
Section I1I.
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I1. DEFINITIONS AND RESULTS

We consider an infinite d-dimensional hypercubic Jattice of unit
spacing AN = 2" (43 J.) . The basic objects on the Jattice are the
sites X l{a.'.u“....,n‘s e 2° » the Jinks <=, ,x°> where 2 and

' are nearest neighbours and the plaquettes p (elementary squares).

A walk on the lattice is an ordered set of oricnted Jinks
L { CR K>, €5, X% = vy, ‘“h.\,u““7 l

A closed walk is a walk such that Tew X . We divide the sot of closed
walks into cquivalent classes by Jetting W), , W, be equivalent whenever
w, , wy, have the same links and the order of the links in w, i3 a
eyclic permutation of the order of the links in W, . We call the equi-
valent classes "loops" and denotes by A () the ser of the loops.

To a Joop M we associate a loop [( P) obtained from ]‘
by climinating two by two the terms < X ,%mpr ¥ , € Xa , Xiea» Such
that 1 X = Xmes A Xpe1.3 L,. ¥e denote by A (¥) the set of
these loops. || (resp. |y ) denotes the number of links of M
(resp. Y ).

A connected surface § is a connected set of plaquettes. |S|
denotes the number of surface of S and A (S) the set of conmected sur-
faces.

Let o, be the set of links of A . To each link L acx,a’>
of % we associate a random variable ¥ (4) with value in [-W, W) and
such that M {%,x') = - H(a',x) . We denote by ﬂl, the sum of
the link variables of the oop }  and by BS the sum over the pla-
quettes p of § of B(E) where B (p): ﬁaf ., @ being the boun-
dary operator.
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We now consider the following actions

w W - = J A
» ¥ enr) poes Ty

() \'\1 =z - Z ¥: wr B¢
3 ¢~ )

where J; and B are real paramcters,

Remark : H* and M' can he rewritten as

(6) l'\“ 2 - Z I* (Y1 “r
Yeé Aly)
with

I, - 2. 9 +
Y \"M") P for H
& e lma
i N‘;cuﬂh‘ g l‘

Ir = S . Ks for ] H"
8 es)
S8 =y
The Wilson parameter is given by

A Ac -BH,
M Wee) = <> () = Zp) @ Lr dB) &

iw

H
z(p) =7 [ A oF
€ed, L I
where J“A‘. is the invariant measure on S{y). The formulae (7) are to
be interpreted as the thermodynamic limit K. z" of the corresponding
finite volume quantities <& et A‘>, (}) defined by the same expressions
but with links restricted to a ﬁ.mte box A'. Let C bea rectangular
loop of sides of length L and T, for pure gauge model given by (2) we con-
< oA .
sider E(L) = ﬁ:‘ T by W'lti as the energy between static quarks
separated by a distance L.
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%o denote by n ﬂ) the number of Joops of length '£ containing
a given link, 1t is known that n (8) < (24)7 1 N(s) denotes the
number of connacted surfaces of area s containinz a given plaquettes
then N(s) £ Aa" » where Jy iR a pesitive number depending on the di-
mension d of the lattice. This follows by drawing the graphs whose edges
connect the centers of the plaquetter containing a same link and by using
the following fact : on every conneated graph there is a path that passes
through evory edge at most twice [13].

We will now contrider the following conditions,

Condition 1 : at large |¥|, ]‘. ~ |t ot | with P > by 24

N log IV
Condition 2 : at large | , gr ™ M e""'“ 3! |wnh

- ralsl

Pr > ©

Condition 3 : at large |S] . Ksn e with s > by ¥4
The condition 3 implies that II’ decreases as exp{_— cste minimal area
with boundary ¥{.

The conditions 1, 2, 3 imply the existence of the thermodynamic limit

and give sufficient conditions of the Matthew-Salam cxpansion. The condi-
tion m »2d is a sufficient condition for the existence of the Matthew
Salam expansion.

Theorem 1

Let C be any loop. Consider the action given by (4) and assume that Il‘
verifies the condition 1, then :

. _'l 1
a) < e"A“'> (R} € ¢ e for any positive §

‘
Ry is a positive constant and at large F,h‘ ~ h'a/ ( k, being a
positive constant). 3

b) If moreover : I', > ¢ for all I' then,

P (3] Vel oo hes (py
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Theorem 2.

Let C be a rectangular loop of sides of length L and T. Consider the
action given by (4) and assume that :r‘. verifies the condition 2, then
for anyspositive t

: T eali
a) if da2 < “AC > (p) < < hgl (l.alat 33
: T Lsnk
b) if d=3 e et Ac > l@) < o | (l-oz sl )
€ a4 < etfes g MW

4 .
h. , h; and h., are positive constants and at large F ki ~ k;,“;' W,
being positive constants.

d) if moreover : I" 3 o for all [' then

Te .
bl coreiTetialE ey gy

Theorem 3

Let C' be a rectangular loop of sides of length L and T. Consider the
action given by (5) and assume that KS verifies the condition 2. Then
for any positive ? ,

{ TL
a) if d=2 < c‘Ac S (P) < e_&i' [
b) if d=3 o eSfey ) < k(g b))
c) if d 3§ < C; AC > (P) S e h'.(TOL)

‘ ’
hg ' hg and h‘ are pnsitive constants and at large F , h;m Il:/r . l:;
being posritive constants

d) if wmoreover : Ks)o for all $ then

: F‘I:. S A

€ <> (8)
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REMARKS

We can see that the upper bounds obtained in Theorem ) for d = 4, in
part b and ¢ of Theorem 2 and in part a, b, ¢ of Theorem 3 are of the
same kind than those obtained for the U(1) pure Jattice gauvge theory
with action given by (2).

If the interaction is ferromugnetic and in the 4-dimensional case onc
can obtain hetter lower hounds ( exp {-wh{T+t1] ) than those obtained
under the conditions 2 and 3 by using Ginibre inequality [14] and
Guth's Jower bound [12]. :

The inequality a of Theorem 1 can be applied to the lattice gauge theory
with fermions since the weight factors are given by E(f)IF} & ¥ Never-
tholess the lower bounds are only obtained in the ferromagnetic case
and cannot bo applied to this theory,
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I11. DPROOF OF THEOREMS

In the proof of upper bounds the idca consists in a comparison
with Gaussian procegs. Yo we first use the method of compiex transla-
tion of Mac Bryan and Spencer [ISJ. Our starting point is the following
estimate due to Mac Bryan and Spencer (sec also Climm and Jaffe [IIJ for
Caupge model).

Lewmn 1
Lot {&a)}t‘hb“ some configuration of links. Then

0 cetfes (p) € wplow] wp B rimﬂ (dey-1) i

o<t g wpl] wp{t Z k(0]
where by = EZ;.‘ by |, "U’)"“'ae

We refer the reader to [lSj, [ll] for the px_-oof of this lemma.

For the proof of the lower bounds one uses Cinibre's inequality [14 ,
[lb_j. In terms of gauge model it can be rewritten as follows :

RPN | <
(8) <mll,.>:,<<u.ﬂ,>a_ if |:r|g]rforaul'

1II.} Proofs of the Lower Bounds in Theorems 1, 2, 3

In formula (7), let I‘. =0 forall V excepted for | ¥ (c)
Then by using inequality (8), we obtain if the interaction is ferromagnetic

j'ﬂ' ‘.‘h ‘iAc eP I\'(&) ""Af@)

@ <efesp) » T

I"'-“- da(e) ofTve) o Ry,
-x ¢t 2=

The right hand side of ineguality (9) is egual to Ty fan.,) vhere
L (fg)

CPT-83/P.1500 .



-Il;(") i the modified Bexse) function.
Then one zap show that

T, (F Ti’(s))

I Py, )
Accarding to the differcnt hypothesis on Il' we obtain the statement b
of Theorem 1 and the statementdof Theorem 2. The statement d of Theorem 3
is obtained in the same way,

2 F/z Ib’to

111,2 Proof part a) of Theorem | and part ¢) of Theorem 2

Lst C be an oriented laop. We consider a configuration
lq(&) }{ o verifying the following condition.

a(®). 4 for all Lin ¢, { is oriented in the sense of C
(10) Ph
a0 if 2 4C

k is a positive constant chosen later.
Let L be some link such that XLc) contains ¥ . By using part
a) of Lemma 1 we gbtain

< f—"“‘>(ﬁ) £ oxp {- lr“"] u.r{ piverl z Ir“l“r“)}

Yea®
-
Let P = Z I,' (c&nr-‘l)
Pea(r)
Pald '

For #k large enough (we take P > f. vith P. > ‘.:.'.' ) we can write

|“>2 rod

Since la.f[ < l"l/" 3 we can use for ,l" <fk the estimate
< q'-'!. P (IWI'h )" . For [Pl > F ] we use the estimate
fap-1 g emp{ 1T "" }

cPT283/P.1500
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Then under condition 1 we have

Pe 5 amerty I amp M

-

t R 4 &
“aak f 12k P
where r‘ )batclu, with o 5 o . Since a.([}.s (44) we have
- s
pe I PO L T g et oh

L<ph dxpt
Lot F¢ auch tiat ,5,& )e-“-'- » Then for fa Sup /f-,,’.}wa obtain

P < Rﬂ'&fz + R P!
where A and A' are positive constants. Therefore
. -1, . : k
<etsp) < enp - mc)l;:’ln‘{-i-AL‘. Nl )}

we choose R>2A .1let Py such that ﬂ: kA e'.dﬁ‘k < Y
Then for F 2 hr{ fa ,& ,fd we obtain statement A of Theorem 2 for large.
F. By usim inequality (8) one extends the proof to any positive P .
The same method is applied to prove statement ¢ of Theorem 2.

I111.3 Proof of part a) of Theorem 3

let d = 2, and .S‘ be the rectangle of vertices 0Oz {0,0}

xgx{r,0} » x ={T,LY) » x5 {o,L] . Let S be
the symmetric of S,_ with respect to O=x* axisandand S, = S, U S,

E 3
=4 / s,
% /]
) - x,
N,
Figure 1
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We now choose a configuration {G(“ } e d’ verifying the following
conditions.

tor the Jinks £ such thatr L € Afe, wo take a (B)=e

for the 1inks € such that 2 € *5, wetake a (P):=o

for the links £ parallel ta the direction 0x! v take aff)= o

(1) +
for the links § parallel to the direction Ox we take

i,a‘;o ﬂ-[ (“4%‘!, {a"gt,ﬂ"}] -0 [{a.‘.l‘ﬂi‘{ﬂ.‘q-‘l, 1:."+1}]=Fih

g <o a [{ xt aty fat ,&l}] za [f:',-x'g‘ia."d'- 4] ]

k is a positive constant chosen later.

. Under these conditions, for the b{p) variables we have
l b(p)l = Ftt‘:i if P €S, ,L(P}!O otherwise.

Let p be some plaguettes of So. By using pait b) of Lemma 1 we obtain
) . ‘
= _‘.Ass,>0) < “,f- I..lf'['f u‘b;aflrﬁﬁ Ks (‘“‘s’ﬂ}

i Fc is large enough ( F > F‘. with F. - :‘l; ) we can write

Q= 72 % (Ab-1) 2 720 K (Rbg-1)+ 2w (h)
S>p Sop Sop

For \5\<f'k we use the estimate IS1< pk 1512 gk

dbg-1 ¢ (|s|F'r‘°)‘
.ik-‘l
For ]SI;fL we use R bs -4 < e 1sie

Then under comdition 3 we have:

CPT-83/P.1500



= s
Q¢ Iyt ettt L I ot et el |
‘.,:{‘h d -‘;'Bh
AEN i ;

where ?“’3“2"‘ yd 0. Let ﬁ, he such that ,!,L > 1
ol

For {3 > s«’”.",/we obrains
.2 s < fpk
g aphton F

A and A' are positive constanta. The proof of inequality a) of Theo-
rem 3 ends annlogously to 11142 . To prove statement ¢ of Theorem 2,

we use the same mothod but in chooslng the configuration given by (10).

We now consider the 3-dimensional case. The idea of the proof
conaists in choosing a configuration {‘"(”336& to reduce it to a
- bidimenslonal problem. We first introduce some notations.

111.4 Notations

Let x= {2% 2,21 be a site of A
We denote by d(x) the distance of x to the O=x? axis

d=) = dak (x,0x*) = sup {1}

We define the projection of x on the half-plane {x" =0, = >0 S
Puoj [[=t=1 ] = [yt 5% 4

vhere yt= =, 3": dixy , gt =0

let 4=<x,9> be a link. We define the projection of the
link -l on the half-plane { x3¥z0 , x* > o 3

Roj [ 8] = < Poj 2], Pejra] >

CPT-83/P.1500



We consider the dinks €= <»,43 parallel to O=x?' and introduce the
distance of £ to Ont

d(t) = d(x) = d(9)

Let p= (x“:“z, ,‘x.)ha some plaguettes such that
B (=) 4 P[] ¥e%i et
We define the projection of the plaguette p as

Py [P = ( Paj =41 , Toaj T2l , Raj [m0], ?"J (=)

L ]

ol | Bye)_ o7
?u.,! =) i '/ﬁ»a 2] L. .:
™1 5 .
. A, ‘(m; ot 4 é(r/) \
A S P
L s : A '
4 - | '
x J Lo s
/ “, d“-*) d(") "' l‘[ Jl d(?) ’f’
’ i
»

)

[
P
.
s
D
Y
N
-
C mnd
“
N

&e‘e
By
Q ro

\

Figure 2 1

2
let p be a plagquette on the half-plane { x*20, x >/°3
We define the "tube" Cf associated to the pliquette p by
Te = { set of plaquettes q such that {Rm‘ {q4l=p I

We define  the distances of the plaquette f = (2,3 %,%,%,) to 0 x?

A(P) me d(x)

x. &P

cPT-83/0.1500
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The distances of the tube Z‘, to Oz‘ are given by

| d(%p) = d(p)

L~
@D

_ 47
g" J.(C," /l
N R T
- .
/ .47;/ it d]m
/ < .
§ | tube

@

Figure 3

cPT-83/P.1500
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111.5§ Proof of statement b of Theorem 3

¥e consider the reetangle S, of vertices 0z {o‘o,oj' ztg.r'!:a'o}
““,1”_‘0} P %y B io‘ "o°3 » and the bhox

.'[o < "ST,"'""“‘:"I-‘::’SLJ"

Wo choose a conflguration {d. () }f s verifying the following
conditions :

for all links 1 perpendicular to Ox* dircction we take a(l)=eo

for all links of ®A_ and Afy - we ke a(l)=

{12) .
for the links in A ur Parallel to Oa? and oriented in

the Oxtdirection we take
L-t

a{f) = :‘_ Z =
LA madl) ™ z
k is a positive constant chosen later.
With this choice, for the b(p) variables we have

¥p €S8, ,¥q & T 1)
PES.,¥q &% |bwl- pk(dtf'**)
b(p) zo otherwise

Using part b of Lemma 1 and assuming that the configuration
verifies the condition (12) we obtain

un < P 5 (p) ¢ emp §- s, Jeip fp Z 4(,(cfl,--)}

fGS' 752" 531

with

(14) uP f—d.as‘g = eu.rf -|' I: Z: :_3

O,



We can write

16

T Z Z w(dbs-t) ¢

- rres 1e% 329

We can decompose the sum Q' as follows

t13) Q' s pT Z.L..' bfij-1) p.anl

FTZ&{& 1)2_: K,(Jil; 1)
Sop
dipiej

R (cl‘,-‘t)

Sap:dpay
15] <dle L )
- s (kb -1

In the first term of the R.H.S, of (15) we use the estimate

K -1 5((J%‘}_9;L Y

In the second term of R.H.S. of (15) we use the estimate

Db -1 ¢ IFE

-

Then under condition 3 on Kg

A
' ) T r_e__ T:m 4) 2 e of,
Q é? l:l 4‘]'}, Fh‘ (J r =4 ‘ 4)‘,1'
Ae N
where r,;k:bu +ta » with o 3o . For P >d“ . we obtain
"
(16) Q < p7{ ap“k“ 2.4 LA

where A, A!
b of Theorem

j:t d

are positive constamnts. By choosing k > A statement

3 follows from (13), (14) and (16).

CPT-83/P.1500
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111.6 Proof of Statement a of Thcorem 2

We keep the notation of Sections 11).3 and 111.4. We consider
a cenfiguration {a. (Q)}h'l' verifying the following conditions

for all Mnks of @S, and A /g. we take o (8)s e

‘for al) dinks paradlel tvo 02 wetake o (R)s O

for all 1inks £ in  Se parallel to Oa' and oriented
in the Ox% dircction we take :
Led
A

a(b) = . A
pu med(f) med

un

we shall aspume k = 1 o Under these conditions for the b(p) variables
we have

A q .4
1b(p)|= pE(dpet) if PeS, , b(p) =0 otherwise

Using part a) of Lemma 1 for a configuration verifying the conditions
(11) we obtain

L{Ros, y 4 - Qe -
as) < e >(M< "‘f{ g:u 3:':: S l’“ ren(f)Ir( e}
Let apte
an R = Z: J,. (1&-“ 'i)

\‘ni—o

we can write

ZE:L 2
‘e % T LA (dhap-1)
PE€Se {x(ﬂcontains a link of p}

It is clear that

cPT-83/P.1500
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R < zTZ Z= T apee)

{ xﬂ'} Co'l"n-mn
dakofpy dipyeg

Letg a some positive constant larger than 3. For F'l Jarge enough ve
wake the following decomposition of R.

20 R g 2T Z: W5 (B ap-1) « 2eT Z 1 TR 1)

[ n"ﬂmst * k) (“)”'a““
{Y "3‘:‘ "'E } {q RACes “:3 I
i#) < TBR i 2P
,_1-21 7:.' l" Ip (ein'.-i) -rl"'z: 2: i) IP(A'“ 4)
am =--"--3 ¥ g‘(w):f...w
a Sk D} e fk 5 [
{ dRd, |“|<"}S LI LIEALE

Let R;. Ry, Ra’ R, the first second third and fourth terms of the
R.R.S. of the inequality (20). We now use the estimates :

Lap-1 /0'/ in Ry
cfar-! < uf{r%‘ L’[W/‘)j in ﬂ; and R

crq’.i < (ll'l/‘_f*)l in R

Under the condition 2 on I" we obtain for large F

{ph-1
. R‘l < 2T Z -F‘E‘.:t ;P‘r: el,az“ HyT P'Q
{/:f.
) py d
Ry € 2T 2. Q = '.Lat zfﬂ i .LL‘I £ A, T
22

CPT-83/P.1500
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M3

L
R, ¢ a7

4
SEY < Ma ‘) st < HTp°

l-\m
n

it it
j QZ,:J-"' ~ ;Nh 34 u.,u <
ze -

o
E 4
N

AT

Ay A ﬂ‘. and A, are positive constants. From these four
inequalities and from (18), (19), (20) follows the proof of statement a)
of Theorem 2 at large p « Oinibre inequality extends the proof to

any positive P

I111.7 Proof of Part b of Theorem 2

In this case we choose a configuration { af P) } peds verifying
the condition (12) as in IT1,5. Using part a) of Lemma 1 for this con-
figuration we obtain

‘ L
e < M) ¢ wp {-pUZ 4] wp Em{ (da 4)}
r*o

)
Let R = r:‘?h]—"(&%‘i)
We can write ¢
R < ,?Es Le—,r z I T (Rap-1)
= °5=|

It is clear that )}

gn-ss/P. 1500



R i 4{aj-v) L i 3, (Rap-1)

N

p Y L.Jm-u-
1 bk o} f,tﬂf\ )

We remark that R' differs from R only by the factor 2(2j-1). By
using the saime decomposition and estimates as im Section 111.0 we
obhtain

] ! !
R’ = R" 'y K; + R’ * Rl‘ with
l

L

where Ay A 5 Ay and A, are positive constants. Ry choosing
k> ﬁ's we obtain part b) of Theorem 2.
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