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A particle simulation code, TDA, which models the single-pass amplification
process in a free-electron-laser (FEL) is developed and tested. The code allows for the
treatment of the fully three-dimensional electron dynamics, thus taking into account
the transverse betatron motion as well as the longitudinal bunching of the electrons.
The paraxial wave equation that governs the growth and the diffraction of the self-
consistent radiation field (assumed to be axisymmetric), is discretized in the radial
direction by the finite difference method. The benchmark study indicates that the
single-pass gain, as well as the optical guiding phenomena can be well described by
the code with a reasonable number of simulation particles (N ~ 1000) and a radial
mesh number not exceeding 64. A detailed discussion of the numerical method is

presented.



1. Introduction

The single particle description of the free-electron-laser (FEL), in which the single
particle orbits and the eikonal electromagnetic field amplitude interact self-consis-
tently, has been utilized successfully to investigate FEL performance in the Compton
regime [1-6], and the collective (Raman) regime [7, 8]. One of its advantages is
its inherent simplicity that allows the inclusion of many complex physical effects
encountered in real experimental conditions such as wave diffraction, non-uniform
wiggler, non-ideal electron beams and nonlinear electron motion.

In this paper, we are concerned with the simulation of the single-pass gain pro-
cess in the FEL in which the self-consistent transverse behavior of the radiation
fleld (diffraction, optical guiding) as well as the fully three-dimensional dynamics of
the electrons (emittance, transverse betatron motion due to the non-uniform wiggler
transverse profile) are investigated. The code, named TDA, which results, can be
viewed as a first step to the development of more complex codes that can handle
others effects such as the multiple passes in an FEL oscillator, electrostatic pertur-
bations, non-axisymmetric radiation field when the electron beam is not perfectly
circular. Similar FEL codes exist [8, 9] and they have been used to study short
wavelength FELs. The purpose of this paper is to discuss in detail the numerical
techniques involved in implementing such a model.

A brief description of the physical model studied with the TDA code is outlined
in Sec.2, followed in Sec.3 by the details of the numerical methods employed for the
particle initialization, the discretization of the paraxial wave equation in the radial
direction and the numerical integration along the direction of the beam propagation
z. In Sec.4, we benchmark the code (a) by comparing the simulation results with the
predictions of the linear theory and (b) by performing a convergence study for the

radial discretization. Finally, the conclusions are presented in Sec.5.



2. Physical model

In the free-electron-laser, the single-pass gain mechanism can be well described by the
relativistic single-particle equations of motion, coupled to the paraxial wave equation
for the radiation field. It is also assumed that only one radiation frequency is present
in the system, so that the fast wiggle oscillations of the electrons are averaged out.
Futhermore, we consider an electron beam which is sufficiently tenuous that the lon-

gitudinal electrostatic perturbations are negligible (Compton regime assumptions).

2.1 Equations of motion

The longitudinal motion (averaged over the wiggle period) is governed by the
following equations for the Lorentz factor 4 and the electron phase 8 = (ks + ky)z —
(Ws —wy)t [2, 3, 8, 10]:

dr_ (1 B gu_zﬂ) A, fB sin(f + ¢,)

; (1.a)

dz cks 0%
do W ww \ 1+ afv +p§ + pz + 2ay,asfp cos(f + ®s)
E;—-kw‘*‘—c——ks (1_Cks> 272 : (lb)

In these equations, the radiation (or signal) field is characterized by the wavenumber

s = 2m/X, = ws/¢, the dimensionless vector potential rms value a, = eA, /mec and
the phase ¢, while the wiggler field is specified by the frequency w,,, axial wavelength
k. and vector potential a,, = eB,,/mck,. Assuming that w,, # ck,, allows for the
treatment of an electromagnetic wiggler in the free space configuration as well as in
a waveguide. The usual equations for a magnetostatic wiggler field is recovered by
setting w,, = 0 in Eqgs.(1). For a helical wiggler, the coefficient fg = 1 and in the

planar wiggler fp is a sum of Bessel functions given by:

fa = [2(1+a%,,>] —h [2<1+a%,,>]‘

In Eq.(1.b), pz, py are the averaged transverse canonical momenta normalized to me.
For a given transverse profile of the wiggler field a,(z,y) and neglecting the effects
of the radiation field, the momenta p,, py evolve according to:

dp, 1 0 ,
dz ~ 2y oz v (2.a)
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Finally the equations for the averaged transverse electron positions can be written

as:
dz  p,
i (3.a)
dy __ Dy
= (3.0)

From Eqs.(2,3), it can be shown that the transverse electron motion (or betatron

motion) has a constant of motion given by:
aZ,(z,y) + p? + p = const.

which shows explicitly that the magnetostatic wiggler (in which the transverse gra-
dient of the field is positive) has a focusing effect on the electron propagation, while
the electromagnetic wiggler (negative transverse gradient) can defocus the electron

beam.

2.2 Wave equation
Assuming a single frequency and the paraxial approximation, the evolution of
the slowly varying radiation field amplitude is governed by the following complex

partial differential equation:

N .
a 1 2 i, ___ 'eZO fB I . 6—10j
[az + 2k, vl] de€ " =02 2%, N ;5(5’3 —2;)8(y — yj)aw(z;,y;) v (4)

J

where Zy = 377Q is the vacuum impedance. In the right hand side of Eq.(4), we
have assumed that each of the N simulation particles carries the partial current I /N.

From Eqs.(1.a, 4), it is straightforward to derive the power balance equation:
Py(2) + (1 — wy/cks)Prag(2) = const., (5)

where the electron beam power P, and the radiation power Pp,q are defined by:

me? T N
Py = VN ;('h’ - 1), (6.a)

me2\? 1
Py = ( - ) Z0 //ksas dzdy. (6.5)
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Note that the term proportional to w,/ck, in the power balance equation (5) is the
pump depletion in an electromagnetic wiggler [10] and can be important in a low
energy FEL. From the practical point of view, the power balance Eq.(5) provides
a useful diagnostic for the numerical simulation based on the self-consistent set of

equations (1)-(4).

2.3 Initial conditions

The initial conditions for the particles are defined by specifying the electron
distribution function on the 6-dimensional phase space F(v,1, Pz, Z,Py,Yy) at the
entrance of the wiggler at z = 0. The phase 1 used in the distribution function is
related to the previously defined phase 6 by Y; = 6; + ¢s(z;,y;) for each electron j
at a given axial position z. In the calculations presented at the end of this paper,

the distribution F is assumed to be written as:

F(’Ya d),pz,w,py,y) = F‘Y('Y)Flﬁ("/))Ft(pIaxapyay)a (7)

where (a) Fy is a Gaussian distribution, (b) Fy is uniform within the interval [, 7]
and (c) Fy is uniform in the 4-D ellipsoid with minor axis R,, Ap,, R, and Ap,. Note
that the normalized emittance in the z-direction can be expressed as €,, = R, Ap,
and similarly for the emittance in the y-direction. The next section will describe in
detail the method used in the code TDA to implement this distribution function.
For the initial radiation field profile, we assume a Gaussian TEMy, mode at

z = 0. Recall that the propagation in vacuum for this mode is governed by [1 1]:

ay(r, z)ei®s (n?) = /gaso wo e W (2) gi(rz)
Y

w(2)

w?(2) = w§ [1+ (2 — Z.,)? /23], (8)
572 2 —Zy
2 (2—2Zy)*+ 2%’

where wq is the minimum spot size, Zp = ksw?/2 is the Rayleigh length and Z,, is

o(r,z) = —tan™ [(z — Z,)/Zr] + k

the position of the radiation waist (focus). From the definition of Pq, Eq.(6.b) and

Eq.(8), the input power can be written in terms of ay as

me?\ k2w?
Praa(0) = (T) —Z()—Oaio- (9)
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Thus, the radiation beam at z = 0 is completely specified by giving the radiation
wavelength, A; = 27/k,, the input power, Pp,q(0), the Rayleigh length, Zg (or the
minimum spot size, wy) and the position of the beam waist, Z,, since the complex

radiation vector potential can be expressed at z = 0, as

: [2
as(f', 0)€l¢‘(r’0) = ;aso w_u()_?ﬁemCrz’

k)2
- Zr—1Z,

(10)
with C

3. Numerical method

3.1 Particle initialization

In order to simulate the distribution functions defined in Eq.(7) with a finite
number of particles (N ~ 1000-4000), three methods of particle loading are imple-
mented in the TDA code:
(a) Loading using the pseudo-random numbers;

(b) Loading using the Hammersley’s sequence [12] defined by:

{(j—1/2)/Naq)l(j)aqb(j)’@B(j)a---,CI)r(j)a'"}a j=17"'7N’ (11)

where @,(j) denotes the radical inversion function in base r, with r being a

prime number:
() =ar fart o, jmdetar 4o (12)

(c) Loading using a “quiet start” scheme proposed in Ref. [9], where only a small
number (typically 4) of phases 1 distributed evenly in [—=,x] are filled with iden-
tical particle distributions in (v, p., z, Py, Y); these distributions are constructed
by using either method (a) or method (b).

In agreement with [9], the last method is found to be most effective in the small signal

[Praa(0) < P3(0)] high gain (exponential) regime. The methods (a) and (b) are more

suitable in both the low gain regime (G ~ 1) and the near-saturation regime. In
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practice, we prefer the method (b) because it produces less noise for a small number
N of sampling particles.

A nonuniform particle distribution function F(z) (a Gaussian function for exam-
ple) is sampled by assignirig its cumulative distribution to a set of uniform distribution

of numbers R; with 0 < R; < 1 (which are sampled by using the loading schemes

/O " ') o / /0 : F(z')dz' = R;. (13)

The value of the variable z; can then be computed by inverting Eq.(13) numerically

described above)

(see for example [13]).

3.2 Discretization of the wave equation

In TDA, we assume that the radiation field is axisymmetric although the electron
dynamics is fully 3-D. This assumption is exact in a helical wiggler; for a planar
wiggler, it is still a good approximation if an appropriate focusing system is provided
in order to maintain a nearly circular electron beam [14]. This additional focusing
effect can be easily included in the right hand side of the momentum equations,
Eqgs.(2).

Let subdivide the r-axis into N, intervals (not necessary equal) bounded by
Tk+1/2, k =0,..., N, with riy2 = 0and ry, 11/ = Rypax. The value of Ry, is chosen
such that it is several times larger than the initial radiation beam size w(0) and the
initial electron beam radius. Then, define the “volume” V}, = w(r? +1j2— ra_, /2), the
“area” Apy1/2 = 27 Try1/2 and the mid-point v = (rk—1/2 + Tk41/2)/2. Integration

of the wave equation (4) in the “volume” Vj yields:

day 1 da 9a
kL _— |4 — - A o
Vk dZ + Ziks [ 172 (ar)rk+1/2 ks (ar)rk—ll'z}

eZy fe I e~
=1—s = 2 aw(®j,y))——, (18)
mc? 2k, N e v
where
2 Tk41/2 . .
ap = il a,et? rdr ~ as(rk,z)e“’s‘(”’z). (14)
Vk Tk—-1/2



In Eq.(13), Ji denotes the set of indices of particles that are located inside the
interval [rx_1/2,7k41/2]. At k = N,, we set directly in Eq.(13) the natural boundary
condition rda/dr = 0, which is consistent with the choice of a large value of Ry,
while at k = 1, the term containing A, /2 18 equal to zero. Note that no approximation
has been introduced so far in Eq.(13). To proceed, the partial derivatives in Eq.(13)

are discretized by the central differences as follows:

(%> — Gkt1 — Gk . (15)
3r Th1/2 Tk4+1 — Tk

Substituting Eq.(15) into Eq.(13) and dividing by Vi, /2 yield the following system

of N, ordinary differential equations:

dak 1 A
==Y Mg ap
I=1

dz 2k, h
i eZo fg I e~
— =018 - aw(Tj,yj)—, k=1,...,N,, (16)
Vi me? 2k, N i Vi

where the real tridiagonal finite difference matrix M x has the following elements:

1 Ak_ 1 Ak
My g—1 = —"—112—, My ry1 = ——M—, Myx = =M g1 — My jy1.
Verk — 7k Vi Th41 — Tk
(17)
It is straightforward to show that the matrix My 4 verifies the identity:
N, N,
Z Vkaz Z Z'Mk,klakl + c.c. = 0. (18)
k=1 ki=1

To the same order of accuracy as in Eq.(14) or Eq.(15), the integral appearing in the

radiation power definition, Eq.(6.b), can be discretized by

Ny
//a§ de dy — ZVk|ak|2. (19)
k=1

Use of Eq.(18) leads then to:

d I
J;Pra.d = —m_c_z Z fBaw(m_]ay]) ( % ——10 ) (20)

k=1 j€T%



Comparing this relation with Eq.(1.a) shows that the power balance, Eq.(5) is exactly
satisfied if in the equations for the longitudinal motion, the complex radiation field
amplitude at a given particle j is approximated by the grid value ai, with the index
k related to j by Ti—1/2 < ,/:p? + y? < rg+1/2- This particle to grid interpolation is
very similar to the so called NGP (“nearest grid point”) scheme of the particle-in-cell

simulation used in plasma physics [13].

3.3 Integration along the longitudinal direction

The radial dicretization of the wave equation, as described in the previous section
yields a system of 2NN, real ordinary differential equations for the grid values of the
radiation field; together with the equations for the particle phase space variables
obtained in Sec.2.1, they form a system of 6N + 2N, first order ODEs. One obvious
way to solve this system of ODEs is to use existing ODE integrators found in most
of the available numerical libraries. However, these general purpose routines are very
expensive in terms of the CPU time as well as the computer central memory, For
instance, the routine DGEAR in the IMSL library [15] requires a working array of
(at least) 17 times the number of ODEs long! On the other hand, we should keep in
mind that the field equation to be integrated, Eq.(16), is indeed only approximate,
due to the radial discretization. This leads us to implement a simpler procedure of

integration.

Let consider the interval on the z-axis defined by the end points z,_;1, 2, =
Zn—1 + Az and the central point z,_ 1/, = (25_1 + 2,)/2. The particle phase space
variables {v, v, p;, %, py,y} are assumed to be known at z,_; and the radiation field
discretized values ay, at z,_; /2. The marching algorithm can then be summarized

as follows:

(a) Advance the particle variables from z,_; to zy, using a special low storage fourth

order Runge-Kutta algorithm described in [16];

(b) Construct the source term s? [second term in the right hand side of Eq.(16)];
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(¢) Solve, using the Gauss elimination, the following tridiagonal system of equations

[I - iﬁ: M] ant/? = [I + 22: M] a"~1/? 4 s" Az, (21)
that results from Eq.(16) by replacing da/dz and a at z = z,, respectively with
n+1/2 _ ,n—1/2 n+1/2 n—1/2

a Aza , and 2 ;— a . (22)

In Eq.(21), the tridiagonal matrix M is defined in Eq.(17) and I designates the

identity matrix.

Note that in the scheme described above, the wave equation source term s is
centered on the interval [z, _; /25 Zn+1/2] while advancing a and similarly for the force
term (proportional to a) on the interval [2,_1, 2,], while advancing the particle phase

space variables.

4. Code benchmarking

In order to benchmark the TDA code, we have performed (a) a comparison with
the linear theory, and (b) a set of runs to analyze the convergence properties of the
radial discretization used in the code. The free-electron-laser parameters used in
these calculations are shown in Table 1.

In the linear theory, one-dimensional motion (no betatron oscillation) is assumed.
The diffraction of the radiation field is, however, taken into account. Linearizing
the single particle longitudinal equations of motion, Eqgs.(1), and the paraxial wave
equation, Eq.(4), and assuming a magnetostatic wiggler (w,, = 0) lead to the first

order equations in a, [17]:

oK, kwksfBaW i(¢s+poz)
= dg€ 9

0z Yo (23.a)
K ks fBGYw .
3322 =Hi- ifofiaae’("“*“"‘), (23.5)
0 1 i . CZO fBaw I —ipoz
[—6—3- * 2iks Vi] ase’®" = "me? 2k, ngu(r)e K, (23.¢)

where the complex “macroscopic” variables K (r, z) and Ky(r, z) are respectively the

velocity bunching amplitude and the density bunching amplitude defined by:
Ky = iky (e 7% (w1 + w})), Kz = (e"%ow,), (24)

10



FElectron beam

Energy v 100.5
Energy spread A« 0.3
Radius R; (mm) 0.26
Normalized emittance e, (mm mrad) 10

Wiggler field (magnetostatic)

Period A,, (cm) 3
On axis a,, 1
Bessel coefficient fg 1
Length L (m) 5

Radiation field

Wavelength A, (pm) 3
Rayleigh length Zr (cm) 3
Focus Z,, (cm) -20

Table 1. FEL parameters used for benchmarking TDA

with the angle brackets denoting the average over the particle initial phases (assuming

a cold electron beam) and w; being the first order quantity in the expansion:
w=e Py /yo = e P 1 4y ... (25)

In Eqs.(23)—~(25), 70, 6o and pg denote the initial values for the electron Lorentz
factor, phase and detuning parameter p = k,, — (1 +a2,)k,/(272). In the source term
of the wave equation, the electron beam has a prescribed radial density profile u(r).

The system of equations (23) was solved in a separate code, using the same
discretization in the radial direction for the wave equation as described in Sec.3.2.
Notice that here, we have only 2 equations, instead of 6N in the nonlinear case, for
describing the electron dynamics.

The comparison between the linear results and the nonlinear results are shown in
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Fig. 1 for the radiation power and Fig. 2 for the radiation beam size. In the nonlinear
calculations, 1024 simulation particles were used. In both calculations, there are
64 non-equidistant radial mesh points and 100 constant steps in the longitudinal
direction (Az = 5cm). In the small-signal regime (2 < 2m), it is seen that the
nonlinear results for the power gain as well as for the radiation beam size, agree well
with the linear results. The larger gain obtained in the latter (23.5dB/m compared
to 23dB/m) as well as the stronger radiation focusing effect are both consistent with
the fact that both the energy spread and the finite emittance are omitted in the linear
calculations.

In Figs. 3-5, we have varied the number of radial mesh intervals, N, keeping
the particle number fixed at N = 1024 and the step size Az = 5cm. It can be seen
that with N, = 64, good convergence is already achieved for the radiation power
Prad(2) (Fig. 3), the radiation beam size w(z) (Fig. 4) as well as the error in the
power balance ( plotted in Fig. 4 in % of the radiation power). The fact that the
total power is well conserved, even in the N, = 32 run, is a consequence of the chosen
conservative scheme for the radial discretization (see Sec.3.2). The case with N, = 64
was run again with 4096 particles, giving a difference of 0.2 % for P,.4 and 0.8 % for
w.

In Fig. 6, the values of the radiation power and the error in power conservation
at the exit of the interaction region are plotted versus the square of the integration
step size. It can be seen that for Az? < 50 (more than 75 integration steps), the
results show an almost quadratic convergence in Az.

The CPU times (on a Cray-XMP,using the CFT compiler) for the three runs
shown in Figs. 3-5 are 3.85, 4.18, 4.24 seconds respectively and thus are not very
sensitive to NN, since the number of particle equations 6N is much larger than the
number of discretized equations for the wave evolution. We have also checked that
the CPU time used by TDA increases linearly with the number of particles N as well

as the number of integration steps.
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5. Conclusion

A particle simulation code, modeling the 3-D electron dynamics in an axisymmetric
radiation field of an FEL has been developed and tested. A finite difference conser-
vative scheme was employed to discretize the paraxial wave equation in the radial
direction and proved to describe accurately the optical guiding effect in the high-gain
FEL. In the longitudinal direction, a centered (in z) scheme was used to solve the
wave equation, while a low storage fourth order Runge-Kutta integration was cho-
sen to advance the particleé. In order to model the electron distribution function
at the entrance of the wiggler with a relatively small number of simulation particles
(~ 1000-4000), “quiet start” techniques of particle loading have been used. Although
effects such as electrostatic perturbations or non-circular electron beam effects are
not considered, the physics contained in the TDA code is enough to give realistic
gain performance for an FEL operating in the Compton regime. Since the present
version of the TDA code is very fast, it can be served as an useful numerical tool for

the development of more complex simulation codes for the FEL.
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Comparison between the linear theory and the simulation using 1024 particles
for the radiation power evolution.

Comparison between the linear theory and the simulation using 1024 particles
for the radiation beam size evolution.

Radiation power as a function of the longitudinal coordinate z for different values
of the radial mesh intervals N,.

Error in the total power conservation, plotted in % of the radiation power as a
function of the longitudinal coordinate z for different values of the radial mesh
intervals N,.

Radiation beam size as a function of the longitudinal coordinate z for different
values of the radial mesh intervals N,.

Radiation power and error in power conservation at the exit of the wiggler,
plotted versus the square of the integration step size, showing a quadratic con-

vergence in Az.
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