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I. INTRODUCTION 

In 1979, R.L. Dobrushin and Pechersky [l] announced the 

following result : for a wide class of models suppose that the 

fall-off of some observables decrease at a sufficiently high 

power of the distance, this implies the exponential decay* More 

recently in 1980, Simon [zj , Lieb [3] , and Aizenman Simon [4] 

showed similar results for correlation functions using correlation 

inequalities. It is clear that such results could be very useful 

because evidently it is easier to show a decrease at a sufficiently 

high power than an exponential decay 1 this seems to be the case 

for models in two dimensions exhibiting a SO,, continuous symmetry 

For similar reasons it is tempting to look at the situation 

of gauge models j in these models the analogous of Dong range order 

are the so-called Wilson loops : the characteristic functions of 

the flux of a magnetic, field 8 S Curï A (in the Abelian case) 

-through a surface of size t x T. In this paper we analyse the 

gauge type model. We show that the following decay of the Wilson 

loop £\tf>£ erpflnl for iju sufficiently large implies : 

<\|V> ^ e^^nM*-

i.e. the area decay. This implies a very strong restriction on 

the confinement potential between quark antiquark in the inter

pretation of Wilson [6J . We think that the situation described 

for the ? ^ models on a lattice is generic, i.e. the same should 

occur for Random variables ranging A.;. V-» SU» etc... 
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II. GAUGE HOTELS ON A LATTICE 

We consider a lattice Z , the random variables are 
indexed by links between the sites j usually they range in groups^* 
such as : Zj, U,, SU^, SUj in particle physics. These models are 
associated with a magnetic field B = curl.A. We consider for sake 
of simplicity a three dimensional model (this restriction is 
j-relevant). 

U s t % 'WO ' "ff'l*̂  ' tfl'b*-)' t n e random variables 
associated to the three links issued from the site I'S'tO .* 
A usual gauge model is ; |̂ V 1" ̂  /> 

in fact more general models can be investigated. A basic fact of 
this model is the f̂ augc -invariance. Let ^i.(i {K) t Q an arbi
trary function of Or . The Hamiltonian is invariant under the 
transformation 

ftp< 3 J 2 - i ^ o^d^c^ J I " f i ^ > ) 
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111. THE SIMON INEQUALITIES FOR A GAUGE MODEL 

We first recall the Sinon inequality derived in [2] . 

Let H be a ferromagnetic Haniltonian. A B (\ C be three sets 

so that for any tA.,éQ >/î>éG V-fcC B separates ©4 and 0 

Let fl~-D= TfCTk then *. 

oU£> 

where V*. are the usual spin ^ random variables, we need a 

slight generalisation of these inequalities for gauge model which 

are derived according to [2]. 

Definition : The elementary squares of the lattices are called 

plaquettes. 

Definition : A surface S is a; numbered set of plaquettes 

(possibly repeated). 

Definition : The boudary operation Ô is defined as usually 

in differential geometry. 

Definition : A tube T will be the set of transverse plaquettes 

orthogonal to a close curveUin fact we will consider 

square in a plane as curve). 

Definition : Let 1 W (the set of surface whose boundary set isOW. 

Definition : A tube T separates the surface W if it intersects 

every surface of j Wr i.e. the cycle"iw intersects C 

in the sense of algebraic geometryT see [7 [ , p- 49-

Remark : In four dimensions C. is a two dimensional surface. 
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l'icture 1 

The tube ^ ' separates K . ^ '45/>£t a r e t h e plaquettes 

transverse to the curve C > a generic piaquette wi]] be denoted 
D V a* bA c 4 ^a = ^s' T n e bonds linking the plaquette "IJ are 

called the lateral bonds of the tube Ï L T ; <L,T) are the coor

dinates of the basis of the tube in t o y . All the following defi

nitions are the same as in [2] but they are adapted to surfaces. 

Definition : fit an analytic function of Jy one for each plaquette 

7 ? s î> f , s p 
evaluated at all Jp s 0 

T» S be surfaces T C S* R = S/T , we write S * R » T 

*% - R«rr 
iff t\ 

We derive the following result. 
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3.1. Theorea U.t H = _ f S T|p C,+ |j,S"iy (Ti^HC C ^ 4 ... -

where the Jp's are positive. In- the gauge described below : 

Proof : similar to [2j we replace graphs by surfaces whose 
boundaries are 0 W. 

To prove the gene/al resuit we need sone comparison 
between several Wilson loops. 
Let V a Wilson loop in the plane %-0>\ j \ N - \Ni vJ W L 

.3-

Picture 1 

K i. (<0 symmetric with respect to P of H 
S£j,l*) symmetric with respect to P(xy) of W 
V S (A) symmetric with respect to x o y of W 
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In our case W« will be composed of two bonds wofo (Picture l)j 

we shall oait the coordinates of the' basis of the tubes 1JT when 

it is not necessary. 

By a gauge transformation we can replace by 1 the lateral 

links of the tube ̂  starting from W going to H (t) resp. 

W (t) resp. M (t) (one has to be cautious as it is impossible to 

replace by 1 all the lateral links of *£ by a gauge transformation). 

We have then the following lemma. 

3.2. 

With free and periodic boundary conditions the following 

inequalities hold 

Proof : We use as in [&J the Lebowits inequalities [9] the 

tr:ck consists in using duplicate variables ; let P^ the plane 

parallel to K at z *^. <if -A is even we keep the variables 

contained in the plane Pfj )* 

where ijk denotes the symmetric of ijk with respect to VA , 

identified for simplicity with the x ô y plane. 

It is easy to show that the Haniltonian is ferromagnetic in the 

new variables 

aw, ( ow- < w ^ = i r > o P S T,,„ P L J / T ( 0 

as Lebowitz inequalities ensure that 

< Pft ^ ~?/ ° 
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lie deduce 

the other inequalities of the lemma are derived by repeating the 

duplication first with respect to P(x,r) and then to z o x. 

The results follow. 

Ve notice that this kind of results can be generalized to more 

general gauge models, the only required hypothesis being the 

validity of the first Lebowitz inequality. 

We derive now the final result : let VÙ " the Wilson loop in t ̂ 

composed with the bonds lu£ T ' (D) and W ^ T C s 5 (resp. 

and to ^) ) ( r e sp. Vf, (DV
 a n d ^j Jft\ ) i n t n e chosen gauge. 

Let ' 

i l Agf/û* / I T ê ^ c r w f r > 
this expression is generally independent of 1 ; " L ( f̂ J 

3.3 Tteorem 

Suppose n £1/^)4.4 - tf £ < I j . then we have : 

where 

Proof : First we use the inequality (3*1) 
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Now we use the inequality (3*2) 

Using this procedure repeatedly on the slice T , we obtain 

L * 

i ^ l b é i t Aelp) ^ <SV-,t-' ^ 
then we derive for the total area : 

i • i » 

< M > ^ ( TtielfiS) 
y _X L .T 
=? e. 

Remark. Condition °\ is expressed in terns of Wilson loops of JencthC-

and of width T » 1 , i.e. one requires that 

£_ Q̂ r? ^ 4:^ f o r 9 • l a r S e enough. 
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CONCLUDING REMARKS 

We recall the interpretation of Wilson loops L»T. "63 
if //$y*tlT?f\r&^ $ T is the time axis and- .L is the length 
separating two particles antiparticles or quark antiquark. f(L) is 
the energy needed to separate quarks j so if this energy is infinite 
the quarks are confined. Then in the Z^case one can have very 
few confinement potentials 1*9. -

The situation is very close to the case of spin spin models considered 
in [V] j_3] [4l one expects that such a situation is generic, 
i.e. that the same is true for the U. SlL etc. situation. We intend to 
come back to this case in a further paper. Finally we observe that 
the Wilson loops are related by duality in 3 dimension to the surface 
tension and the preceding result gives information on the surface 
tension. 
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