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High-speed applications impose a hard real-time constraint on the solution of a model predictive control
(MPC) problem, which generally prevents the computation of the optimal control input. As a result, in
most MPC implementations guarantees on feasibility and stability are sacrificed in order to achieve a real-
time setting. In this paper we develop a real-time MPC approach for linear systems that provides these
guarantees for arbitrary time constraints, allowing one to trade off computation time vs. performance.
Stability is guaranteed by means of a constraint, enforcing that the resulting suboptimal MPC cost is
a Lyapunov function. The key is then to guarantee feasibility in real-time, which is achieved by the
proposed algorithm through a warm-starting technique in combination with robust MPC design. We
address both regulation and tracking of piecewise constant references. As a main contribution of this
paper, a new warm-start procedure together with a Lyapunov function for real-time tracking is presented.
In addition to providing strong theoretical guarantees, the proposed method can be implemented at high
sampling rates. Simulation examples demonstrate the effectiveness of the real-time scheme and show
that computation times in the millisecond range can be achieved.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Computation of the optimal model predictive control (MPC) in-
put is generally not practical when controlling high speed systems,
which impose a strict real-time constraint on the solution of an
MPC problem, i.e. a limit on the computation time that is available
to compute the control input. The goal is then to provide a sub-
optimal control action within the time constraint that still guar-
antees stability of the closed-loop system and achieves acceptable
performance. In this paper, we develop a real-time MPC scheme
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that guarantees stability and constraint satisfaction for all real-
time constraints and allows for fast online computation. The a-
priori stability guarantee allows one to trade the performance of
the suboptimal controller for lower online computation times.

In online MPC approaches, a constrained optimal control prob-
lem is solved at each time instant. Several methods have been pro-
posed in recent years, demonstrating that the computation times
can be pushed into a range where online optimization can be used
for the control of high-speed systems (Ferreau, Bock, & Diehl, 2008;
Wang & Boyd, 2010). Significant reduction of the computational
complexity can be achieved by exploiting the particular structure
and sparsity inherent in the MPC problem (Axehill & Hansson,
2008; Milman & Davison, 2008; Wang & Boyd, 2010; Wright, 1997).
In a real-time environment, all available methods for fast online
MPC resort to early termination, sacrificing guarantees on either
feasibility or stability of the applied control action.

The main contribution of this paper is to show how feasibility
and input-to-state stability can be guaranteed in a real-time MPC
approach for linear systems under additive disturbances using ro-
bust MPC design, a stability enforcing constraint and a warm-start
procedure, while allowing for low computation times. While Lya-
punov stability and robust MPC theory are well established tech-
niques, we demonstrate how to employ these tools to construct a
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practical high-speed and real-time MPC method with guarantees
for regulation, but most importantly also for tracking piecewise
constant references, a problem that is faced in many control ap-
plications.

The key is to ensure satisfaction of all constraints including the
stability constraint in real-time, which is achieved by the presented
warm-start procedure. While a feasible and stabilizing warm-start
is well-known in the regulation case, a warm-start for tracking
with these properties is not directly available. Employing the track-
ing approach presented in Limon, Alvarado, Alamo, and Camacho
(2008), which provides recursive feasibility with respect to state
and input constraints, we show that a warm-start strictly satisfy-
ing the stability constraint for the tracking MPC problem exists at
all iterations and can be generated with negligible computational
effort. A Lyapunov function is derived for the tracking approach,
which has not been shown in the literature, but is crucial for prov-
ing input-to-state stability in the real-time case. Once feasibility
is established, the stability constraint ensures that the improved
suboptimal solution obtained from the optimization can be safely
applied to the system and the performance is improved when more
computation time is available.

The proposed robust real-time MPC problem (for tracking)
results in a convex quadratically constrained quadratic program
(QCQP) with a structure that is different from a standard MPC
problem. Implementation details for exploiting this new structure
are discussed and computational results based on the efficient
implementation techniques introduced in Domahidi, Zgraggen,
Zeilinger, Morari, and Jones (2012) are presented, demonstrating
that high-speed computation times can be achieved even for real-
time tracking. For a 6-dimensional example system, five interior-
point iterations for the tracking problem were computed in less
than 300 jLs with an average performance deterioration of less than
5.6%.

The outline of the paper is as follows: Section 2 introduces the
notation and some preliminary results. In Section 3 the challenges
of real-time MPC are introduced. Section 4 presents the proposed
real-time robust MPC method for regulation and proves input-
to-state stability of the closed-loop system under the real-time
control law. The results are extended to the more general case of
tracking piecewise constant references in Section 5. In Section 6,
some implementation details for fast computation are discussed.
Finally, Section 7 illustrates the proposed techniques and their
advantages using numerical examples.

2. Notation & preliminaries

Let N denote the set of non-negative integers. A polyhedron is
the intersection of a finite number of halfspaces P = {x|Ax < b}
and a polytope is a bounded polyhedron. If A € R™*" then A; € R"
is the vector formed by the ith row of A. If b € R™ is a vector, then b;
is the ith element of b. Given two sets S;, S, C R", the Minkowski
sum is defined as S; @ S, £ {s1 + sz2|s1 € S1,52 € S} and the
Pontryagin difference as S; © S, 2 {s|s+ s, € S1,5, € S} =
{s|s ® S, C S;}. A weighted 2-norm with Q > 0 is denoted by
lxllg 2 |Q"/x]|,. Given a sequence u £ [uy, . .., uy—1], u; denotes
the jth element of u; the cardinality of the sequence is inferred
from the context. The dependence of a sequence on a parameter
is denoted by u(x), while u;(x) denotes its jth element. A function
y 1 Rs9 — Ry is of class X if it is continuous, strictly increasing
and y(0) = 0 (Vidyasagar, 1993). If in addition y(s) — oo as
s — oo, then it is of class K. A function 8 : R>g X R>g — Rxg
is of class XL if, for each fixed t > 0, B(-, t) is of class X, for
each fixed s > 0, (s, -) is non-increasing and 8(s,t) — 0 as
t — oo (Vidyasagar, 1993).

Consider the discrete-time uncertain linear system

x(k+ 1) = Ax(k) + Bu(k) + w(k), ke N (1)

that is subject to the following constraints:

x(k) e X CR", u(k) e UCR", )

where x(k) is the state, u(k) is the control input and w(k) € W C
R" is a bounded disturbance at the k’th sample time. X and U are
polytopic constraints on the states and inputs that each contain the
origin in the interior and W is a convex and compact disturbance
set that contains the origin. When it is convenient, we make use of
the lighter notation x* to denote the successor state of state x at
the next sampling time and x~ to denote the state at the previous
sampling time. The corresponding nominal system is given by

X(k + 1) = Ax(k) + Biu(k). (3)

The solution of the uncertain system controlled by the control law
u(k) = k(x(k)) at sampling time k for the initial state x(0) and for
a sequence of disturbances w is denoted as ¢, (k, x(0), w).

Assumption 2.1. The pair (A, B) is stabilizable.

The following standard definitions can be found in Blanchini
(1999).

Definition 2.2 ((Robust) Positively Invariant Set). A set S C R" is
a positively invariant (PI) set of system x(k + 1) = f(x(k)), if
fx(k)) € Sforallx(k) € S. AsetS C R"is a robust positively
invariant (RPI) set of system x(k+ 1) = f (x(k)) +w(k), if f (x(k)) +
w(k) € S forallx(k) € S, w(k) € W.

Definition 2.3 (Regional ISS, Jiang & Wang, 2001; Sontag & Wang,
1999). Given an RPI set I C R" containing the origin in its interior,
system (1) under the control law u(k) = «(x(k)) is Input-to-
State Stable (ISS) in I with respect to w € W, if there exist a
K L-function B and a K -function y such that for all initial states
x(0) € I and for all disturbance sequences w £ [wj]i=o With
wj € W@ (k, x(0), w)[| < B(IIx(0)], k) +y (IWjo,k—11]) Vk = O,
where [[Wyo_1)l| £ max{[[w;]].j € [0, k — 1]}.

Note that the condition for input-to-state stability reduces to that
for asymptotic stability if w = 0.

Theorem 2.4 (Limon et al., 2009; Rawlings & Mayne, 2009). Let I”
be an RPI set for system (1) under the control law u(k) = « (x(k)) and
S C T be a compact set, both including the origin as an interior point.
If there exist a function V : R" — R, suitable K ,-class functions
a1, ap, a3 and a X-class function y, such that

V) = a(Ix]) Vxerl (4a)
V) <a(llxl) VxeSs (4b)
V(Ax + Be () +w) =V () <—as(IxD+r2(lwl) Vxel',weWw,

(4c)

V (-) is called an ISS Lyapunov function in I" and the system x(k+1) =
Ax(k) + Bk (x(k)) + w(k) is ISS in I" with respect to w € ‘W.

3. Problem statement

Iterative algorithms generally resort to the early termination of
the optimization procedure in order to achieve a real-time guar-
antee. However, stopping a general optimization solver based on
an interior-point method early invalidates the theoretical guar-
antees on recursive feasibility, hence constraint satisfaction, and
stability of the classical MPC controller, which are based on op-
timality (Mayne, Rawlings, Rao, & Scokaert, 2000). This is true
even when the optimization is started from a feasible and stabi-
lizing suboptimal solution. Interior-point methods are, however,
required for solving many practical MPC problems, e.g. when using
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Fig. 1. Percentage of initial states resulting in feasible closed-loop trajectories
satisfying the stability condition (out of 100 randomly sampled states) (o) and
maximum cost difference in nominal cost between two time steps normalized by
stage cost in closed-loop for one initial state (OJ).

quadratic constraints. The loss of the system theoretic properties is
due to the following aspects.

An interior-point method does generally not ensure a decrease
in the cost to minimize at each iteration of the optimization.
This can be easily understood considering a barrier interior-point
method, where the cost is augmented by a barrier function. While
at each interior-point iteration the augmented cost is decreased,
the original cost, which is the MPC cost in our case, may increase;
an effect that is particularly prominent during the first few
iterations. This is critical for a real-time approach, where often only
a small number of iterations can be executed. Even when starting
the optimization from a feasible and stabilizing control sequence, a
cost decrease can hence not be guaranteed and the MPC cost cannot
be employed as a Lyapunov function, as is done in a standard MPC
approach.

Feasibility is lost in practice due to model inaccuracies or
disturbances rendering an initialization based on the previous time
instant infeasible. Since it can generally not be guaranteed that
feasibility is recovered by the optimization procedure in a fixed
amount of time when starting from an infeasible solution, a feasible
initialization is of critical importance in a real-time method.

These issues are demonstrated for a system of six oscillating
masses. More details about the example problem are given in
Section 7, where the spring constant is here chosen to 1 and there
is no damping. A standard nominal MPC problem is solved using
a cold-start interior-point method with a given fixed number of
iterations and applied in closed-loop to the nominal system in (3).
Fig. 1illustrates the percentage of initial states out of 100 randomly
chosen samples that result in closed-loop trajectories not only
satisfying all state and input constraints, but also the stability
condition, i.e. a decrease in the MPC cost from one time step to
the next. Using 5 online iterations, about 40% of the trajectories
are infeasible and/or not guaranteed to be stable and even after 9
interior-point iterations a safe solution cannot be provided for all
initial states. In addition, Fig. 1 shows the maximum difference of
the MPC cost between two time steps normalized by the stage cost
for one particular initial state, i.e. a positive value represents a cost
increase and violation of the stability condition. While performing
one interior-point iteration still results in a safe solution with
guaranteed stability, two or three iterations lead to a loss of this
property. Performing more iterations can hence even deteriorate
the system theoretic properties, demonstrating the need for an
MPC method with real-time feasibility and stability guarantees.

In this work, feasibility with respect to the state and input
constraints despite disturbances is recovered by using a tube
based robust MPC scheme (Mayne, Seron, & Rakovic, 2005). The
main challenge is to guarantee real-time stability of the closed-
loop system, which is achieved by introducing what we term a
Lyapunov constraint, explicitly enforcing that the real-time MPC

cost is an ISS Lyapunov function. A warm-start procedure is
introduced in order to ensure feasibility of the Lyapunov constraint
in real-time.

In order to achieve tracking of a desired sequence of steady-
states rather than regulation around the origin or to a particular
steady state, it is standard practice to modify the MPC problem
by means of a change of variables (see e.g. Maciejowski (2000),
Rawlings and Mayne (2009)). This problem formulation does,
however, not provide recursive feasibility. In this paper, a real-
time MPC method for tracking is developed based on the tracking
approach in Limon et al. (2008), and a new warm-start is
proposed providing feasibility and stability in real-time for all time
constraints.

4. Real-time robust MPC with guarantees

Consider the discrete-time uncertain system in (1). The real-
time MPC procedure proposed in this paper is based on both a mod-
ified MPC problem formulation as well as a real-time algorithm
to guarantee robust invariance and input-to-state stability of the
closed loop system. In the following, a control law is called t-real
time (7-RT) if it is computed in T seconds.

We propose the following real-time robust MPC problem in
order to realize a T-RT control law.

Problem. Pf,(x) (Real-time robust MPC problem)

N—-1

V@) £ ) I ) + Vr () (52)
i=0
min  Vy(X, @) 4+ Vy(x — Xo) (5b)
X,u
s.t. )_<i+]:A)_(i+Bﬂi, i:O,...,N—l, (SC)
(i, u)eXxU, i=0,...,N—1, (5d)
?_(N € .')_Cf, (56)
vN ()_(7 ﬁ) + vf(xnom - )_(0) = Hprew (Sf)
X E XD Zvy. (5g)

A quadratic stage cost and terminal penalty function are chosen,
ie l(x,u) 2 |Ix[13 + llullz. Vi(x) £ l|x||2, where Q, R and P are
positive definite matrices, and X is an invariant terminal target
set. The constants Xnom and [Ty, are defined in Definition 4.2
below.

Problem P}, (x) differs from a standard nominal MPC problem in
two main aspects: the use of the tube based robust MPC problem
setup in Mayne et al. (2005) to provide recursive feasibility
of the state and input constraints and a Lyapunov constraint
enforcing input-to-state stability at all iterations following the
ideas in Scokaert, Mayne, and Rawlings (1999).

Robust MPC design: the robust MPC formulation reduces the
control to the tube centers X, which are steered to the origin by
choosing a sequence of control inputs u and the first tube center
Xo. Constraints (5d) and (5g) provide robustness with respect to the
additive disturbance w in (1), where Z+, is an RPI set for system
(1) under the control law u(k) = Kx(k) with w(k) € W Vk € N.
X = X6 Zy, U = U6 KZy are tightened constraints on the
states and inputs ensuring constraint satisfaction of the uncertain
system in (1) despite the disturbance w. Note that the first tube
center Xo is an optimization variable satisfying (5g) that may
differ from the current state measurement x. Compared to Mayne
et al. (2005) we propose to augment the cost in (5b) by the term
Vr(x — Xo), introducing a tradeoff between the amount of control
action used for counteracting the disturbance and the effort for
controlling the tube centers to the origin. The main advantage of
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the augmented cost is that it provides an ISS Lyapunov function
for the closed-loop system under the real-time robust MPC control
law (see Theorem 4.7), whereas the approach in Mayne et al.
(2005) does not. Note that the availability of an ISS Lyapunov
function is also beneficial in an optimal setup by characterizing the
closed-loop behavior as a function of the disturbance realization.
Apart from the additional cost term, we directly employ the robust
formulation and refer to Mayne et al. (2005) for more details and
an illustrative example of the approach.

Lyapunov constraint: the constraint (5f) ensures that the
suboptimal cost achieved after T seconds satisfies the Lyapunov
decrease condition, which is essential in order for the MPC cost
to provide an ISS Lyapunov function when using an interior-
point method. It explicitly enforces that the MPC cost (5b) at x(k)
decreases with respect to the cost at the last sample time if the
system satisfies the nominal dynamics and thereby recovers the
stability properties of the optimal robust MPC approach in a real-
time setting. The Lyapunov decrease constraint (5f) represents a
convex quadratic constraint on the optimization variables.

Instead of solving problem PP}, (x) to optimality, the optimization
is executed at x(k) for no more than 7 seconds before returning the
variables u” (x(k)) and X" (x(k)). The robust 7-RT control law is then
given in a receding horizon control fashion by

K" (x(k)) = ug (x(k)) + K(x(k) — X5 (x(k))). (6)

Definition 4.1 (7-RT Cost). We define V' (x) = Vy(X* (x), u* (x)) +
Vi (x — Xj(x)) to be the cost of the suboptimal solution obtained
after solving Problem PP}, (x) for = seconds.

Definition 4.2 (Lyapunov Constraint). For each x(k), we take
Xnom = Ax(k — 1) + Bx" (x(k — 1))

to be the state that would have been obtained in the absence of
disturbances and

1
Myrey =V (x(k — 1)) — 5e||x(k - Dlg (7)

where x(k — 1) denotes the state at the previous, i.e. the (k — 1)’th,
sample time and € € (0, 1) is a user-specified constant. Note that
€ < 1is required for the use of an interior point method, since
the applied warm-start introduced in Algorithm 1 satisfies (7) with
€ = 1(seeLemma4.6).€¢ > Oisrequired in order to prove stability,
as will be shown in Theorem 4.7.

Problem PP§(x) implicitly defines the set of feasible control
sequences Uy (Xg) 2 {a1 | IX s.t. (5¢) — (5f) hold}, feasible initial
tube centers Xo(x) 2 {Xo | (5g)} and feasible initial states Xy 2
{x | 3% € Xok) s.t. Uy(Xo) # ¥}. We make the following
standard assumption.

Assumption 4.3. V;(-) is a Lyapunov function in X; and X is a PI
set for system (3) under the control law «;(x) = Kx, given by the
following conditions:

Al: X; € X, (A+BK)X; € Xy, KX €U
A2: Vi((A+ BK)x) — Vi (x) < —I(x, Kx) Vx € Xy .

Assumption 4.4. It is assumed that Z+ C D_Cf.

Note that in the considered case of a linear system model, a
terminal control law and terminal cost satisfying Assumption 4.3
are given by the infinite horizon LQR control law and cost. The
terminal set can then be chosen as a level set of the terminal cost of
suitable size. Assumption 4.4 can be relaxed, if V;(-) is a Lyapunov
function in Z+, i.e. if condition A2 in Assumption 4.3 is satisfied for
allx € Z.

Remark 4.5. The real-time robust MPC problem Pf (x(k)), the
real-time solution x (x(k)), u® (x(k)), the corresponding 7-RT cost
VT (x(k)) as well as the resulting robust t-RT control law &7 (x(k))
in (6) are not only a function of the current state, but also of the
previous state, the real-time solution u* (x(k — 1)) and X (x(k —
1)) computed at the previous time step as well as the available
computation time 7, which are, however, given constants at the
time of computation. We omit this dependence for the ease of
notation, but denote the dependence on the solution from the
previous time step and the computation time by the index .

Any feasible solution to Problem Pf (x) will satisfy the Lyapunov
decrease condition, the main property to ensure that the 7-RT
cost is an ISS Lyapunov function, and can be used to construct a
control law with real-time stability guarantees. While input-to-
state stability therefore follows from the addition of the Lyapunov
constraint, the challenge has moved to ensuring that a feasible
solution can be found in a pre-specified amount of time. As
discussed before, satisfaction of constraints in real-time can only
be guaranteed if an initial feasible solution is available. The key is
hence to provide a warm-start achieving some epsilon progress
without adding significant computational effort. While in the
regulation case a standard warm-start employing the real-time
solution at the previous time step directly offers this property
(Lemma 4.6), this represents the main challenge in the extension
to reference tracking in Section 5.

We propose the real-time Algorithm 1, which implements a
warm-start procedure to initialize a primal feasible optimization
routine that is terminated after an arbitrary computation time
7. Since Problem PP} (x) contains quadratic constraints, interior-
points methods provide suitable and efficient optimizers for Step 4,
e.g. a primal barrier method or a primal-dual method with primal
feasible iterates (Boyd & Vandenberghe, 2004; Nocedal & Wright,
2006).

Algorithm 1 Real-time procedure

Input: u’(x7), xj(x~) at the previous state x~, current state x,

parameter €f > 0

Output: 7-RT control sequence u” (x), X; (x)

1: Warm-start: xj* = X (x7),

" = [a](x7), ..., dy_ (x7), kR ()]

u=u",x =x"

: while clock < 7 do

update u, X, in primal feasible optimization step

: end while

. if [|x]lp < € and Vy (X, @) + Vi (x — Xp) > V;(x) then
X=0u=0

end if

Dt (x) =, X (%) = Xo

Algorithm 1 differs from a standard approach in the following
main aspect.

Upper bound on Lyapunov function: steps 6-8 ensure that the
real-time cost can be upper bounded by a K,-class function of
the state in a set that includes the origin in its interior. The use of
V(x) as alocal upper bound is a standard technique in the stability
analysis of MPC, see e.g. Magni, Raimondo, and Scattolini (2006),
but is not automatically satisfied by the employed Lyapunov
function. The real-time solution obtained from Problem Py (x) is
only guaranteed to provide a lower cost compared to the previous
sampling time, but may result in a bigger cost than the auxiliary
control law even for an initial state close to the origin. A local upper
bound is therefore enforced, here we also choose Vj(x), since it
represents the cost for using X = 0, 4 = 0. The bound holds in
the set & = {x | ||x][p < ¢}, which can be taken as any subset
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of Z+ containing X, = 0, 4 = 0 as a feasible point. The upper
bound together with the Lyapunov decrease constraint (5f) provide
that the MPC cost is an ISS Lyapunov function (see Theorem 4.7).
While Steps 6-8 are therefore mainly motivated from theoretical
considerations, they are beneficial in a real-time environment,
since the auxiliary control law is used if it provides a lower cost
than the solution obtained in the real-time optimization.

The following lemma shows that the warm-start proposed in
Algorithm 1 is in fact feasible for P§, (x) with respect to all state and
input constraints as well as the Lyapunov decrease constraint. The
proof can be found in the appendix.

Lemma 4.6 (Feasibility of the Warm-Start). Let u*(x(k — 1)),
xj(x(k — 1)) be a feasible control sequence and tube center for
Problem Py (x(k — 1)). The warm-start solution provided by
Algorithm 1 is feasible for Py (x(k)), where x(k) € Ax(k — 1) +
Bi*(x(k — 1)) @ W, i.e. X§° € Xo(x(k)), @ € Uy (XE®).

Starting from a feasible warm-start solution, feasibility is
maintained by using a primal feasible optimization method in
Algorithm 1, providing recursive feasibility of the closed-loop sys-
tem under the proposed t-RT control law. Due to the Lyapunov
constraint (5f), feasibility of IPf, (x) implies input-to-state stability,
which allows us to state the main result of this section and prove
ISS of the closed-loop system under the robust t-RT control law
k" (x) in (6). Note that in the considered case stability cannot be
achieved by the approach described in Lazar, Roset, Heemels, Ni-
jmeijer, and van den Bosch (2008), where a constraint on the Lya-
punov decrease is only introduced in the first step, since the solu-
tions are not recursively feasible.

Theorem 4.7 (Stability Under k™ (x)). Consider Problem IPy, (x) fulfill-
ing Assumption 4.3. The closed-loop system (1) under the T-RT control
law in (6) that is obtained from Algorithm 1 is ISS w.r.t. w(k) € W
with region of attraction Xy forall T > 0.

Proof. We will show that V7 (x) provides an ISS Lyapunov function.
Assumption 4.3 provides that || - |2 < || - ||2, since [|x]|3 < [[x]|2 —
l|lx™||3. Using convexity of || - ||é, it can be shown that there exists a
Koo-class function () such that V= (x) > ||x(x) ||2Q +lx—x5(x) ||2Q
> %||x||2Q > a(|lx|) Vx € Xy. If [|IX|][p < ¢ and Steps 6-8 are not
applied: V* (x) < Vy(x) by the condition in Step 6. If Steps 6-8 are
applied: V*(x) = Vn(0,0) 4+ Vf(x) = Vy(x). Hence there exists
a Koo-class function @(-) such that V'(x) < Vy(x) < a(llx|)
Vxs.t. ||x][p < €. Note that in order to show ISS using Theorem 2.4,
itis sufficient to ensure the upper bound on the Lyapunov function
in a neighborhood of the origin, since this bound can be extended
to an upper bound on any compact set, see e.g. Proposition 2.18
in Rawlings and Mayne (2009). The last property to show is
the Lyapunov decrease. Let u(x), X(x) denote the solution that is
returned by the optimization in Step 5. Since it is feasible for
PP, (x) by feasibility of the warm-start shown in Lemma 4.6 and the
use of a primal feasible optimization routine, it follows from the
Lyapunov constraint (5f) that Vy (X(x), w(x)) + V; (Xnom — Xo (X)) —
VT(x") < —3€lx™ || Recalling that x = Ax™ + Bx™ (x) + w, this
implies

Vn(X(x), U(x)) + Vi (x — Xo(x)) (8a)
1 ; N
SV - EEIIX‘II?Z + [Vr(x — X0(%)) — Vy (Xnom — X0(x))| (8D)

Vi) = BAIxTID + ylwl)  Vx € Xy, (8¢c)

where the last step follows from continuity of Vi(x), y(-) is
a suitable KX -class function and B(-) a Kso-class function. If
Steps 6-8 are not applied, then X" (x) = X(x) and u” (x) = u(x). If
Steps 6-8 are applied, then X" (x) = 0 and u” (x) = 0 and it follows

that V' (x) = Vy(x) < Vn(X(X), a(x)) + Vy(x — Xo(x)) since the
conditions in Step 6 are fulfilled. In all cases we therefore obtain

VI(x) < VnXX), 0(x) + Vi (x — Xo(x)),

which together with (8) shows that V*(x) is an ISS Lyapunov
function. ®

Using the robustified problem formulation in P, (x) with the Lya-
punov constraint (5f) together with Algorithm 1, stability of the un-
certain system (1) can therefore be guaranteed in a real-time MPC
implementation, where the optimization solving IPf, (x) is stopped
after the available time 7.

Remark 4.8. t can be arbitrarily time-varying, which makes the
presented approach suitable for operation in a wide range of
standard multi-tasking real-time computational platforms.

Remark 4.9. Once a feasible warm-start satisfying the Lyapunov
decrease condition is available, a stabilizing strategy could also
be constructed without the Lyapunov constraint by resorting to
the warm-start whenever the suboptimal solution violates the
stability condition. However, if the real-time constraint only allows
for a few iterations, the solution is likely to violate the stability
condition and the system would run open-loop by applying the
warm-start. The Lyapunov constraint, which can be added at no
significant computational cost, allows the system to always benefit
from performance improvements provided by the optimization.

Remark 4.10. Due to the feasibility guarantee provided by the ro-
bust MPC framework, the feasible set X is an invariant set for the
closed-loop system under the control law that would be obtained
from directly applying Algorithm 1 to Problem Pj, (x) without the
Lyapunov constraint (5f).

Remark 4.11. The use of Xj(x) = 0, " (x) = 0 results in the con-
trol law «* (x) = Kx. By using the auxiliary control law in a neigh-
borhood & of the origin (if the cost cannot be upper bounded by
Vr(x)), Algorithm 1 is similar to a dual mode strategy. The differ-
ence is that the control strategy does not switch to this control law
once the state is inside this set, since & is not robustly invariant.
While the existence of a K-class function of the state that up-
per bounds the suboptimal cost in a neighborhood of the origin
is often assumed in suboptimal or real-time methods (e.g. Lazar
and Heemels (2009), Scokaert et al. (1999)), Algorithm 1 provides
a constructive procedure to satisfy this condition.

Remark 4.12. The re-optimization of the first tube center at every
time step introduces additional feedback to the disturbance. A
feasible and stable controller could, however, also be obtained by
keeping the initial tube center fixed and only optimizing over the
sequence of tube centers from x; to xy.

Remark 4.13. The crucial property of recursive feasibility is guar-
anteed by all available robust MPC methods (see e.g. Bemporad and
Morari (1999), Limon et al. (2009), Mayne et al. (2000), Rawlings
and Mayne (2009)), any of which could be used to derive a real-
time MPC controller for the uncertain system (1). In order to allow
for fast computation we use the tube based robust MPC approach
for linear systems described in Mayne et al. (2005) in this work.

After establishing feasibility and stability for the t-RT control law
in the regulation case, the following section extends the presented
results to the more general case of robust tracking of piecewise
constant reference signals.
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5. Real-time robust MPC for tracking of piecewise constant
references

Consider the task of tracking a piecewise constant sequence of
steady-states by steering the system state x to the target steady-
state x,. A target input u, is associated with every target steady-
state x, fulfilling the steady-state condition x, = Ax, + Bu,. The
state and input constraints limit the set of feasible steady-states to
X, u) € ©®,where ® 2 {(x,u;) | x € X,u, € U, (A —Dx, +
Bu, = 0}.

Remark 5.1. If tracking of an output signal is required, one can
translate the output reference y, into a state and input reference

(x;, u,) using the following relation: [AEI g] ["r] = [;)r] where

y = Cx + Du is the output model. Note that a non-trivial solution
exists due to Assumption 2.1.

While recursive feasibility of the state and input constraints in
the regulation case can be recovered by means of robust MPC
design, this is not sufficient when using a standard tracking scheme
reformulating the MPC problem by means of a change of variables,
since reference changes may render the MPC problem infeasible.
In addition, no warm-start is available satisfying the state and
input constraints after a reference change due to the fact that the
terminal constraint depends on the current reference.

In order to extend the real-time method to reference tracking,
we propose a problem formulation based on the tracking approach
presented in Limon et al. (2008), which was included in a tube
based robust MPC framework in Limon, Alvarado, Alamo, Fiacchini,
and Camacho (2010). An artificial reference is introduced into the
optimization problem, which may deviate from the real reference if
the latter is not a feasible target from the current state. The artificial
steady-state and the control sequence are computed by solving
a single optimization problem, which provides not only recursive
feasibility with respect to state and input constraints but will also
allow us to permit a hard real-time guarantee and is the reason for
using this somewhat unusual tracking formulation.

A Lyapunov constraint for tracking is again introduced in order
to ensure the Lyapunov decrease property for arbitrary real-time
constraints. The main challenge in the tracking case is now given by
the generation of a warm-start satisfying the Lyapunov constraint,
required to guarantee real-time feasibility and stability. In contrast
to the regulation case discussed in Section 4, such a warm-start
is not readily available for the tracking problem, which will be
discussed in more detail in the following. We show that a warm-
start strictly satisfying the Lyapunov constraint for the tracking
MPC problem based on Limon et al. (2008) exists at all iterations
and how it can be generated by a modified warm-start procedure.

We first introduce the real-time robust MPC problem for
reference tracking Py " (x) and then present the modified real-time
procedure.

Problem. ]P’,f,’" (x) (Real-time robust MPC for reference tracking)

N—-1
ViR, %, ) &) IR — R, Ty — 1)
i=0
+ Vf()_cN - )_{S) + Vo()_(s — Xr, ﬂs - ur) (93)

_min Vi (X, @, X, ils) + Vp(x — Xo) (9b)
%%, s

s.t. (5¢), (5d), (5g), (9¢)

&, ils) € O, (9d)

XN € X (X, 1), (9e)

Vy (X, 1, X, tls) + Vi (X — Xo) < M, (9f)

where (x;, Uus) denotes the artificial steady-state, (x,, u,) is the
desired steady-state and V,(X; — x,, s — u;) = ||Xs — xr||%x +
lus — u; ||%u is the tracking offset cost, where T, and T, are positive
definite matrices. 56? (Xs, Us) is an invariant terminal target set for

tracking. The constants x,, and IT;]., are defined in Definition 5.2

below. For simplicity of notation, the dependence of IP’,Z,‘" (x) and
VY (X, u, X;, ils) on the desired reference (x,, u;) is omitted.

In addition to the robust MPC problem setup and the Lyapunov
constraint for tracking, the real-time robust MPC problem for
reference tracking IP’,T\,’"(X) introduces the following components
resulting from the tracking approach (Limon et al., 2008):

e an artificial steady state and input (x;, us), where the cost pe-
nalizes the deviation of the states and inputs from the artificial
instead of the real reference. A penalty accounting for the offset
between the artificial and the real reference is added to the cost
and ensures convergence to the desired steady-state (x;, u;);

e a terminal weight on the deviation between the terminal state
and artificial reference as well as an extended terminal con-
straint on the terminal state and the artificial reference provide
stability of the optimal MPC controller.

More details on the tracking formulation, the terminal set for track-
ing, and an illustrative example can be found in Limon et al. (2008),
for the combination with the robust formulation see Limon et al.
(2010) or also Zeilinger (2011). The role of the artificial reference
can also be observed in the tracking example in Section 7.2.

The optimization solving Problem Py (x(k)) at time step k is
again executed for T seconds, returning the variables u™" (x(k)),
X" (x(k)), X2 (x(k)), Ul (x(k)). VO (x(k)) denotes the corre-
sponding 7-RT cost for tracking. The robust t-RT control law for
tracking is then given in a receding horizon control fashion by:

kT (x(k)) = a5 (x(k)) + K (x(k) — x5 (x(K))). (10)

Definition 5.2 (Lyapunov Constraint for Tracking). For each x(k), we
again take

x" = Ax(k — 1) + B (x(k — 1)),

nom

1
e, = V5T (x(k— 1)) — EkaI(X(k - 1) —xlg. (11)
where ¢, € (0, 1) is a positive constant that is chosen at each sam-
pling time such that the warm-start solution is strictly feasible, see
Algorithm 2. The existence of such a constant at all times will be
shown in Theorem 5.7.

Problem IP’,T\,’" (x) implicitly defines the set of feasible control se-
quences ‘llx (X0, X5, Ug) £ {u | I xs.t. (5¢),(5d), (9e), (9f) hold},

and feasible initial states X§ 2 {x | 3%, € Xo(x), X, Us) €
O s.t. UY (Ro, Xs, Us) # O}.

Assumption 5.3. For a given (%, ii;) € O, Vi (x — X;) is a Lyapunov
function in D_C}r()?s, il;) satisfying Assumption 4.3 and D_C}r()?s, i)
is a PI set for the nominal system (3) under the local control law
for tracking Kf” (x) = K(x — X;) + ug, which can be stated as the
following condition.

A3: X (X, ls) € X, Ax + Bif' (X) € Xf (%, i) ,
Kf'(x) e UVx € D_C}T()'(S, i).

It is further assumed that Z C D_CJ‘I Xs, 1ls) V(Xs, il5) € O.

The tracking formulation in IP’;,’" (x) is designed to regulate the
system state to the artificial steady-state (xs, ts), which is simul-
taneously steered to the target steady-state. Recursive feasibility
with respect to the state and input constraints is guaranteed since
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the shifted sequence together with the artificial steady-state from
the last sampling time satisfies the constraints (without the Lya-
punov constraint) at the current time instant (Limon et al., 2008).
Convergence of this scheme to (x,, u,) using the optimal control
law was shown in Limon et al. (2008), Limon et al. (2010) using
the fact that x; ## x, cannot be the optimal solution. However, the
shifted sequence and artificial steady-state from the last sampling
time do not provide a feasible warm-start for the Lyapunov con-
straint for some strictly positive €. This is due to the fact that sim-
ply shifting the control sequence and applying the local control law
will cause the system to converge to the artificial instead of the real
reference and the cost decrease will tend to zero although the sys-
tem has not converged to the desired reference yet.

We therefore propose a new warm-start procedure for tracking
in Algorithm 2, which combined with Algorithm 1 enables real-
time tracking.

Algorithm 2 Warm-start procedure for tracking

Input: ™ (x), %" (x7), X7 (x7), 4" (x~) at the previous state

x~,Ax = A+ BK, parameter €; > 0

Output: Feasible warm-start xj)*, u"*, x{"*, u}"*

2 XS > s
DR =X (x0)
if [X)° — 27 (x7)|p > € then
s = [ (x0), Ly 0), KGR (0O))]
. else Generate u** from control law Kf” (%),
e s =l (x7) + KAL (x5 — X1 (x 7))
fori=0,...,N—1
5. end if
6: Compute o, by solving (12)
7: )_C;NS = Olmin)_csr’tr(x_) + (1 - amin)xr s
ﬁ;NS = aminﬂsr’rr(xi) + (1 — omin) Uy
8: Choose € such that warm-start strictly satisfies (9f)

AW N =

Algorithm 2 introduces the following modifications:

Warm-start input sequence (Steps 2-5): a warm-start sequence
is generated either from the shifted initial solution together with
an auxiliary control law (Step 3), which was shown to be feasible
in Limon et al. (2008), Limon et al. (2010), or, if the initial
tube center is close to the artificial steady-state, by applying the
auxiliary control law (Step 4), which provides the optimal input
sequence for a given artificial steady-state. The only requirement
on the choice of ¢ is that & 2 {x | [|x — X|lp < &} < X}r(is, i)
for all (x,, iI;) € O, in order to ensure feasibility of the auxiliary
control law. This choice of the warm-start input sequence allows
for proving the existence of a feasible warm-start in Theorem 5.7.

Computation of o (Step 6): this step is crucial for providing a
warm-start that satisfies the Lyapunov constraint. The artificial
steady-state is moved as far as possible towards the real reference
by means of the following minimization over o:

Umin = min o (12)
«el0,1]

s.t. ;(X,VS € D_C;r(;(s, us),
VI\tJr XY, U™, X, i) + Vf (Xflrom - )_(BVS) = H;ev

1
for e, = 5(1 —a)?,

Ry = XD (x(k — 1)) + (1 — a)x,,
iy = ol (x(k — 1)) + (1 — &)y,

If the optimal solution is omin < 1, the artificial steady-state (x;"*,
ug"*) is improved by moving it from the previous one, i.e. (x; (x(k —
1)), ui (x(k — 1))), towards (x,, u;) while guaranteeing satisfac-
tion of the terminal constraint as well as the Lyapunov decrease

constraint. Note that « = 1 is always a feasible solution to
this optimization problem. While the warm-start tube center is
not too close to the artificial steady-state, it can be shown that
the choice of o, = 1, i.e. keeping the artificial steady-state at
(X¢ (x(k—1)), uf (x(k— 1))) and applying the standard warm-start,
still provides a sufficient decrease in the cost function to satisfy the
Lyapunov constraint, and €, > 0 can therefore be chosen in Step 8.
If the first tube center is close to X; (x(k — 1)), the minimization in
Step 6 will provide ain, < 1, ensuring feasibility of the warm-start
solution for ¢, = %(1 — o)?. The existence of a warm-start provid-
ing a strict cost decrease is therefore guaranteed in both cases and
€x > 0 will be chosen at each time step in Step 8. This is proven in
detail in Theorem 5.7, where also the particular choice of ¢, in the
minimization is clarified.

Remark 5.4. The minimization of « in Step 6 of Algorithm 2
solving (12) can be rewritten in the following form by using p =
1—oa:

max{p € [0,1]| p* + a1p + by <0, p*> + azp + b, < 0}.

The solution is obtained by computing the maximum separately
for each constraint, where for each of them an analytical solution
can be derived, and then taking the smaller of the two values.

Remark 5.5. The real-time procedure for tracking is obtained by
replacing the warm-start in Step 1 of Algorithm 1 by Algorithm 2.
In addition, Steps 6-8 of Algorithm 1 are modified as follows in
order to ensure that the real-time cost can be upper bounded by a
Koo-class function of ||x — x,|:

if |x—x,|lp < €f and V' (X, @, Xs, is)+V (x(k)—X0) >V (x(k) —X;)
then

a=[u,...
end if

Url, Xo = Xp, Xs = Xp, Us = Uy

where ¢ is now such that & £ {x | [[x — x;[p < €} C X, ® Z.

Feasibility of the warm-start provided by Algorithm 2 for
Problem IP’,f,‘" (x) is proven in detail in the following in Theorem 5.7.
This is key to showing convergence of the closed-loop system
under the proposed 7-RT control law for tracking to an RPI set
around x, in Theorem 5.8. We first state a lemma that is required
for this proof by showing that if the initial tube center xJ* is closer
to the artificial steady-state X7'" (x(k— 1)) than some fraction of the
distance between the artificial and the real steady-state x,, then we
can move the artificial steady-state towards x,, while providing a
decrease in the cost using the auxiliary control law. The proofs can
be found in the appendix.

Lemma 5.6. Consider Problem Py (x). Let (x.,u,) be a reference

steady-state, (X, ii;) a steady-state and Xy € D_CJE’ (Xs, 1) a first tube
center. Let u, X be the input and state sequence generated by applying
the auxiliary control law Kf” (x) = s + K(x — X,) starting from Xo.
Denote Xs 5 = 8% + (1 — 8)x,, 55 = SUs + (1 — 8)u,. There exists
a constant § € (0, 1) such that if ||Xo — Xsllp < (1 — &)X — X;||p,
then

trog & 5 o~ trog = =~ = 2% 2
Vy X, 0, X5, s 5) < Vy (X, @, X, ) — (1= 8)*[IX — x5

Theorem 5.7 (Feasibility Warm-Start for Tracking). Let u®" (x(k —
1)), Xg’tr(x(k — 1), X-"(x(k — 1)), al'"(x(k — 1)) be a feasible
control sequence, tube center and artificial steady-state for Prob-
lem Py ™ (x(k — 1)). The warm-start solution provided by Algorithm 2
is feasible for Py (x(k)), where x(k) € Ax(k — 1) + Bic®" (x(k —
1)) @ W, ie X € Xox(k), &, u¥) € 6,0 € ULEY,
X5, ud®).

We can now show that by using the modified warm-start in
Algorithm 2 the results for regulation presented in Section 4 extend
to the tracking case and feasibility again implies stability.
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Theorem 5.8 (Convergence Under «%'(x)). Consider Problem
P,f,‘"(x) fulfilling Assumption 5.3, where (x;, u;) € © is a feasible
steady-state. The closed-loop system (1) under the t-RT control law
in (10) that is obtained from Algorithms 1 and 2 converges to an RPI
setaroundx, Vx € x,fg i.e. thesystemx(k+1) —x, = A(x(k) —x;) +
B(k ™" (x(k)) — uy) + w(k) is ISS in X} with respect to w (k) € 'W.

Proof. The proof follows similar arguments as the proof of
Theorem 4.7 for showing that V¥ (x) is an ISS Lyapunov function.
By convexity of || - ||é, there exists a K,-class function o (-) such
that V= (x) > J[x—XI )13 +5¢r X0 —x:[13 = jerllx—x[13 =
a(|lx—x|) Vx € X, wherec; < lissuchthatT, > c;Q.Steps6-8
(see Remark 5.5) ensure the upper bound and the existence of
a Ko-class function @(-) such that V*"(x) < Vp(x — x,) <
a(]lx — x.||) Vx € &. Following the same argument as in the proof
of Theorem 4.7 and replacing € with €y, = mingen €, > 0, it
can be shown that there exists a K,-class function 8(-) and a
X -class function y (-) such that V""" (x(k)) — V=" (x(k — 1)) <
—B(||x(k — 1) — x;1|) + y (|lw]]), concluding the proof. =

Remark 5.9. Note that Theorems 5.7 and 5.8 prove the existence
of a (ISS) Lyapunov function for the tracking approach proposed
in Limon et al. (2008) also for the optimal case, which, according to
the authors’ knowledge, has not been presented in the literature
before. The availability of a Lyapunov function can be crucial
for providing stability guarantees for extensions of the tracking
approach, such as the presented real-time case.

Remark 5.10. At the first optimization step after a reference
change, Problem Py, (x) without the Lyapunov constraint (9f) has
to be considered in the real-time procedure since the reference
change may increase the cost value compared to the previous

solution and a cost decrease cannot be enforced.

Remark 5.11. The use of an artificial reference and corresponding
target set enlarges the domain of attraction compared to a standard
MPC approach for reference tracking and X5 2 Xy (Limon et al,,
2008).

Remark 5.12. V,(-, -) is chosen as a quadratic function and does
not represent an exact penalty function (Luenberger, 1984) since
this work focuses on a suboptimal method. Local optimality is
hence not guaranteed, i.e. the optimal artificial reference resulting
from IP’,f,’"(x) might differ from the desired reference, although
Xy = X, u;y = u, is a feasible solution and could be enforced. This
optimality loss can be reduced by choosing large weight matrices
T, and T,. However, all results on real-time MPC for reference
tracking presented in this paper directly extend to the use of
1 — /oo-norms in the offset cost, representing an exact penalty
function for sufficiently large weights T, and T, (Ferramosca,
Limon, Alvarado, Alamo, & Camacho, 2009; Luenberger, 1984).
Note that the choice of V, (-, -) only affects the transient behavior
and not the optimal steady-state.

Having set the theoretical background, the remaining sections
outline some implementation details of the proposed real-time
MPC approach and show that computation times in the range of
milliseconds can be achieved even for the more complex tracking
case.

6. Implementation

In this section we discuss implementation aspects of the real-
time robust MPC problem for tracking Py (x). For a given value
(x) can be written as a convex QCQP

x € XY problem Py
with affine equality constraints and affine and quadratic inequality

constraints, where the optimization variables are given by all states
and inputs over the horizon as well as the artificial steady-state.

A feasible start interior-point method is applied in this work,
which provides feasibility at all times and can efficiently solve
QCQPs of the given form (Nocedal & Wright, 2006). The main
computational effort in an interior-point method is the Newton
step computation, see e.g. Nocedal and Wright (2006) for more
details. However, the results on structure exploitation in MPC
methods presented in the literature, e.g. Wang and Boyd (2010),
Wright (1997), cannot be directly applied in the considered case,
due to the fact that the Lyapunov constraint and the cost of the
tracking formulation introduce coupling across the horizon and
thereby significantly modify the structure of the resulting Newton
system. There are two main options to exploit the new structure in
the real-time problem:

A: by reordering, the matrix in the Newton step can be brought
into an arrow structure with a dense band of size 2n + m +
1. Variable elimination reducing the system to the so-called
augmented form, see e.g. Domahidi et al. (2012), Nocedal and
Wright (2006), can then be applied, where the key is not to
eliminate the Lagrange multiplier associated with the Lyapunov
constraint, which would result in a dense Newton system. More
details on this re-ordering and how to exploit this structure can
be found in Zeilinger (2011).

B: by adding additional variables, the bandedness of the matrix in
the Newton step can be recovered:

tr

”Xnom

S0 s s 12 4 NE 2
—Xoll5 + I1%o _XS,OHQ + l1Xs,0 — Xr”Tx = Yo,

N TR 2
lluo — usollz + llts,0 — ur”'ru < do,

1% — Xy < v lGi— il <8, i=1,....N—1
Xy — Xsnllp —Jv <0,

J0=17;e\,, Ji=li—vi—46, i=1...,N—1,
)?s,iwtl = Rs,i» ﬂs,i+1 = ﬂs,i» i= 0,...,N—1.

The Newton step can then be computed using the existing re-
sults, e.g. Rao, Wright, and Rawling (1998), Wang and Boyd
(2010), or the recent results in Domahidi et al. (2012) that are
tailored to MPC with quadratic constraints. The number of opti-
mization variables can be reduced by employing a parametriza-
tion of the steady-state x, = M6, us = M,6, see Limon et al.
(2008) for more details.

7. Numerical examples

The presented techniques are demonstrated in the following
by numerical examples. The real-time problems have been
implemented using the FORCES code generator (Domahidi, 2012;
Domahidi et al., 2012). A primal-dual interior-point method is
applied implementing Mehrotra’s predictor-corrector method,
which is adapted to ensure primal feasibility (Nocedal & Wright,
2006). Concerning the warm-start of the slack and dual variables,
we take the slacks of the primal warm-start solution and the dual
variables such that an initially chosen complementarity measure is
satisfied. Note that any other feasible warm-start method, e.g. the
improved dual warm-start proposed in Shahzad and Goulart
(2011), could also be applied. The offline set computations were
carried out using the YALMIP toolbox (Lofberg, 2004) and the
solver SDPT3 (Toh, Todd, & Tiitiincii, 1999).

A system of oscillating masses (Wang & Boyd, 2010) is chosen
to examine the proposed real-time methods for regulation and
tracking. The masses are interconnected by springs and dampers
and are connected to walls on the side. The actuators exert tension
between two neighboring masses. A system of three masses
is illustrated in Fig. 2, which can similarly be extended to an
increasing number of masses using the same structure.
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Fig. 2. Three masses example.

—+&— 3-masses (N=10) |
—©— 6-masses (N=10)
—%— 9-masses (N=10)| |

closed-loop performance deterioration [%]

1 2 3 4 5 6 7 8 9
#interior point iterations

Fig. 3. Average closed-loop performance deterioration for the real-time MPC
approach over 100 randomly sampled initial values.

7.1. Regulation

We first consider the real-time regulation problem described
in Section 4. The masses have value 1 kg, the spring constant is
k = 0.9 N/m and the damping constant d = 0.1 N s/m. The
control inputs are constrained to lie in &1 N and the displacement
of the masses is constrained in +=4 m. The system is discretized
with sampling time t; = 0.5 s. An additive random disturbance
with ||lw(k)||, < 0.03 is acting on the system.

The performance of the real-time procedure and the effect
of the number of performed interior-point iterations per solve
are investigated using systems of three, six and nine masses.
The average closed-loop performance deterioration when applying
the suboptimal controller & (x;) with respect to the closed-loop
cost using the optimal MPC control law « (x) is given by AJq =
20 (10xi.& (i) —1(xi.k (%)) )

D200 Uik (X))
trajectory for a long time period and taking the mean over 100
randomly sampled initial states. The results in Fig. 3 show that a
three step solution still shows considerably low performance loss
of about 3% or less in all three example problems. Putting these
results into perspective, using a cold-start approach (all primal
variables initialized to zero and the dual variables to 1) for the same
initial states, there exist initial states that lead to infeasibilities in
the closed-loop simulation for up to 10 interior-point iterations
and for up to 4 iterations more than 50% of all initial states result
in infeasibilities.

The computation time for Algorithms 1 and 2 is mainly given by
the optimization, i.e. the time to perform the interior-point itera-
tions. A detailed computational comparison of the implemented
real-time method for regulation against other solvers applied to
MPC problems without any guarantees for a range of problem sizes
can be found in Domahidi et al. (2012), showing that fast sampling
rates can be achieved for the real-time formulation. For example,
for the six masses system with a horizon N 10, three itera-
tions can be computed in less than 0.4 ms (Desktop PC, Intel i7,
3.2 GHz, 12 GB RAM, running Ubuntu 10.04 using a single core).
This demonstrates the advantage of the proposed real-time MPC
approach, where for instance even three iterations provide not only
high performance but also guaranteed feasibility and stability.

, which is estimated by simulating the

7.2. Tracking

In the following, we use the same example problems of three,
six and nine masses to demonstrate the real-time procedure for

15
1
0.5
0
-0.5

position mass 2

25

steady-state pos. mass 2

input 2

warm-start

warm-start + 2 it.

warm-start + 5 it.

o
% 30k optimal cold-start + 2it. - == reference |
2
8 201 7
0
25 50 75 100
time step

Fig. 4. Comparison of the closed-loop performance using the warm-start solution,
the suboptimal solution after 2 and 5 online iterations (with warm-start), the
suboptimal solution after 2 iterations using cold-start from the origin, and the
optimal solution.

tracking introduced in Section 5. First, consider the system of three
masses from Fig. 2, with k = 0.3 Nm and d = 0.1 N s/m. The
inputs are again constrained to lie in &1 N and the displacement
of the masses in +4 m. The horizon length is chosen as N = 10
and a worst-case disturbance with ||w(k)||; = 0.02 is acting
on the system. At the beginning of the simulation, the tracking
reference is a displacement of the second mass of —0.9 m (and no
displacement of the first and third mass). At time step k = 50,
a step change to +0.9 m in the reference position of the second
mass is applied. Fig. 4 shows the simulated closed-loop trajectories
of the position of the second mass, the corresponding steady-
state, the second input and the value of the Lyapunov function
for different starting strategies and number of optimization steps.
We compare the closed-loop performance of applying the warm-
start solution without any optimization and with two and five
interior-point steps to a cold-start solution with two iterations
and the optimal solution. The simulation illustrates the role of
the artificial reference. While directly using the new reference of
40.9 m starting from position —0.9 m would be infeasible, the
artificial reference is chosen to ensure recursive feasibility and
then converges to the desired reference.

The results demonstrate that only applying the warm-start
solution already provides convergence to the desired reference,
even after the step change. This is enabled by the proposed
warm-start procedure in Algorithm 2, which includes a warm-
start of the artificial steady-state, moving it towards the desired
target. This is particularly evident after the step change, where the
minimization of @ moves the artificial reference to —0.1 m. The
Lyapunov function decreases monotonically proving asymptotic
convergence of all masses to the desired position. Note that the
increase in the Lyapunov function at k = 50 is caused by the
reference change, which is enabled by resetting the Lyapunov
constraint. Since the warm-start is given by the shifted input
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Table 1

Computation times for one interior-point iteration solving the tracking problem
;" for a horizon length of N = 10 on a MacBook Pro with Intel Core i7 CPU at
2.6 GHz.

#masses n m Min (jus) Mean (s) Max (ps)
3 6 2 53.95 55.90 58.52
6 12 5 189.75 195.77 231.83
9 18 8 479.63 498.74 544.68

sequence, a delay of N — 1 steps occurs after the artificial reference
is moved at k = 50, until the control inputs react to the reference
change. This behavior could be improved by small adaptations in
the warm-start procedure, but the effect is automatically mitigated
by performing a few optimization steps. This can be seen in Fig. 4,
where the control input for only two optimization steps already
reacts at k = 50.

Comparing the performance of the warm-start without opti-
mization with two and five online iterations, we can see that the
performance gradually improves with the number of performed it-
erations. The closed-loop performance deterioration with respect
to the optimal closed-loop trajectory applying the warm-start
without optimization is 16.60%, for two iterations it is 15.58% and
for five iterations 5.61%. This shows that only five online optimiza-
tion steps already provide very good performance. The cold-start
method with two online iterations, in contrast, results in an input
constraint violation at the time step k = 1 and is not able to track
the desired reference. Note that the cost function cannot be com-
pared in this case, since the resulting solutions are infeasible for
the constraints of the optimization problem.

We investigate the computation times for the tracking method
by recording the time to perform one iteration of the online
optimization. The minimum, average and maximum times are
given in Table 1, demonstrating that the real-time tracking method
can be implemented for sampling times below milliseconds. For
example, for the three masses system, five iterations can be
computed in less than 300 ps.

8. Conclusions

A new approach for real-time robust MPC was presented that
provides guarantees on feasibility and input-to-state stability for
arbitrary real-time constraints. The proposed technique is based
on robust MPC design, a stability enforcing constraint and a warm-
start procedure. As a key result, a new warm-start method and
(ISS) Lyapunov function for real-time tracking are introduced.
Since stability is guaranteed by design, the performance can be
traded off against the computation time. The method enables real-
time regulation and tracking for linear systems of any practical
dimension, and the presented numerical examples demonstrate
that computation times in the range of milliseconds can be
achieved.
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Appendix A. Proof of Lemma 4.6

Let Ax, = x~ — xj(x7). Feasibility of the warm-start for
Problem P} (x) without the Lyapunov constraint (5f) was shown
in Mayne et al. (2005). In order to prove satisfaction of (5f) we make
use of the following fact: Xpom = X7 (x7) + (A+ BK) (x™ —x{(x7)).
From Assumption 4.3, X{* = x](x7) and standard arguments in

MPC, we get
Vy (X", 0"%) — Vy (X" (x7), 0" (x7)) + Vr (Xnom — X5°) — Vi (Axy)
< —IX§GIG + Vr((A+ BK)(Axy)) — Vr(Axy)

IA

o _ 1.
—IX &I — 1A% 1l < —5 X Ilg
2

where the last step follows from Assumptions 4.3 and 4.4 and
convexity of | - |3 providing J|lx +ylI3 < IIxI3 + llyll3, proving
the result.

Appendix B. Proof of Lemma 5.6

We denote Ak £ A+ BK, A)?o = )N(() — )23, A)?S =3 )?5 — )N(r,
Allg & iy — U, p = 1 — 4. By Assumption 5.3, V;(x) is a Lyapunov
function and P > Q + KTRK, therefore [|Aix|lq < [|Akx]lp < [Ix]|p

and [|Akx|grpe < IlALX]p < ||x]lp. From the use of the auxiliary
control law, ie. i = KALAXy + G5, [|A%llp < pllAxs|lp and
recalling that X, = AX; + Bii; we obtain

I — X 5, Uy — Us 5) — 1(X; — X, Uj — Us)
= A AR + pAXs|1g + KA AZo + p Al |3
— 1Al A%o13 — [IKAL ARl
< 2p||Ax A% llg | A%sllq + P21 A% 113
+ 2|} AZo | krre | AllslIr + 01| Alis |17
< 307 A% |1} + 202 (| A%slp || Alls I + p* | AilI

and similarly Vi(Ry — %s5) — V& — X) < 302 A%|3.
From convexity of V,(-, -) we obtain V,(Xss — X, Uss — Uy) <
8V, (AXs, Allg) and therefore

V(X @, X5, s,5) — VI (X, @, X, Uls) 4+ p°]| AX]|3
< p[BIN + Dpl|AX|I5 + 2N p|| A |lp || Al &
+ Nl Al||g + pll AX|[; — Vo(AXs, All)] <0,
which is satisfied for Voo AT

0<p< = = — —
P = GNTa) A% 12+ 2N [ A% I | A g N1 Al |
proving the result.

> and hence § < 1
R

Appendix C. Proof of Theorem 5.7

For ease of notation we omit the dependence of the real-time

. _ —T.t —T.t - - —
solution on x~ and denote AX;"™" 2 xy" — XD, AXDT £ X0 —x,,

Auy™ 2 up™ — ul" and Ay £ A + BK. Feasibility for P (x(k))
without the Lyapunov constraint (9f) follows from feasibility of
the shifted sequence (Limon et al., 2008, 2010) or feasibility of
the auxiliary control law. Since the minimization of « in Step 6
enforces the terminal constraint, satisfaction of the state and input
constraints is maintained and since ® is a convex set, feasibility of
(%r, uy) and (X27, ul™) imply (X%, u) € © for & € [0, 1]. The
important condition to prove is hence feasibility of the Lyapunov
constraint (9f). The following facts are used: x| = X§* +Ax (x~ —
X", 31X+ ylI3 < lIxI3 + llyll3. which is provided by convexity
of || - |3, and by Assumption 5.3: Vy (xf,, — Xg*) — Vy (x™ — X7 =
A (x~ = X5 IE = IIx~ — x5 13 < —lIx™ — x5 [13. If otmin. < 1
in Step 6, the Lyapunov constraint is satisfied by construction with
€ = %(1 — min)? > 0. It therefore has to be shown that either
omin < 1, or there exists an €, > 0 such that (9f) is satisfied even
if amin = 1 is the optimal solution in Step 6. We prove the result
considering the following two cases:
Case 1: ||X° — XD7 ||p > €.

In this case it will be shown that ¢, > 0 is satisfied by the
warm-start even if o, = 1. u"* is given by the shifted sequence

Please cite this article in press as:
http://dx.doi.org/10.1016/j.automatica.2013.11.019

Zeilinger, M. N, etal

On real-time

robust model predictive control. Automatica (2014),




M.N. Zeilinger et al. / Automatica 1 (11IR) INE-NER 11

in Step 2 of Algorithm 2, XS is the corresponding state sequence
TTand X = x0T, @ = uph. et

starting from Xj°® = X’
AV = Vtr(st ws ws WS) + Vf(xnom _XO ) Vl\tlr(Xr'tr,l.lf tr,

XDU unmy —Ve(x~ —xr ") This warm-start yields the cost decrease

AV < —||Axg "Iy — N Aug IR — Ik =z 13 (C.1a)
< —allxy” — x5 — Ix” = x5 113 (C.1b)

1 - 2
< _Efk”X _Xr”Qa (C1¢)

where ¢, 2 min((|Ax;" (13 + IIAUT 1B /1x5" = x1I3, 1). By
the definition of xj*, [Ix|lp = ||P2x||2 and by using the steady-
state condition we obtain: €, < [A(AXy") + B(AuyT)|p <
IAllp | AXG (|2 + [IBllp | Atig™ ||, Therefore either
IBllpll Alig™ |2 < 0.5€

= AllpllAXG " [l2 > 0.5, = | A%y 1§ > &

or [Bllpll Ay [l> > 0.5¢s = | Alig"|I; > €2,

Wadc > 1is such that cQ > I,

R = I As aresult € < |Axy "||2 + [|Aug" (12 and the Lya-
punov constraint is satlsfled with €, > mln(62/||xf "X ||é, 1) >
mln(es/maxxex [|x — xr||Q, 1) >0.

where €

Case 2: ||IX° — X2 |lp < €.

In this case x§* € x"(xr T, ulm), ie. the initial tube center
is close to the art1ﬁc1al steady state and the optimal sequence
to regulate the tube centers to the steady-state (7', u?*") is by
applying the auxiliary control law Kf” (x) = ul'" + K(x — x-™M).
By the optimality of the auxiliary control law providing a lower
cost than the shifted sequence, (C.1a) again holds. We will show
in the following that if there exists a constant § € (0, 1) according
to Lemma 5.6, such that ||X§* — x5 |lp > (1 — 8)||AXZ"||p, then
€ > 0evenif amin = 1, orif [X§° —X27|p < (1 — &)IAXTT|lp,
then the optimization of « in Step 6 always provides o, < 1.
Case 2a: ||xy® — XI'"||p > (1 — 8) | AXT!||p.

Following similar arguments as in Case 1 it can be shown that
(1=8) | AX-T||p < [|Allpl| ARG [l2+1IBllp | Atig™ ||2 and by recalling
that || - ||f2 < | - ||P, there exists a constant €, € (0, 1] such
that €2(1 — 8)? [ AXIT (13 < €2(1 — 8’| AR} < 1A% 113 +
| At " ||R. From this and (C.la) we then obtain

1

AV < —EII xS — *6 21— 8)?IARI g — X — %G
] =T,tr 2 — —1' tr
< —Zes(l — %1%y = x g — ZIIX — %" llg
1_ _
= —g& =8I —xli

and the Lyapunov constraint is satisfied with e, = 3€2(1—8)* > 0.
Case 2b: ||IX§° — X5 |lp < (1 — 8) | AXTT [|p.

In this case it will be shown that o, < 1 by proving feasibility
of the Lyapunov and terminal constraint in the minimization in
Step 6 of Algorithm 2 for some « < 1. We make use of Lemma 5.6
in order to show that in Case 2b the warm-start satisfies VJ (x"*,
ﬁWS,)_(;”S WS) < Vtr(st WS’X‘;L’.tr! l-l;r,tr) _ (1 _ 8)2”A)—<Srtr”12) and
therefore from (C.1)

AV < —IIA_”TIIQ —lIx” =Xl — (1 = O’ AX"

< —5||x — X2 = (1= 8 AR

IA

1
—(1- S)ZZIIX — %13

The Lyapunov constraint is hence satisfied with ¢, = %(1 — 8)?
and @« = § < 1 is feasible in the minimization in Step 6. Finally,
feasibility with respect to the terminal constraint for some o < 1
remains to be shown. Recall that x/* — X7 = AN (XS — xI'"") by

S
using the auxiliary control law. We prove that [|X{* — X*[lp < €
uy”®) by the

for some « < 1, which implies that x* < D_C}r()_(;"’s,
definition of €,:

XN — X llp = Xy — X7 + (1 — a)(AX D e
< AR ®o® =X D)llp + (1= )X [lp < €5,

which is satisfied for some o < 1, since ||A} Xy —X0M)lp < €. As
aresult, there exists an« < 1 such that the terminal and Lyapunov
constraint are feasible and o, < 1 will therefore be obtained in
the minimization in Step 6, which concludes the proof.
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