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Mock data sets
● We have produced two Mock data sets for the TDR using multivariate 

reweighting.
● NuWro-reweight

○ Our GENIE MC is reweighted to match NuWro in a multidimensional true kinematic space.
○ Motivated by the LBNC request to run sensitivity studies on data from a different generator
○ We can’t put an alternative sample through the simulation+reconstruction chain in a 

reasonable amount of time, so use reweighting.

● Missing proton energy
○ Induce a change in Etrue->Erec that is difficult to identify with an on-axis LAr near detector.
○ Motivated by DUNE-PRISM studies: this type of mis-modelling gives biased oscillation 

parameters in a FD fit and this can be mitigated by a DUNE-PRISM data-driven fit.

● Different pre-processing, but reweighting procedure is the same.
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BDT reweighting in a nutshell
● For each mock data sample, we need two provide the BDT with two data sets: 

origin and target, or nominal and mock.
● The task of the BDT is to classify events as being drawn from the origin vs 

target distribution when given a set of variables (features) describing the event.
○ Think signal vs background in more common uses of BDTs in HEP.

● Given a training pair of origin and target distributions, where the events have a 
label in addition to features, we train the BDT by minimizing the log loss, aka 
binary cross-entropy:

● Assign labels y = 0 for target and y = 1 for origin and the output of the BDT is:

● And the reweighting function is given by:
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BDT reweighting in diagrams
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Unlabeled data.
Mix of target and origin.

Unlabeled data.
Mix of target and origin.

Labelled data.

https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a



BDT reweighting in diagrams
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Unlabeled data.
Mix of target and origin.

Unlabeled data.
Mix of target and origin.

BDT output.

https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a



NuWro samples
● NuWro events generated by Luke Pickering with the DUNE fluxes:

○ FD:
■ FHC: numu, nue
■ RHC: numubar, nuebar, numu, nue

○ ND:
■ FHC: numu
■ RHC: numubar, numu

● A set of 18 true variables is chosen as the space to reweight in:
○ Ev, lepton energy, angle between lepton and neutrino, Q2, W, x and y
○ Number of and total energy carried by:

■ Protons, neutrons, pi+, pi-, pi0 objects
○ Number of “em” objects
○ Ignore variables that do not have well-defined correspondence between generators:

■ E.g.: interaction mode, multiplicity of “other” and “nucleus” objects.

● BDTs are trained to classify events as “GENIE” or “NuWro” using these 18 variables as inputs.
○ One BDT per flux: 9 BDTs in total

● The linear BDT output is applied to GENIE events as a weight to get NuWro-like distributions.
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BDT output
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● As the BDT output will be used as a weight, it’s important that it’s linear.
○ Not a problem in typical classification tasks.

● While the output is designed to be linear, occasionally sigmoid-like features are present in the 
reliability plot.

○ Use Platt scaling to correct this - fit logistic function parameters that give linear output.

ND FHC numu
GENIE
NuWro
Total

ND FHC numu

FD FHC numu



FD FHC nue
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FD RHC nuebar
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Missing proton energy fake data
● The goal of this fake data set is to provide an example of mis-modelling that 

would be difficult to measure in an on-axis LAr detector and give biased 
oscillation parameter estimation.

● Recipe:
○ Remove 20% of the proton energy and add it to (largely invisible) neutrons.

■ In practice, we scale down the energy deposits in the LAr due to protons by 20%.
○ Reweight the shifted sample so that the on-axis ND reconstructed distributions agree with 

the nominal sample using a BDT.
○ Use additional BDT to capture the weights in true kinematic variables and propagate model to 

the far detector.
■ Interaction mode, neutrino energy, proton kinetic energy, elasticity.
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More details in, e.g.:
https://indico.fnal.gov/event/16764/session/14/contribution/51/material/slides/0.pdf



Existing tools for DUNE: reweighting tools
● We have two sets of tools that use the XGBoost framework to train 

reweighting BDTs and a couple of examples of CAFAna implementations, for 
use in oscillation analysis.

● Reweighting our nominal MC to an alternative Generator using truth-level 
features: https://github.com/cvilelasbu/GeneratorReweight/

○ Two python scripts: 
■ One pre-processes the data (CAF files + alternative model in CAF-style TTree) and 

stores everything in a large HDF5. Also deals with relative normalization of flux.
■ Training script reads HDF5 and runs XGBoost.

● Using a hacked version of our MC as the alternative model (e.g., 20% missing 
proton energy): https://github.com/cvilelasbu/MagicRW

○ Works like the above, but has a lot more built-in functionality to propagate changes in the 
model correctly. E.g., changing proton energy variable affects Erec.

○ A couple of examples implemented, including variables of interest for MPD like transverse 
variables -- but please check it makes sense before using! 12

https://github.com/cvilelasbu/GeneratorReweight/
https://github.com/cvilelasbu/MagicRW


Existing tools for DUNE: CAFAna implementation
● Convert the XGBoost output into C code using treelite

○ https://github.com/dmlc/treelite

● Wrap treelite output in a C++ class:
○ https://github.com/cvilelasbu/ClassifyTreeLite/

● Implement reweighting as a systematic in CAFAna (L. Pickering):
○ Example: 

https://github.com/DUNE/lblpwgtools/blob/strong_and_stable/code/CAFAna/CAFAna/Systs/Nu
WroReweightFakeData.h
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https://github.com/dmlc/treelite
https://github.com/cvilelasbu/ClassifyTreeLite/
https://github.com/DUNE/lblpwgtools/blob/strong_and_stable/code/CAFAna/CAFAna/Systs/NuWroReweightFakeData.h
https://github.com/DUNE/lblpwgtools/blob/strong_and_stable/code/CAFAna/CAFAna/Systs/NuWroReweightFakeData.h


HELP!
● Get in touch with:

○ CV
○ J. Wolcott (sorry!)
○ L. Pickering
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Backup

15



Fake data fit with latest analysis tools

Ignore error bars, look only at bias - these are just 
the gaussian-like uncertainties at the best-fit point
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Fake data
Nominal prediction
Postfit prediction



All oscillation parameters fixed other than delta and th13
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Fake data
Nominal prediction
Postfit prediction



All oscillation parameters fixed other than delta and th23
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Fake data
Nominal prediction
Postfit prediction



All oscillation parameters fixed other than delta and dmsq32
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Fake data
Nominal prediction
Postfit prediction



Why is the deltaCP bias small - is this just a fluke?
● Toy example:
● For a global energy scale transformation: 
● From disappearance we get a biased mass-squared splitting:

○ Such that numu survival probability stays invariant.
■ i.e., energy scale shift is absorbed by oscillation parameters.
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Why is the deltaCP bias small - is this just a fluke?
● Ignoring the solar term, can write the 

deltaCP dependence as:
●   

with 

● Now apply energy scale transformation and 
use transformed      :

○  

●  Appearance probability is invariant under:
○                             and 

● To first order, deltaCP measurements are 
robust wrt energy scale in a joint LBL fit.

○ Disappearance parameter measurements are not.
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Delta CP energy scale robustness - neutrinos
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Probabilities from Prob3++
with:
sin2θ12 = 0.310
sin2θ13 = 0.02241
sin2θ23 = 0.580
Δm21 = 7.39e-5 eV2

ΔmAtm = 2.525e-3 eV2



Delta CP energy scale robustness - neutrinos
True atmospheric mass 
splitting known.
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Probabilities from Prob3++
with:
sin2θ12 = 0.310
sin2θ13 = 0.02241
sin2θ23 = 0.580
Δm21 = 7.39e-5 eV2

ΔmAtm = 2.525e-3 eV2



So what about this?

Phys. Rev. D 92, 091301 (2015)

“Since the atmospheric parameters are fixed to their current 
best-fit values, and we are only interested in the δCP 
sensitivity,there is no need to include νμ and ̄νμ 
disappearance channels in our analysis.”
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● In previous deltaCP bias plots we had 
fixed disappearance parameters at 
the nominal.

● Our intuition was that biased 
disappearance parameters would, if 
anything, contribute to deltaCP bias.

● Looks like this is a common 
assumption… 



Disappearance parameter bias 
with 20% missing proton energy
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90% CL



Near detector fits
If nature was NuWro we would know something was up: ᵡ2 ~ 11000
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FD-only fit
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FHC numu FHC nue

RHC numu RHC nue

C. Marshall, yesterday

Without a near detector we 
wouldn’t…

ᵡ2 ~ 10
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● I think we might need something that changes more 
violently around 1 - 4 GeV.

○ So that it doesn’t look like an energy scale in 
the region where oscillation effects are 
larger.

■ And maybe that way the effect on 
oscillation parameters doesn’t cancel 
out so much.

● Missing proton energy and NuWro seem to be the 
most violent of these…

○ More ideas?

Missing proton energy alternatives - nue FHC
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Missing proton energy alternatives - numu FHC
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Missing proton energy alternatives - nue RHC
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Missing proton energy alternatives - numu RHC



This is what we have presented before

● Mass-squared bias: ~0.04e-3 eV*eV
● sinsq(theta_23) bias: ~0.025
● deltaCP bias: ~ 0.3 pi

32



These are the spectra we have showed before
Background was not included on the nue samples (see next slide)
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This is what the backgrounds look like
Also, new selection and binning
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DeltaCP = 1.5 pi
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DeltaCP = 1.2 pi
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Fits to missing proton energy fake data
● Since last collaboration meeting, we integrated the missing proton fake data 

in the latest analysis tools and updated with latest inputs.

● Found that we don’t have enough near detector MC statistics to run full 
exposure ND+FD fits to fake data.

● Also found that while this fake data set introduces large biases in 
disappearance parameters, the effect on deltaCP is smaller than previously 
thought.
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Near detector MC statistics
● We currently scale up our existing ND MC statistics (equivalent to ~4 months) to full exposure (x 20).
● This has a small effect on Asimov fits, but breaks fake data fit, likely due to event migration between bins.

38MC scaled to 7 years exposure



Near detector MC statistics

39MC unscaled

● With unscaled MC, get expected result from ND fake data fit.



Solution to limited ND MC statistics
● Generate more MC (Chris M., in progress)
● In the short term, run FD-only fake data fits with ND constraint on systematic 

parameters from 7 year exposure Asimov fit.
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Joint Asimov ND+FD fit Asimov FD-only + ND constraint



With th13 constrained to NuFit
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Fake data
Nominal prediction
Postfit prediction



7 years exposure all oscillation parameters, NuFit constraint on 
all except deltaCP 
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Fake data
Nominal prediction
Postfit prediction



Without backgrounds
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Fake data
Nominal prediction
Postfit prediction



Appearance only, th13 unconstrained
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Fake data
Nominal prediction
Postfit prediction



15 years exposure all oscillation parameters fitted
7 years ND exposure
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Fake data
Nominal prediction
Postfit prediction



All oscillation parameters fixed other than delta
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Fake data
Nominal prediction
Postfit prediction



Delta CP energy scale robustness - antineutrinos
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Probabilities from Prob3++
with:
sin2θ12 = 0.310
sin2θ13 = 0.02241
sin2θ23 = 0.580
Δm21 = 7.39e-5 eV2

ΔmAtm = 2.525e-3 eV2



Delta CP energy scale robustness - antineutrinos
True atmospheric mass 
splitting known.
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Probabilities from Prob3++
with:
sin2θ12 = 0.310
sin2θ13 = 0.02241
sin2θ23 = 0.580
Δm21 = 7.39e-5 eV2

ΔmAtm = 2.525e-3 eV2



Degeneracies
Neutrinos

● Disappearance parameters can 
be degenerate with deltaCP.

Made with L. Pickering’s plotting tool. 49


