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Abstract— This paper tackles the problem of multi-robot
odor distribution mapping through time series analysis. Con-
sidering the conditions of real world environments where the
chemical concentration distribution is patchy, intermittent and
time-variant, we propose a method to incorporate the temporal
and spatial aspect of sensory data into the problem of odor
distribution mapping. Despite the previous works in this field,
the method gives more importance to the recent acquired
measurements and also to the measurements which have been
spatially closer to the place of the sensors (at the time of their
acquisition). Real experiments were done in a realistic small-
scale controlled environment (designed for systematic olfactory
tests), considering up to five real robots and two different
navigation algorithms. Experiments show that the generated
odor maps are remarkably more accurate than the results of
the conventional spatial interpolation method. Studying various
spatio-temporal neighborhoods in the time series analysis con-
cluded that a proper definition of the neighborhood (in time and
space) provides accurate results in gas distribution mapping.

Keywords: Gas/odor distribution mapping, Robotics olfac-
tion, Time series analysis.

I. INTRODUCTION

Environmental monitoring, chemical leak detection, pollu-
tion monitoring, inspection of landfills, and search and rescue
operations are the main applications of gas distribution
mapping with mobile robots. Some of these tasks are done in
scenarios extremely dangerous for humans, being desirable
to use robots instead.

Understanding how the odor molecules disperse through
the environment under naturally turbulent flow is the key
to design and develop efficient robotic olfactory mapping
strategies. Odor patches released by an odor source are
mainly transported by the airflow, forming an odor plume.
As the plume travels away from the source, it becomes more
diluted due to molecular diffusion and turbulence that mixes
the odor molecules with clean air [1]. Molecular diffusion
is a slow process whose effect on the plume shape and the
odor concentration can be neglected. In ventilated indoor or
in outdoor environments, the dispersion of odor molecules
is dominated by flow turbulence. The odor molecules move
downwind due to mean flow velocity ~U while their net
motion is almost random, due to small scale turbulence
curls. As flow carries odor patches away from the source,
the average concentration within a patch decreases and
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simultaneously the average time between successive patches
increases, producing concentration intermittency. Several re-
searchers, including [2], reported instantaneous concentration
fluctuations with peaks up to three orders of magnitude above
the average value. Under these circumstances, a fast chemical
sensor located far enough downwind of the odor source
can only detect the odor peaks and will measure no odor
concentration in most of the time. Fig. 1 presents the nature
of an odor plume at various temporal scales.

Turbulent behavior of airflow, lack of smooth odor concen-
tration gradient, patchiness of odor depression, meandering
and time variant characteristics of odor plumes imply that
in real world conditions, a mobile sensor network able
to acquire data spread in space has significant perception
advantages in comparison to a single robot that can only
measure the concentration at its own place. Multiple robots
can spread out in the environment setting up a dynamic
spatial sensor network.

The field of mobile robotics olfaction includes a number
of main research directions including “odor distribution
mapping” and “olfactory search”. The “olfactory search”
consists of three subproblems; odor plume finding [3], odor
plume tracking [4], [5], and odor source declaration [6].
“Odor distribution mapping” is the problem of accurately
acquiring and presenting the olfactory sensory data in an en-
vironment [7]. In contrast to our previous studies [3], [8] that
were mainly focused on olfactory search and environment
exploration, this paper tackles the different problem of odor
distribution mapping, using time series analysis concepts.

To state the problem, we consider an application in which
a group of N individual robots perform a navigation task
in an unknown environment contaminated with a chemi-
cal volatile. The robots are equipped with the necessary
hardware to sense the contaminating chemical. Like in any
real-world application, the odor distribution is time variant.
The objective is to build a dynamic map of the chemical
concentration as well as to determine the region of highest
concentration.

This problem has been addressed by several researchers
in the past years using different approaches. Hayes et al.
[9] aim to localize an odor source through the odor map
of the environment. This map is generated averaging raw
sensor readings collected by a group of mobile robots per-
forming random walks. Farrell et al. [10] employed hidden
Markov methods to estimate the location of odor source
based on an odor concentration map. Marques et al. [11]
presented a mapping methodology which first estimates the
odor concentration by means of a neural network-based
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Fig. 1. Odor plume structure in various exposures. A. instantaneous structure (adapted from [2]), B. The spatial average of the odor plume, and C. The
time (and spatial) average of the odor plume. The black signal in A shows the instantaneous measurements of a fast gas sensor while moving cross-wind,
the red signal in B shows the output of a slow sensor (that acts like a low-pass filter) that moves cross-wind, the green signal in C shows the average of
the measurements during a long time period.

regression algorithm and then assimilates the sensed data
into an advection-diffusion model by means of a reduced
order Kalman filter. Lilienthal and his colleagues have done
the most extensive work in this area in the past ten years.
Their first works generated a grid map of the odor con-
centration using a Gaussian density function to model the
decreasing likelihood that a particular reading represents the
true concentration with respect to the distance from the point
of measurement [7]. Later, this method was improved by
“Kernel DM+V method”, which learns a statistical 2D gas
distribution from a sequence of localized gas sensor mea-
surements taking mean and variance of odor concentration
both into account. Estimating the variance, this algorithm
is able to suggest new measurement locations that may
improve the uncertainty of the estimated gas concentration
map. A major weakness of this method, and also most the the
ones previously mentioned, is assuming stationary conditions
for the environment and only using spatial dimensions to
weight the map estimates without taking into account the
time dimension. It is clear, from the previous description of
the characteristics of odor plumes, that this assumption is not
valid in real world conditions with turbulent flow. Therefore,
a common drawback of the previous methods is that they
do not consider the impact of time in the mapping. Asadi
et al. [12] provides an exception to the previous approaches
being somehow related to this one. They improved “Kernel
DM+V” method by adding a time-dependency term ϕ which
is defined as an exponential function of time, in order to
introduce a decreasing importance of measurements with
increasing time between measurement and prediction. How-
ever, their work considers two phases of the gas distribution
mapping independently (one in space domain the other in
time domain), first gas concentration grid maps are generated
in space domain (using “Kernel DM+V”), then the effect
of time is applied to the previously estimated maps. While
in our work, these two processes are considered related,
since gas distribution is a spatio-temporal phenomenon, and
the relating parameters were experimentally investigated and
tuned in order to obtain reliable odor maps. It should be
mentioned that there are a few studies in sensor networks
literature which do consider time but do not take mobility of
the sensors into account. The mobility of the robots implies
that measured olfactory data during time do not correspond
to constant positions in space.

Time series are sets of ordered observations on quantitative
characteristics of a phenomenon at equally spaced time

points (Brocklebank et al. [13]). Methods based on time
series analysis extract meaningful statistics and other char-
acteristics from sequenced data. Prediction and forecasting,
classification, regression analysis and signal estimation are
the main applications of these methods [14]. We propose
a method based on time series analysis to incorporate the
temporal and spatial aspect of data into the problem of
odor distribution mapping. Since the robots’ acquired olfac-
tory data is actually a time series, this paper tackles odor
distribution mapping problem through time series analysis
approach. The goal is to generate a map for the odor at
current time while the area is not fully explored and the
actual values of all the points are not available. The common
approach is using some kind of regression to estimate values
at unobserved positions based on the previous observed data.
This method utilizes a weighting function to generate the
odor map at time t using not only spatial data at t, but also
the history of measurements taken at previous time steps.
The justification here is that the odor value at a specific
point in the exploration area is correlated to the other points
in its spatio-temporal neighborhood. Proposing a weighing
function which gives more importance to the recent acquired
measurements and also to the measurements which have been
spatially closer to the place of the sensors (at the time of their
acquisition) is the main contribution of this paper.

II. PROPOSED METHOD

A solution to deal with intermittency and patchiness of
odor dispersal is to use the mean concentration values
gathered during the motion of the robots to estimate the local
concentration gradient [5]. Applying a low-pass filter on the
instantaneous sensor measurements at different places pro-
vides a smooth local gradient towards the plume center line
and also towards the source (see Fig. 1.B). This will address
the problem of dealing with fluctuations and patchiness of
odor dispersal. If another low-pass filter is applied to this
data during the time, a pseudo-Gaussian plume is obtained
whose gradient is towards the source (see Fig. 1.C). This
addresses the problem of dealing with plume meandering in
real world environments. Therefore, to obtain a correct long-
term exposure of the odor dispersion we need to apply two
correlated processes to the sensory measurements: (i) spatial
interpolation/extrapolation, and (ii) temporal diffusion. This
paper uses time series analysis to implement these two
processes. Since the robots are spread through space they can
cooperatively act as a spatial interpolation/extrapolation filter.



Fig. 2. Robots trajectory and generated odor map in one time snap. Five
robots have been moving in a 4 × 3 m2 arena while logging the odor
concentrations. The upper bar-matrix represents the result of the equation
(1) on this sensory data.

Fig. 3. The current weights calculated by equation 3 while trajectory of the
robots were shown in Fig. 2. The places which are close to the trajectory
of the robots gain higher weights in the interpolation process.

Moreover the data series gathered by the robots during the
time can be analytically overlapped to generate a consistent
odor map. The challenge is that the sensory data of different
time-snaps cannot be easily overlapped since the data is not
observed from fixed locations due to the robots’ mobility.

Robots sense the odor concentration with their sensors
while they are navigating in the environment. In each short
period of time (a time snap) the data gathered from different
and known scattered set of points is broad-casted to the
neighbors. A multivariate interpolation is needed to estimate
the values for the other points of the environment in each
time snap. These values are calculated with a weighted
average of the values available at the known points. The
inverse of the distance to each known point (the proximity
value) is used as the weight of effectiveness of the value of
the known point in the estimation.

Having N odor sensors and denoting concentration read-
ings as Ci(t), i = 1..N in known positions (x1, y1),
(x2, y2),..., (xN , yN ) at time t, the interpolated value
C(xj , yj , t) at a given point (xj , yj) is estimated using
“inverse distance” weights model [15], as follows:

C(xj , yj , t) =

N∑
i=1

wi(xj , yj , t)Ci(t)

N∑
i=1

wi(xj , yj , t)

(1)

where weights wi(xj , yj , t) are given by:

wi(xj , yj , t) =
1

[dt(i, j)]p
(2)

where dt(i, j) is the spatial distance between the locations
(xi, yi) and (xj , yj) at time t and p is a positive real number,
called the power parameter whose default value is 2.

The odor distribution map in this paper is represented by
a uniform grid matrix, so any Cartesian (x,y) denotes a grid
cell with center at (x,y). By calculating the equation (1) for
all grid cells, a map is generated that corresponds to the
current status of odor distribution in the environment at time
t. Fig. 2 shows an experimental example of this equation on
a real-world data set. In this example, during a five second
time window the robots have been moving in the space and
logged the odor concentration. Using equation (1) and (2),
the upper bar-matrix is generated that represents the odor
map of the environment in one time slice. In this example
the grid size was set to 0.25 m and p = 2. We denote W as
the summation of the weights:

W (xj , yj , t) =

N∑
i=1

wi(xj , yj , t) (3)

Therefore, W (xj , yj , t) is a factor that implies how close
point (x, y) is to the sensed points (xi, yi), i = 1..N in an
estimation. If a point is far from the sensed positions (robots)
the summation of its weights will be a small value. Fig. 3 is
an example that shows the normalized summation of weights
for estimation of all points of Fig. 2. This figure shows that
places closer to the robots’ trajectory gain higher weights in
the interpolation process. These weights will be later used
in the time series analysis process.

The process of estimating C(xj , yj , t) and W (xj , yj , t) is
done for all time snaps and the result is a series of odor
maps during the time. Now the question is how to merge
(or overlap) these maps to each other and find a consistent
odor distribution map. Fig. 4. (Left) presents a time series
generated by implementing this process on a real-world data
(more details about the experiments are given in section III).

Using the spatio-temporal estimate (1) we formalize the
problem of generating a comprehensive map of odor dis-
tribution as a prediction problem where the values of the
target time series are forecasted using not only previous
values of the series and summaries of its temporal dynamics,
but also with spatio-temporal indicators that summarize the
dynamics of the series within the neighborhood. We tackle
this problem by the assumption that odor concentration
depend not only on the recent past values at the same
location but also on nearby locations. The first question to
be addressed is how to describe the behavior of the time
series within the neighborhood of the target location. The
spatio-temporal neighborhood is the region which includes
all points within a space-time distance margin. We define a
function to calculate the distance between any two points in
the space-time dimension. Let i and j be two points in space-
time (i.e. two measurements or estimates Ci(t) , Cj(t)). We
define the spatio-temporal distance between i and j in a
similar way to [16]:

Disti,j,t = dt(i, j)× α+ Ti,j × (1− α) (4)



Fig. 4. Left: the generated time series of odor distribution maps and the current weights. Right: spatio-temporal neighborhoods with different sizes.

where Ti,j is the time distance between two data points ti and
tj , and α is weighing factor (0 < α < 1) between time and
geographical distances that are assumed to be normalized.
The time distance is simply the absolute difference between
the two time tags in some adequate time unit (e.g., seconds).

Based on the defined spatio-temporal distance between
two data points, the spatio-temporal neighborhood of a point
o is defined:

Nβ
o = {j ∈ D : Disto,j,t < β} (5)

where D is the available spatio-temporal data set. Given
the above definitions, the spatio-temporal neighborhood of
a point can be seen as a cone shape within space-time
dimensions. Different settings for α and β lead to cones
of different sizes as shown in Fig. 4. (Right). These cones
represent which past values may influence the future value
of the time series at the central location. Increasing the size
of the cone will increase neighborhood size.

Assuming that in each time snap C(x,y,t) is measured as
the interpolated odor concentration at time t, we define the
spatio-temporal predicted concentration at time t as:

S(xj , yj , t) =

t−1∑
k=1

∑
i∈Nj

C(xi, yi, k)×W (xi, yi, k)× U(i, j, k)

t−1∑
k=1

∑
i∈Nj

W (xi, yi, k)× U(i, j, k)

(6)
where Nj stands for the spatio-temporal neighborhood Nβ

j

(in 5), and we define U(i, j, k) weights as:

U(i, j, k) =
1

Disti,j,k
(7)

Equation (6) implies that the estimated predicted concentra-
tion at time t is dependent on two factors:

• the distance in time and space (Disti,j,k) of all the
previous acquisitions inside Nj ,

• the gain weights calculated in space based on the
trajectory of the robots in each time snap (W ) from
time = 1 to t− 1.

Therefore, for any given grid cell, those measured values
(C) which are closer to the trajectory of the robots have
higher impact on the estimated final value of the cell (S).
This proximity in time and space provided by equation (4)
leads to significant results in odor mapping.

In each time snap, the value of S for all grid cells is
calculated based on the sensor readings values (C) in all
previous time snaps (up to t − 1) inside the defined spatio-
temporal neighborhood. The grid map generated by the
values of S is an estimate of the future time snap of the odor
concentration (at t) and also include all the information of
the history of sensor readings. We call this map as the overall
odor distribution map in this paper. The actually measured
odor concentration (C) at time t can be used as the ground-
truth to evaluate the prediction result in S.

Parameters α and β for the spatio-temporal neighborhood
(equations 4 and 5) need to be set regarding the environmen-
tal elements. These parameters depend on the characteristics
of odor distribution in the environment. In the next section
we study the values of α and β in a set of real world
experiments.

III. EXPERIMENTS

The proposed approach for odor distribution mapping was
evaluated with a set of experiments in realistic conditions.

1) The robots: A set of LSE miniQ1 robots were devel-
oped at our laboratory in ISR-UC based on the 2WD miniQ2

1http://lse.isr.uc.pt/news/lseminiqrobot
2http://www.dfrobot.com



Fig. 5. The developed LSE MiniQ robots containing gas sensors, XBee
modules and LEDs.

platform. The LSE miniQ (shown in Fig. 5) communicates
with a host computer using XBee.3 The host computer runs
ROS4 programs (nodes) to control the robots. Each robot is
controlled by an individual ROS node. A single computer
can run several ROS nodes, i.e., a swarm of LSE miniQs.
Each robot contains an e2v MiCS-5524 gas sensor to detect
volatile organic compounds. Two LEDs (one blue and one
red) are installed on top of the robots in order to visually
track the robots by a camera mounted at the ceiling. The
SwisTrack5 software is used to track and to localize the
robots. This system provides all the requirements to easily
run and to monitor various experiments on a swarm of robots
inside the testbed.

2) Realistic small scale environment: A key asset to
carry out systematic olfactory experiments is to have an
environment under controlled fluid dynamic conditions. In
an uncontrolled environment, usually the performance of the
algorithms is not quantitatively measurable due to unknown
changes in the environmental conditions (e.g. flow speed).
For this reason, a small scale realistic environment specifi-
cally for olfactory robotics experiments has been developed
in our laboratory. The odor distribution mapping method
was tested in this realistic environment shown in Fig. 6.
This arena, with 3 × 4 m2 area by 0.5 meters height, has
controlled ventilation through a manifold that extracts air
from the testing environment through a honeycomb mesh
integrated into one of the walls. The opposite surface of
the environment contains a similar mesh that allows the
entrance of clean air flowing through the environment. The
wind speed was set to 0.7 ± 0.1m/s during the tests. The
ceiling of this testbed is covered by a sheet of transparent
Plexiglas to be visible from the outside. A controlled acetone
gas source using bubblers is pumped to arbitrary places of
the environment through a set of PolyVinyl Chloride (PVC)
tubes. The acetone release rate was about 0.01 to 0.03 g/s
during the tests.

3) The process of the experiments: Experiments were
done with two different algorithms for robots’ navigation:

• decentralized asynchronous particle swarm optimization
(DAPSO) (detailed in [17]),

• diagonal cross-wind line up sweep (detailed in [3]).
In different tests, four or five robots were released in one
corner of the testbed and the odor distribution maps were
estimated. Fig. 7 presents one of the real world experiment.

3http://www.digi.com/xbee/
4http://www.ros.org
5http://www.ros.org/wiki/swistrack

Fig. 6. The realistic testbed environment viewing from two different angles.
1,2,3,4: robots, 5: odor source (Acetone release bubbler), 6: transparent
Plexiglas ceiling, 7: ventilation system

The left column shows the ROS environment and the realist
test bed and the robots, while the right column presents the
corresponding time series process. We considered the follow-
ing two positions for the odor source release: (2.5, 1.2)m or
(1.7, 2)m. Each particular test was repeated two times (once
having the source at (2.5,1.2) and another time at (1.7,2)).

The odor concentration data logged during each navigation
algorithm was fed to the mapping method. We used a
five second window size to split the data and generate a
time series. The target variable was to predict the odor
concentration at time t + 5s. We assume the following linear
distance function in time dimension: Ti,j = 0.1 × |tj − ti|
while ti and tj are calculated in seconds. This means that in
equation (4) each 10 seconds implies 1 distance unit.

The proposed mapping method was compared to the
conventional spatial interpolation, having five different sets
of values for α and β. As we have seen the configuration of
neighborhoods are cones defined by Equation (4). By setting
various values to α and β, different neighborhood cones are
defined and we can study the way that the available past
data affects the forecast of the target variable. For instance,
α = 0.5 and β = 0.5 defines a cone with maximum radius
of 1m at the current time snap and height of 10 seconds,
i.e., a neighborhood that for the current time uses points that
are at most 1m away from the target location, and goes back
in time at most 10 seconds. We denote this neighborhood
region by [1m, 10s] in this paper. Using this terminology
and considering β = 0.5, we can describe the six set of
parameters for the mapping process as follows:

1) Pure spatial interpolation (no history considered),
2) α = 0.4, neighborhood: [1.25m, 8.33 sec],
3) α = 0.6, neighborhood: [0.83m, 12.5 sec],
4) α = 0.8, neighborhood: [0.625m, 25 sec],



Fig. 7. A real world experiment. The left column shows the ROS environment and the realist test bed and the robots, while the right column presents the
corresponding time series process. Each frame shows the trajectory of the robots, the interpolated current odor map (C), the current weights of interpolation,
the overall weights and the overall odor map. It can be seen that the overall odor maps does not fluctuate very much and has a peak always around the
odor source position at (2.5, 1.2)m. The difference between the overall weights to the current weights is more significant after a while.

Time = 005 s.

Time = 035 s.

Time = 060 s.

Time = 090 s.



Fig. 8. The generated odor maps during two different experiments. Left: running cross-wind line up navigation algorithm with four robots when the odor
was released at (2.5, 1.2)m. Right: running DAPSO navigation algorithm with five robots when the odor source was located at (1.7, 2)m.

5) α = 0.9, neighborhood: [0.55m, 50 sec],
6) α = 0.95, neighborhood: [0.52m, 250 sec].

Increasing α leads to expanding the neighborhood cone in
time, i.e., considering more historical data to generate the
map. The predictions of the different trials were evaluated
using the mean absolute error (MAE):

MAE =
1

N

N∑
i=1

∣∣S(xi, yi, t)− C(xi, yi, t)
∣∣ (8)

where S(xi, yi, t) is the predicted odor concentration value
(calculated by equation 6 based on the time series of time =
1 to t− 1) for a true later experimentally measured value of
C(xi, yi, t) at time t. This means that the C measured in
each time snap t is actually ground-truth for evaluating the
prediction estimation in S that is the result of processing the
previous time snaps (time = 1 to t− 1).

At the beginning of an experiment, enough data is not
available for prediction, but after a short period of time
(and gathering some odor concentration data) the map-
ping/forecasting process starts. Therefore, we have calculated
the MAE for each time step after 30 seconds from starting
an experiments.

4) Experimental Results and Discussion: Fig. 9 and
Fig. 10 summarize the results of all experiments when
the odor source was located at (1.7,2)m. These figures
present the mean absolute error (MAE) of all considered
variants of the experiments. These charts show that the
proposed time series approach performed always better
than conventional spatial interpolation mapping in these
experiments. Moreover, when there is a big change in the
gathered environmental data, the MAE increases suddenly,
however, in the proposed method the error decreases again
after a few time steps (while in the spatial interpolation the
error remains constant most of the times). When the odor
source was at (2.5,1.2), the results were similar, so due to
brevity we only show results of one setup.

To evaluate the effect of α on the results we calculate the
average of MAEs for all the time steps. Fig. 10 presents the
normalized mean absolute error for the whole experiments.
This figure shows that α = 0.9 provides more accurate
prediction, i.e., more accurate odor distribution maps are

Fig. 9. The mean absolute error calculated in each time step considering
(i) pure spatial interpolation, (ii) different values for α. (A) running cross-
wind line up navigation (see Fig. 8.(left)). (B) running DAPSO navigation
algorithm (see Fig. 8.(right)).

Fig. 10. The normalized overall averaged mean absolute error during
the experiments considering various values for α. When α = 0.9 (spatio-
temporal neighborhood: [0.55m, 50 sec]) the MAE is minimized.

generated in both navigational algorithms. In other words,
when the spatio-temporal neighborhood is [0.55m, 50 sec]
the time series approach provides the best results independent
from the navigational algorithm. The point is that the best
found neighborhoods are bounded in time and also in space.
This results approve that for an accurate odor distribution
map, time and space both must be properly incorporated
in the mapping method. It is clear that the spatio-temporal
neighborhood is dependent on the environmental conditions.



In addition to the mentioned numerical results, several
remarkable observations from the real world experiments can
be summarized as follows:

Peak at the location of odor source: The resultant odor
distribution maps generated by our method always have
peaks at the odor source, despite the pure spatial interpolation
method (the left-top frames in the figures 7 and 8). Hence this
method can be beneficial to odor source declaration problem.

Gradient towards the source: The gradient of odor
distribution maps is [in most of the times and in most of
the places] towards the odor source. This implies that this
mapping approach will lead to a promising solution for the
problem of “odor plume tracking”.

Presenting the dynamics of the odor source: Although
the generated maps are stable, still if there is any change in
the environment or in the odor source, the maps show the
changes and are dynamic.

Providing a validity metric for the maps: The overall
weight maps (the left-down frames in figures 7 and 8)
provide a useful metric to present the degree of certainty and
validity of the odor map in each grid cell. The places that the
robots have recently visited have higher weights while the
places where the robots have not visited [recently] have lower
values. These maps can be used in the navigation algorithm
of the robots in order to automatically send the robots to the
regions with less recent information.

IV. CONCLUSIONS

The odor mapping method proposed in this paper uses time
series analysis to incorporate the temporal and spatial aspect
of sensory data to generate overall consistent odor maps. By
defining a function for calculating spatio-temporal distance
between two points, the method gives more importance to the
recent acquired measurements and also to the measurements
which have been spatially closer to the place of the sensors
(at the time of acquisition). Real world experiments were
done in a realistic environment using up to five real robots
running DAPSO and “cross-wind line up” navigational algo-
rithms.

The maps generated by the proposed method were com-
pared to the results of the conventional spatial interpola-
tion method. The mean absolute errors in the generated
maps of the proposed method were remarkably lower than
the errors in the conventional spatial interpolation method.
Additionally, through experimental results we determined
the near-optimal values of the parameters of the spatio-
temporal neighborhood for the considered environment. The
best found neighborhoods were bounded in time and also
in space. These determined neighborhoods were equal for
both navigation algorithms. This implies that the proposed
time series approach and the spatio-temporal neighborhoods
are independent from the navigational algorithm. The maps
generated by this approach are stable which at the same
time dynamically present the changes in the odor distribu-
tion. Moreover, the peak in the generated maps are mostly
located at the real position of the odor source. This mapping
approach can be beneficial to address other problems of

olfactory robotics namely “odor source declaration” and
“odor plume tracking”.
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