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I. ItnUOPUCTION 

The purpose of this paper is to study the behavior of the Wilson 
parameter (Yj in U(l) lattice sauce theory with Ion* range gauce invariant 
interaction* occuring in particular in lattice gauge theories with fermions 
fi]. These theories have been intensively studied analytically and recently 
also numerically by the Monte-Carlo Method. The usual «roups considered 
in a gauge invariant field theory «re U(l), SU(N). One way to study the 
model* consist* in doing the "integration out" over the fermionic variables 
proposed by mat thews and Sal am ["3"), [i], [5J1 this "integration out" leads 
to an effective action which can be expressed as a sum ©vor all possible 
gauge field loops affected with weight factors£2]. In the 0(1) case the 
result is simple. For example in two space-time dimension and for Sussklhd 
fermions )_6J, the lattice fermionic action coupled to a gauge field is 
given by (see f/j) : 

S = Sp «.Sfr 

-i H P ( fy u*iHrt ^ . fy u^., fa) 
+ •*• U ft 1 

Y and Y are Grassman variables representing the fermion field. The 
couple (i,j) of integers represents the sites of the lattice. The one 
component variable 4*u with i+j even or odd can be taken to represent 
respectively the field u/* or ^" .' U.*tj,Ltij , U-*j,i.j«4 
are the gauge field variables belonging to U(l) and indexed by links. They 
verify tL« \, » U-. «. . S is the usual Wilson's lattice action. 

™ s* » ft 12 a* O U(f>] 
1 c 

P represents an elementary square (plaquette) of the lattice and U. (p) 
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is the product of the link variables associated to the plaquette P. To 
integrate out ouver the Grassman variables one uses the well known formulae 
face [s]> 

] ^ 4̂  «f (f.«t) * ^ Q-
Expanding J^Hu'J * M f & U g l W ) by random walk techniques [jQ, [9], one 
obtain* an effective action of the form 

(3) H s V V^ **[*M 
where U>* J» the product of the link variables associated to the closed 
path f* • The corresponding weight factors Jf (>*} dépend on m 
and on tf ! T U») » t O W l «C 1 , 1*1 representing the length of the 
path and t | ) ) : il accord inn to the geometry of f . For "naive" 
fermions the result is similar. 

The purpose of this paper is to study the behavior of the Wilson 
parameter : for this kind of action according to different hypothesis on 
the interaction X,l"v) in particular the interaction obtained from the 
Hatthew-Salam expansion. The pure lattice gauge theory with action given 
by (2) is known to have a linear confinement in two dimension flOJ a loga­
rithmic confinement if three dimension Til J and is not confining at low 
temperature in four dimension H 2 J . Ve shall show that if the interaction 
does not decrease sufficiently with [f\ the model can have a confining 
behavior at all temperature : this occurs for ferromagnetic interactions, 
where Jf ^ ° f o r a*l f . In the converse case we show that if 
the interaction decreases rapidly enough with lr"| then the model has a 
confining behavior at all temperature in dimensions two and three. These 
results are stated precisely in Section II. the prtofs are given in 
Section III. 
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H . PKFIH1T10NS AND HESUITS 

Ko consider an infinite d-dimcnsional hypercubic lattice of unit 
sparing A > Z ( <J ;j. a ) . The basic objects on the lattice are the 
sites x *^x.',itt

|....,KJJ « 2 , the links c*-.*•'> where M. and 
tc' are nearest neighbours and the plaquettes p (elementary squares). 

A walk on the lattice is an ordered set of oriented Jinks 

u) £ { <«,,x 4> J < «,,»,>, ^k-i..**» i 

A closed walk is a walk «uch that x ^ • >s. . We divide the set of closed 
walks into equivalent classes by letting u>t , n^ be equivalent whenever 
u), , ut* have the sane links and the order of the linUs in u ) t is a 
cyclic permutation of the order of the links in «*»4 , He call the equi­
valent classes "loops" and denotes by A(/*) the set of the loops. 

To a loop t* we associate a loop ]f(l*) obtained from i 
by eliminating two by two the terms <"* 1 X | 1x m,i > , <:««., XH..H.> such 
that : % « s x m , t and x f t , t : x n . We denote by A ( Jf) the set of 
these loops. |f( (resp. |^| ) denotes the number of links of V 
(resp. Y ). 

A connected surface S is a connected set of plaquettes. \S\ 
denotes the number of surface of S and A ( s ) the set of connected sur­
faces. 

Let ci, be the set of links of A . T o each link { * < *,«•'> 
of 4> we associate a randoa variable ft (t.) with value in Q-W , IT] and 
such that W ffc^x') s - H t x ' . x ^ . We denote by IL, the sum of 
the link variables of the loop f and by B e the sum over the pla­
quettes p of S of 8 (f \ where 8 (f \ = Aj)p > ^ being the boun­
dary operator. 
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We now consider the following actions 

U) 
tew) r 

U>i ftj 

<S) co\ Eg 

where T* and R s are real parameter*. 

Remark i H* and H can he rewritten at 

(61 

with 

Mioulaltd bo J* 

for n* 

' S e M 5 ) 

for H* 

The Wilson parameter is given by 

where • *%— is the invariant measure on S(j\ . The formulae (7) are to 

be interpreted as the thermodynamic limit K1-» 1 of the corresponding 

finite volume quantities ^ e.*" >, (f) defined by the same expressions 

but with links restricted to a finite box A • L e t C be a rectangular 

loop of sides of length Land T, for pure gauge model given by (2) we con­

sider E(L^ s tr- - i . to* W.(ûl as the energy between static quarks 

separated by a distance L. 
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Vie denote by n. (I) the number of J oops of length x. containing 

.1 given link. It is known that n.(t) £ (Uj. If N(s> denotes the 

number of connected surfaces of area s containing a given plaquettes 

thenN(s) £ Mi* i where i^ is a positive number depending on the di­

mension d of the lattice. This follows by drawing the graphs whose edges 

connect the centers of the plaquettes containing a same link and by using 

the following fact : en every connected graph there is a path that passes 

through evory edge at most twice [l3j« 

Ve will now consider the following conditions. 

Condition 1 : at large \f\, Jj, * \t\ i"fx ' with j»4 > U ^ a 4 

Condition 2 s at large \1\ , J* -v |*| e*1** " a with pt > « 

Condition 3 : at large |S| , K $ /u e" ** with f» > '»t "J 

The condition 3 implies that T« decreases as exp|- este minimal area 

with boundary J(J . 

The conditions 1, 2, 3 imply the existence of the thermodynamic limit 

and give sufficient conditions of the Hatthew-Salam expansion. The condi­

tion m. > î J is a sufficient condition for the existence of the Matthew 

Salai» expansion. 

Theorem 1 

Let C be any loop. Consider the action given by (4) and assume that J ft 

verifies the condition 1, then : 

a) < e . L A c > (fJ) é «•" , , , r W ) ' for any positive $ 

fei is a positive constant and at large 6,fc< n> B*y ( k 1 being a 

positive constant). 

b) If moreover : J» > o for all V then, 
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Theorem 2, 

Let C be a rectangular loop of sides of length L and T. Consider the 
action given by (4) and assume that X> verifies the condition 2, then 
for any*positive f> 

«) if d.2 < ft""* > (p) * *" * K * ' 

•JU _k»T (U*L+*.H.>i 
b) if d.3 «r e k * c > ip) £ e," * l * 

c) if d4 <r * i f t t > ( M £ e - ^ ( T + L ) 

ttt . b» *nd Ri, are positive constants and at large ft hi <\» *•./&, ** 
being positive constants. 

d) if moreover : T , ̂ e for all P then 

Theorem 3 

Let C be a rectangular loop of sides of length L and T. Consider the 
action given by (5) and assume that K j verifies the condition?. Then 
for any positive 6 , 

a) if d=2 «f c i A c > (f) é «" ' ' L 

b ) if d=3 <: t « A - > ( f ) ^ tt-fcc(^u + ^ 

c> if d4 < *. i A c>(p) ^ eT^^*^ 

, , , ., , „. „w._ :A t k̂  
being positive constants ' 

d) if moreover : K j ^ O for all S then 

CPT-83/P.ISOO 



7 

RKHAHKS 
Ve can see that the upper bounds obtained in Theorem 1 for d = 4, in 
part b and c cf Theorem 2 and in part a, b, c of Theorem 3 are of the 
same kind than those obtained for the U(l) pure lattice gauge theory 
with action given by (2). 
If the interaction is ferromagnetic and in the 4-dimcnsional case one 
can obtain better lower bounds ( e*p J-atalT + M J ) than those obtained 
under the conditions 2 and 3 by using Ginibre inequality [l4J and 
Cuth*s lower bound [ « ] . 
The inequality a of Theorem 1 can be applied to the lattice gauge theory 
with fermions since the weight factors are given by E(»)|P|sî . Never­
theless the lower bounds are only obtained in the ferromagnetic case 
and cannot be applied to this theory. 
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111. PHOOF OF THEOREMS 

In the proof of upper bounds the idea consists in a comparison 

with Gaussian procès». So wc first use the method of complex transla­

tion of Mac Bryan and Spencer |_l5j. Our starting point is the following 

estimate» due to Mac Bryan and Spencer (sev also Clin» and Jaffe [llj for 

Guupe model). 

Lemma 1 

Lot •(••tf)]» ta tome configuration of links. Then 

ET 
J l ' JfAfS/ 

where hj . Z l b (p) t by») = « ^ 

We refer the reader to [l.SJ. [llj for the proof of this lemma. 

For the proof of the lower bounds one uses Ginibre's inequality [14 , 

Jloj. In terms of gauge model i t can be rewritten as follows : 

(8) < u , l l r ^ | i < u . n f > i f ' | y * | * 1 for all Ï 
J . o " 

III.l Proofs of the Lower Bounds in Theorems 1, 2. 3 

In formula (7)i let L s O for all V excepted for F = t{,C.\ 

Then by using inequality (8), we obtain if the interaction is ferromagnetic 

(9) <^>[i) > _±Liii : _ 
U t Ï Î *• 

The right hand side of inequality (9) is equal to * '' *"'«>/ where 
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"!.(».') is the modified Hesse) function. 

Then one sun show that 

According to the different hypothesis on X i wc obtain the statement b 

of Theorem I and the atatementJof Theorem 2. The statement d of Theorem 3 

is obtained in the same way. 

111.2 Proof part a) of Theorem I and part c) of Theorem 2 

UO) 

Let C be an oriented loop. We consider a configuration 
i\\ verifying the following condition. 

'o,tf)i ^ f o r aU- t in C , -fc is oriented in the sense of C 

,0 . (6 ) r o if 14C 

k is a positive constant chosen later . 
Let -t be some link such that V(£) contains X. . By using part 
a) of Lemma 1 we obtain 

<; e . i f t c > ( p ) é ~f {- 1 2 S ) j *-f { I l » ) l H J f ^ V 1 ) ] 

Let ? = Z T J ( c K . - * ) 

For £ V. large enough (we take t> •> %% with fc» » i ) we can write 

ji^f. tat 

Since / <*y» / <J ^ /fk * w e c a n u s e f o r fl * i^ t h e e s t i m a t e 

cfcq. -"t £ ("*'/lk )*" * F o r I* 1 ' ^ /* * we use the estimate 

cEo. - 1 £ <**p J JUL Ï 
CPTi83/P.1500 r f f c J 
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Then under condition 1 we have 

where ut ^ I M ? 4 M , with V * o . Since «•(£)£ (*<i) wc have 

? * z; e ^ y * + z_ ^«-•'v* 

let fl< Mich that &4k> — , Then for B £ ^f ffrf-jve obtain 

where A and A' a-e positive constants. Therefore <:*'*'>#) € <*< 

we choose b > 3 A . Let ^ 8 such that /i * ̂  e" * ^ "Vi 
Then for fi ^ **pfp«'£i'fij w e obtain statement A of Theorem 2 for large. 
P. By usirp inequality (8) one extends the proof to any positive B 
The same method is applied to prove statement c of Theorem 2. 

III.3 Proof of part a) of Theorem 3 

Let d = 2, and S± be the rectangle of vertices 0»^0,0*y 
* i » < T . ° ) ' * » , s { T , >-> . « , B ( D , L j . Let S t be 
the symmetric of S 4 with respect to O »* axis and and S„ = S 4 U S 4 

«% ^ e 

7^ 
-•> X 

Figure 1 
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Wc now choose a confieuratiin { * W f « • verifying the following 

conditions. 

for the Jinks -fc such that -ê 6 A / 4 . W B t n k c *(')*° 

for the links X such that t 6 S S, we take «. £f) = o 

for the Jinks £ parallel to the direction On. we take a(t) z o 

for the links t parallel to the direction O x we take 

k is a positive constant chosen later. 

Under these conditions, for the b(p) variables we have 

| t>(P)| r f ^ if p « S » ,t(p)»o otherwise. 

Let p be some plaquettes of Su. By using pait b) of Lemma I we obtain 

If ftc is large enough ( fl >ft. with &.-»>! ) we can write 

S a p S 3 f S a p 

For \5\<f)e we use the estimate ^ '*' * ? 

For )s)>pk we use 

Then under condition 3 we have: 

CPT-83/P.l5bO 
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z: H? « * W • z: */.-** ««A* «9 £ 

4 « Vf * * " 
^ k * ' *»•* 

where Uj ̂  Umtfffl ,«<>o. Let flj be awn that fis & "> £, 

For « 5 **f(h,M"c 0 h M i n î ** 

A and A 1 are poaitiva constanti. The proof of inequality a) of Theo­
rem I ends analogously to U1.Ï . To prove itatemtnt r. of Theorem 2, 
we use the «time Method but in choosing the configuration given by (10). 

We now consider the 3-di«ensiotiil case. The idea of the proof 

consists in choosing a configuration {•L(fc)Jjtj,
 , 0 r e 0 > u i' e i x t 0 * 

tridimensional problem. Vie first introduce some notations. 

111.4 Notations 

Let x 3. i *•*, **, x* 1 be a site of f\ 
We denote by d(x) the distance of x to the Oat.1 axis 

d(x) a i j t ( x . 4 0 * + ) = »-f {l*'jIl*
,IJ 

We define the projection of x on the half-plane j x : o ( x
4 ̂  o ? 

where «J-* = ** , tf = < U * ) , "j* « ° 

Let -I = **>a > be a link. We define the projection of the 

link «l on the half-plane I x * s o t »t* % © ? 

CPT-83/P.1500 
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Vt> consider the links l s *»,«J> parallel to O k 1 and introduce the 
distance of { t o O » * 

Let p * (*, , X*, ^ ,*« }be some plaquettes such that 

Vo define the projection of the plaquette p as 

?~a r n * ( p-j [*.i ^ t*»i, ?«i I M ,p-j c>o } 

.»•' AW,*»: 
f t Î _ 

I.'"'' 
cltf) ,' #i 

tf> CSV' 

- » X 

Figure 2 i 

Let p be a plaquette on the half-plane ^ ac* » ° ; * > ° J 
tic define the "tube" C e associated to the plaquette p by 

"J- a T set of plaquettes q such that SA«f C<l"J s f J 

We define the distances of the plaquette P s ( * t / ' ' t»*».**) t o ^ at* 

(i/p) s «w J ( * ) 

CPT-83/P.150O 
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Thr distance!! of the tuhc 7/> to O x are given by 

«UM = Jif> 

.Z7Î Jtv' 
• • 

i 
<i^) 

0̂ 0
: 0 m ft 

'tu.bt Up 

Figure 3 
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HI.S Proof of statement b of Theorem 3 

Vv consider the rectangle 5 , of vertices Os { o

t ° t

0 \ * -•f T i 0 »°J 

*t*\i,K°i • *•** {°*u*°l ' * n d t h c b 0* 

Al7 < f 0 .* « ' ï T ^ t f x ' i t ^ j »> f 4 ? 

«0 choose a configuration jo. ( £ ) ? * i verifying the following 

conditions 1 

for «11 link* L perpendicular to On.1 direction we take a(t) s o 

for all links of *A._ and A /. we take m. (£) s o 
4.T * « U 

for the links in A t T parallel to 0 * * and oriented in 
the Codirection we take 

4 - * 

k is a positive constant chosen later. 

With this choice, for the b(p) variables we have 

[_ D (p\ = 0 otherwise 

Using part b of Lemma 1 and assuming that the configuration 
verifies thc condition (12) we obtain 

(13) <T e i A S 5 » > (f) £ «~* / - a . l*"»}fi £ £ .£. « f ^ l i - ' j l 

with 

( , 4 ) - r f - v ? - -v I-•* f? £• r ] 

(12) 



Id 

We can write 

r | « S , jec, S»«| I /«• Sap 
dtfH 

We can decompose the SUM Q' as follows 

( 1 5 ) Q'4 fiT t, 4/V-<J Z ^ , , «> (& **'*) 

In the first ten» of the R.H.S. of (IS) we use the estinate 

In the second term of R.H.S. of (IS) we use the estimate 

* U - i ^ *"V"'r 

Then under condition 3 on K $ 

where Uj ̂ . L«i J{j *• <*• , with ol > o . For B > J A we obtain 

<»« 0' « P { Af* c* ? i * fi'j 
where A, A 1 are positive constants. By choosing k > A statement 
b of Theorem 3 follows from (13)> (14) and (16). 

CPT-83/P.1500 
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111.6 Proof of Statocnt a of Theorem 2 

We keep the notation of Sections 111.3 and 111.4. Kc consider 

configuration J a . ( % ) | . , verifying the following conditions 

'for all link» of Ç)S» and A / j wo take a ( t ) i o 

for all link» parallel to O x 1 we take a ( t ) » o 

for «11 links t In Sm parallel to O * 1 and oriented 

in the D x 1 direction ve take 
U - t 

ait) = i C i-
ffc n,.<W »t** 

Kc shall assume k * 1 . Under these conditions for the b(p) variables 

we have 

Jb(p)|= jS t" (Jlfl«l) if f c S , , b(p) = 0 otherwise 

Using part a) of Lenma 1 for a configuration verifying the conditions 

(11) we obtain 

(18) « e i A S S * > (0 < 
l tK 1 -r{f £ 

r * ^ ' 
Let * r *° 

(19) R. = zz I ( A a p -
i 

we can write 

p«S. rt*('l! r r 

fy(f]contains a link of pi 

It is clear that 

CPT-83/P.1500 
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lct<a some positive constant larger than 3. For B R large enough ue 
make the following decomposition of R. 

(20) R é 4 J i : Ifl'l-rfap-O **cT Z : \ r | i J | ( | f R V 0 

Let R^. R a, R,, R4 the first second third and fourth terms of the 
K.K.S. of the inequality (20). Ve now use the estimates : 

r fi k » 

ji^.* 4 **f>f'jLk yh)J i n *« a n d ** 
«f.,.« * (%*)* in "* 

Under the condition 2 on T„ we obtain for large S>. 

CPT-83/P.1SOO 
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R3 4 *T t C ' ******SfjrfW 4 tiiTf\ 
* * 

*i » ** > ̂ J * n* ** * r c positive constants. Prom these four 

inequalities and from (IS), (19), (20) follows the proof of statement a) 

of Theorem 2 at large R . Ginibre inequality extends the proof to 

any positive & . 

111.7 Proof of Part b of Theorem 2 

In this case we choose a configuration {*•(£)J J e i verifying 

the condition (12) as in III.5- Using part a) of Lemma 1 for this con­

figuration we obtain 

A - + 0 

Let R. = XL T,fr**r-0 
Ve can write 

R' ^ TL TZ XI i<|*T r(«lfO 
f 6 S» ^ É Sp I* .• 

fo'(r\aJ-~^»? 
t«ftA-|q. i 

t t i s clear that ) 
i 

CPT-83/P.15OO 
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We remark that. R' differs from R only hy the factor 2(2j-t). By 
using the sumo decomposition and estimates as in Section 111.6 wc 
obtain 

ft'=. R * • &'» + &'» * * i with 

where A' , A£ , A' and A' are positive constants. By choosing 
b. •> ft', we obtain part b) of Theorem 2. 
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