CNRS-CPT_81_P-1274

FR 31 00 792

ON CONFINEMENT POTENTIALS IN GAUGE THEORY :

THE Z, CASE ON A LATTICE

A. MESSAGER J. RUIZ * Centre de Physique Théorique, CNRS, Marseille

<u>ARSTRACT</u>: We show that a sufficient decrease of the Wilson loop implies automatically an area decreased in i.e. the energy to separate quarks at distance L is <u>either</u> at most log L <u>or</u> L in the Z₂ case. We believe that it is a general fact on a lattice.

*Boursier D.G.R.S.T.

CPT/91/P.1274

FEBRUARY 1931

Postal Address : Centre de Physique Théorique CMRS - Luming - Cuse 907 F-73288 MARSEILL& CEDEX 2 (France)

1. INTRODUCTION

In 1979, R.L. Dobrushin and Pechersky [1] announced the following result : for a wide class of models suppose that the fall-off of some observables decrease at a sufficiently high power of the distance, this implies the exponential decay. More recently in 1980, Simon [2], Lieb [3], and Aizenman Simon [4]showed similar results for correlation functions using correlation inequalities. It is clear that such results could be very useful because evidently it is easier to show a decrease at a sufficiently high power than an exponential decay , this seems to be the case for models in two dimensions exhibiting a SO₃ continuous symmetry [5].

For similar reasons it is tempting to look at the situation of gauge models ; in these models the analogous of long range order are the so-called Wilson loops ; the characteristic functions of the flux of a magnetic field $B = Cur \hat{A}$ (in the Abelian case) through a surface of size L x T. In this paper we analyse the gauge type model. We show that the following decay of the Wilson loop $\angle W \ge 4 e^{-(\mu T | n \hat{L}]}$ for μ sufficiently large implies :

i.e. the area decay. This implies a very strong restriction on the confinement potential between quark antiquark in the interpretation of Wilson [6]. We think that the situation described for the \gtrsim_2 , models on a lattice is generic, i.e. the same should occur for Random variables ranging in U_1 , SU_2 , etc...

1

11. GAUGE MODELS ON A LATTICE

We consider a lattice z^{d} , the random variables are indexed by links between the sites , usually they range in groups (f such as : Z_2 , U_1 , SU_2 , SU_3 in particle physics. These models are associated with a magnetic field $\vec{B} = curl A$. We consider for sake of simplicity a three dimensional model (this restriction is irrelevant).

Let $\Im^4(ijk)$, $\Im^2(ijk)$, $\Im^3(ijk)$ the random variables associated to the three links issued from the site (ijk). A usual gauge model is : $\forall \Im^4 \in G_7$

$$H = -J \{ \mathcal{Z} \ T_2 \ g^3(iHJK) \ g^2_{iJHIK} \ g^4(iJK) \ g^2(iJK) + \ T_2 \ g^2(iJHK) \ g^3(iJKH) \ g^3(iJK) \ g^3(iJK) \\+ \ T_2 \ g^3(iJKH) \ g^4(HJK) \ g^3(iJK) \ g^3(iJ$$

in fact more general models can be investigated. A basic fact of this model is the gauge invariance. Let $\mathcal{P}(\mathbf{ijk}) \in \mathbf{fj}$ an arbitrary function of \mathbf{G} . The Mamiltonian is invariant under the transformation

$$g_{ij}^{*}$$
 g_{ij}^{*} \mathcal{D}_{ij} $\mathcal{$

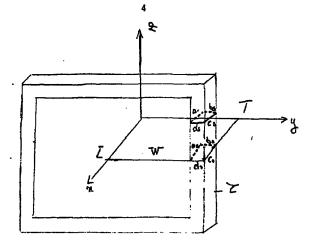
111. THE SIMON INEQUALITIES FOR A GAUGE MODEL

We first recall the Simon inequality derived in [2]. Let H be a ferromagnetic Hamiltonian, A B \triangleleft C be three sets so that for any $\triangleleft \notin A$, $\beta \notin B$, $\forall \notin C$ B separates \triangleleft and \forall Let $\nabla D = \prod \bigcup \alpha$ then : $\alpha \notin D$

 $\angle \Gamma_A \Gamma_C \supset \angle \sum_{D \subset B} \langle \Gamma_A \Gamma_D \rangle \angle \Gamma_D \Gamma_C \supset$ where Γ_c are the usual spin $\frac{1}{2}$ random variables, we need a slight generalization of these inequalities for gauge model which are derived according to [2].

- <u>Definition</u> : The elementary squares of the lattices are called plaquettes.
- <u>Definition</u>: A surface S is a numbered set of plaquettes (possibly repeated).
- <u>Definition</u> : The boudary operation ∂ is defined as usually in differential geometry.
- <u>Definition</u> : A tube **T** will be the set of transverse plaquettes orthogonal to a close curve((in fact we will consider square in a plane as curve).
- <u>Definition</u> : Let ↓ W } the set of surface whose boundary set is ∂ W. <u>Definition</u> : A tube T separates the surface W if it intersects every surface of { W } i.e. the cycle ∂W intersects C in the sense of algebraic geometry, see [7], p. 49.

Remark : In four dimensions C is a two dimensional surface.



Picture 1

The tube $\sum_{i=1}^{L}$ separates $W \cdot \int_{i=1}^{L} T_{s_{i}} \int_{C_{c}} \sum_{i=1}^{L} \sum_{j=1}^{L} \sum_{j=1}^{L} \sum_{i=1}^{L} \sum_{j=1}^{L} \sum_{i=1}^{L} \sum_{j=1}^{L} \sum_{j=1}^{L} \sum_{i=1}^{L} \sum_{j=1}^{L} \sum_{i=1}$

$$\partial^{S} = \frac{\partial^{E} n p}{\partial J_{p} n p}$$
 evaluated at all $J_{p} = 0$

T, S be surfaces TC S; R = S/T , we write $S = R \oplus T$

$$\partial^{s} fg = \sum_{RoT} \partial^{r} f \partial^{R} g$$

We derive the following result.

CPT-81/P-1274

2

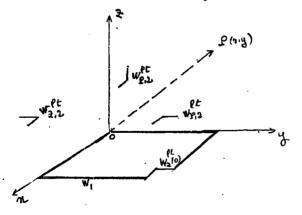
3.1. Theorem let
$$H = -\{\Sigma J_{p} \sigma_{i+1y_{k}}^{3} \sigma_{iy_{k}} \sigma_{iy_{k}}^{2} \sigma_{iy_{k}}^{2} \sigma_{iy_{k}}^{3} + J_{p} \sigma_{iy_{k}}^{3} \sigma_{iy_{k}}^{3} \sigma_$$

where the Jp's are positive. In the gauge described below :

Proof : similar to $\begin{bmatrix} 2 \end{bmatrix}$ we replace graphs by surfaces whose boundaries are δ W.

To prove the general result we need some comparison between several Wilson Loops.

Let W a Wilson loop in the plane 204 ; W = W, U W2



Picture 2

 $W_{2}^{\ell \downarrow}(\Delta)$ symmetric with respect to P of W $S_{2,2}^{\ell \downarrow}(\Delta)$ symmetric with respect to P(xy) of W $W_{2,2}^{\ell \downarrow}(\Delta)$ symmetric with respect to x o y of W

CPT-81/P.1274

In our case $W_{\geq}^{\ell t}$ will be composed of two bonds do (O (Picture 1), we shall omit the coordinates of the basis of the tubes $1, \overline{t}$ when it is not necessary.

By a gauge transformation we can replace by 1 the lateral links of the tube \mathcal{T} starting from W going to W (t) resp. W (t) resp. W (t) (one has to be cautious as it is impossible to replace by 1 <u>all</u> the lateral links of \mathcal{T} by a gauge transformation). We have then the following lemma.

3.2. Lemma

.With free and periodic boundary conditions the following inequalities hold

 $\langle \nabla W_1 \cup W_2 \rangle \gg \langle \nabla W_1 \cup W_2 (S) \rangle \gg \langle \nabla W_1 \cup W_{P,2} (S) \rangle$ $\geq \langle \nabla W_1 \cup W_2 (S) \rangle \gg \langle \nabla W_1 \cup W_{P,2} (S) \rangle$

Proof : We use as in [8] the Lebowitz inequalities [9] the trick consists in using duplicate variables , let P_{Δ} the plane parallel to W at $z = \frac{\Delta}{2}$ (if Δ is even we keep the variablea contained in the plane $P_{12}^{(5)}$).

$$\beta_{i} | \kappa = \underbrace{c_{i} | \kappa - c_{i} | \kappa}_{2} \quad \text{all } \kappa = \underbrace{c_{i} | \kappa + c_{i} | \kappa}_{2}$$

where ijk denotes the symmetric of ijk with respect to P_A , identified for simplicity with the x δ y plane.

It is easy to show that the Hamiltonian is ferromagnetic in the new variables

as Lebowitz inequalities ensure that

CPT-81/P.1274

lie deduce

$$\langle T_{W_1} T_{W_2} \rangle > \langle T_{W_1} . T_{W_2} (s) \rangle$$

the other inequalities of the lemma are derived by repeating the duplication first with respect to P(x,y) and then to $z \circ x$. The results follow.

We notice that this kind of results can be generalized to more general gauge models, the only required hypothesis being the validity of the first Lebowitz inequality.

We derive now the final result : let $W_{\Delta}^{L,T}$ the Wilson loop in $Z \downarrow T$ composed with the bonds $W_{2}^{L,T}(o)$ and $W_{2}^{L,T}(s)$ (resp. $W_{2}^{L,T}(o)$ and $W_{2}^{L,T}(s)$) (resp. $W_{2}^{L,T}(o)$, and $W_{2,12}^{L,T}(s)$) in the chosen gauge. Let

$$A_{LT}(p) = \beta T \sum_{l=1}^{2} \langle T_{W_{0}}^{l} T \rangle$$

this expression is generally independent of T: A (3)

3.3 Theorem

Suppose
$$A_{\ell}(\beta) \angle 1$$
; $\forall \ell < \overline{l}_i$, then we have :
 $< \nabla_{W}^{LT} > \leq e^{-2 \lfloor . T \rfloor}$

where

$$a = \frac{lum}{L} \frac{1}{\frac{2}{4}} \frac{2}{4} \log Ap(\beta)$$

Proof : First we use the inequality (3.1)

$$< \Gamma W^{LT} > \leq E \beta T < \Gamma W, \Gamma G G J > C \Gamma W^{f}(J) >$$

sezer

CP7-81/P.1274

Now we use the inequality (3.2)

$$\langle \nabla W^{LT} \rangle \leq A_{L}(\beta) \langle \nabla W, \nabla_{co} \nabla d_{0} \rangle$$

= $A_{L}(\beta) \langle \nabla W, L^{-1}, T \rangle$

Using this procedure repeatedly on the slice \vec{T} , we obtain

$$L G W^{LT} > \leq \prod_{l=1}^{L} AP(B) < G W^{L}, T-1 > I = 1$$

then we derive for the total area :

$$< \Gamma_{W^{LT}} \leq (T_{AP}(B))^{T}$$

 $\leq e^{-\lambda L.T}$

Remark. Condition & is expressed in terms of Wilson loops of length & and of width T-1, i.e. one requires that

.

:

CONCLUDING REMARKS

We recall the interpretation of Wilson loops L.T. [6]if $\Delta T_{V}^{1} T_{C}^{1}$, T is the time axis and L is the length separating two particles antiparticles or quark antiquark. f(L) is the energy needed to separate quarks, so if this energy is infinite the quarks are confined. Then in the Z_{2} case one can have very few confinement potentials (2

f(L) < log L or f(L) = > L

The situation is very close to the case of spin spin models considered in $\begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 4 \end{bmatrix}$ one expects that such a situation is generic, i.e. that the same is true for the U₁ SU₂ etc. situation. We intend to come back to this case in a further paper. Finally we observe that the Wilson Joops are related by duality in 3 dimension to the surface tension and the preceding result gives information on the surface tension.

ACKNOWLEDGMENTS :

The authors are grateful to S. Miracle-Sole for helpful discussions.

- REFERENCES -

[1] R.L. DOBRUSHIN- PECHERSKY Estergon Conference 1979. [2] B. SIMON -Correlation Inequalities and the Decay of Correlations in Ferromagnets, Commun.Math.Phys. 77, nº 2 (1980). [3] E. LIEB Commun.Math.Phys. 77. nº 2 (1980). [4] M. AIZENMAN, B. SIMON Local Ward Identities and the Decay of Correlations in Ferromagnets, Commun.Math.Phys. 77. nº 2 (1980). [s] A. MESSAGER A Study of Models with SO₂ Symmetry in Statistical Mechanics (in preparation). [6] K.C. WILSON Confinement of Quarks, Phys. Rev. D, vol. 10, nº 8 (1974). [7] P. GRIFFITHS. J. HARRIS Principles of Algebraic Geometry, p. 49 (Wiley Interscience Publication, New York). [8] A. MESSAGER, S. MIRACLE-SCLE J. Stat. Phys. 17, 245 (1977). [9] J. LEBOW1TZ Problems in Theoretical Physics, Lecture Notes in Physics, 80 (1978).

CPT-81/P.1274

