

Recent CKMfitter updates on global fits of the CKM matrix

Wenbin Qian
University of Chinese Academy of Sciences
On behalf of the *CKM*fitter Collaboration

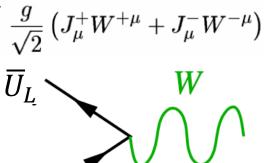
CKM 2021

University of Melbourne, Australia (Online)

CKMfitter

• Theorists + experimentalists performing a global analysis of measurements (inputs from HFLAV, FLAG) determining the CKM matrix parameters in the framework of the SM and some of extensions ckmfitter-I@in2p3.fr

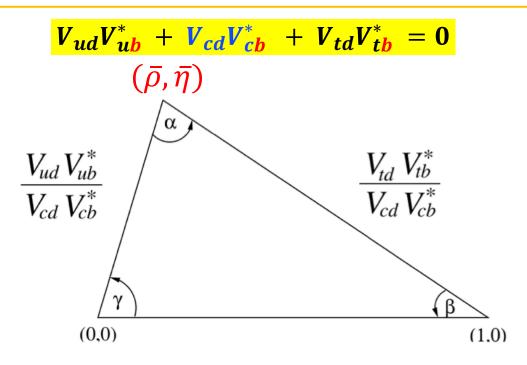
Jérôme Charles	Theory	CPT Marseille (France)	
Olivier Deschamps	LHCb	LPC Clermont-Ferrand (France)	
Sébastien Descotes- Genon	Theory	LPT Orsay (France)	
Stéphane Monteil	LHCb	LPC Clermont-Ferrand (France)	
Jean Orloff	Theory	LPC Clermont-Ferrand (France)	
Wenbin Qian	LHCb	University of Chinese Academy of Sciences (China)	
Vincent Tisserand	LHCb/BABAR	LPC Clermont-Ferrand (France)	
Karim Trabelsi	Belle/Belle II	LAL Orsay (France)	
Philip Urquijo	Belle/Belle II	Melbourne Universiy (Australia)	
Luiz Vale Silva	Theory	Univ. Sussex (UK)	


CKM matrix

Yukawa couplings not necessarily diagonalized in interaction
 eigenstates ⇒ mass eigenstates different from interaction eigenstates

• Unitary matrix needed to diagonalize mass matrix

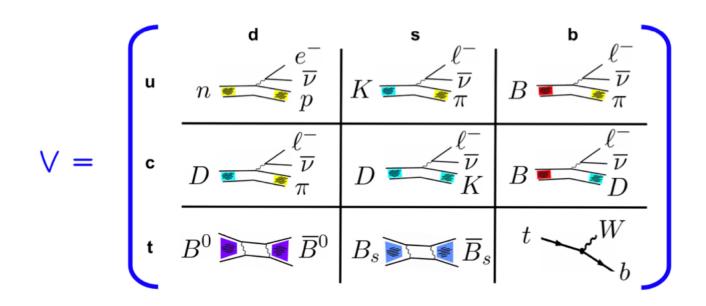
$$J_{\mu}^{+} = ar{U}_{L}^{I} \gamma_{\mu} D_{L}^{I} + ar{
u}_{L}^{I} \gamma_{\mu} \ell_{L}^{I},$$
 $J_{\mu}^{+} = ar{U}_{L} \gamma_{\mu} V_{CKM} D_{L} + ar{
u}_{L} \gamma_{\mu} \ell_{L},$


$$\begin{pmatrix} d^I \\ s^I \\ b^I \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- One complex phase (3 generations) for CP violation in SM
- Constraints from unitary conditions:

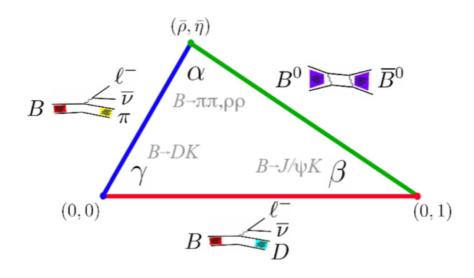
$$\sum_{i \text{ or } j} V_{ij} V_{ij}^* = 1 \qquad \sum_{i} V_{ij} V_{ik}^* = 0 \qquad \sum_{j} V_{ij} V_{kj}^* = 0$$

Unitary triangle and parameter definition



- Most popular one: similar size of three angles
- Closely related to B decays

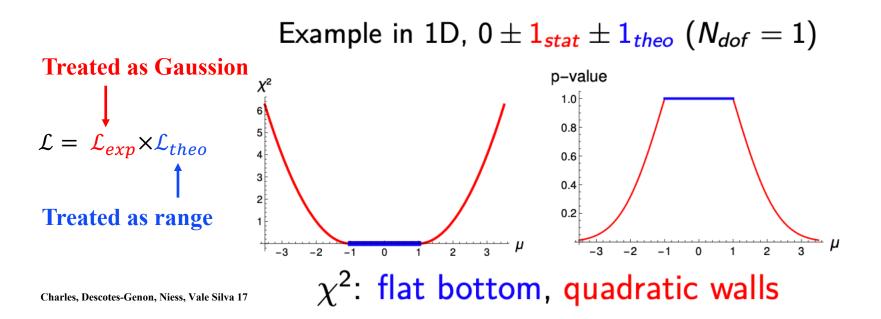
Wolfenstein parameterization:


$$\lambda^{2} = \frac{V_{us}V_{us}^{*}}{V_{ud}V_{ud}^{*} + V_{us}V_{us}^{*}} \qquad A^{2}\lambda^{4} = \frac{V_{cb}V_{cb}^{*}}{V_{ud}V_{ud}^{*} + V_{us}V_{us}^{*}} \qquad \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}$$
X and y axis

CKM observables (1)

- $|V_{ud}|$: superallowed nuclear β decays
- $|V_{us}|: K \to \pi l \nu, K \to l \nu, \tau \to K \nu$ etc. + form factors, decay constants
- $|V_{cs}|$, $|V_{cd}|$: (semi-)leptonic charm decays + Lattice inputs
- $|V_{ub}|$, $|V_{cb}|$: (semi-)leptonic B decays + Lattice inputs
- $|V_{td}|$, $|V_{ts}|$: Δm_d , Δm_s + bag parameters, decay constants

CKM observables (2)



- $\alpha: B \to \pi\pi, B \to \rho\pi, B \to \rho\rho$, isospin analyses
- $\beta: B \to (\overline{c}c)K$, $B \to Dh^0$, time-dependent CP violation
- $\gamma: B \to DK$, ADS/GLW/GGSZ
- $\phi_s: B_s^0 \to (c\overline{c})(KK, \pi\pi)$, time-dependent CP violation
- $-2\beta_s + \gamma: B_s \to D_s K$, not included yet
- $V_{td}^*V_{ts}$ and $V_{cd}^*V_{cs}$: ϵ_K + lattice inputs

Statistical approach

- Frequentist statistics based on a χ^2 analysis
- χ^2_{min} : indication of goodness-of-fit
- $\Delta \chi^2$: calculation of Confidence Level (CL) or p-values
- Range fit scheme (Rfit): special treatment of theoretical uncertainties

Theoretical inputs: mainly from Lattice papers (with error budgets); different systematic uncertainties combined linearly

Recent updates on V_{ud}

- Precision on $|V_{ud}|$ led by superallowed $0^+ \rightarrow 0^+$ nuclear β decays
- 2020 survey by Hardy and Towner, including recent calculations for radiative corrections and new improved measurements

NEW Theoretical

 $V_{ud} = 0.97373 \pm 0.00031$

Our 2019 update (also from Hardy and Towner)

 $V_{ud} = 0.97418 \pm 0.00021$

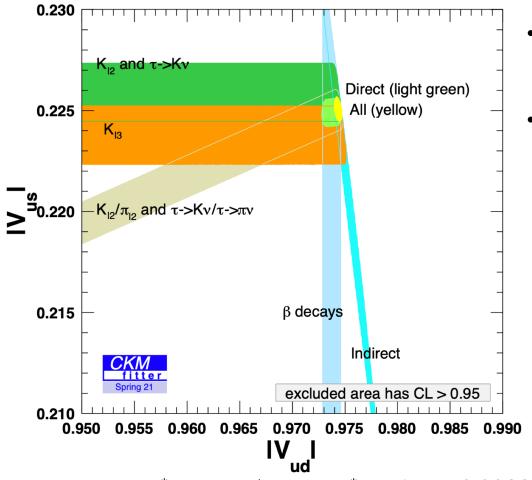
- V_{ud} smaller by 0.00045, while uncertainties larger by 50%
- V_{ud} from our fits without direct measurements

INDIRECT

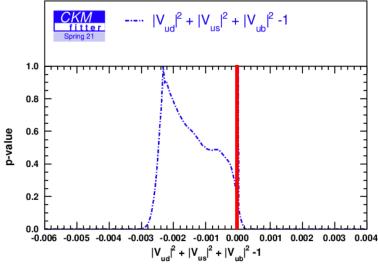
 $V_{ud} = 0.97440 \pm 0.00006$

- Some tension seen if using new V_{ud} input directly without careful consideration
- Considering properly error budget from Hardy and Towner, in this update, we use

Our 2021 update


statistical

theoretical


 $V_{ud} = 0.97373 \pm 0.00009 \pm 0.00053$

Theoretical uncertainties summed up linearly

V_{ud} Vs V_{us}

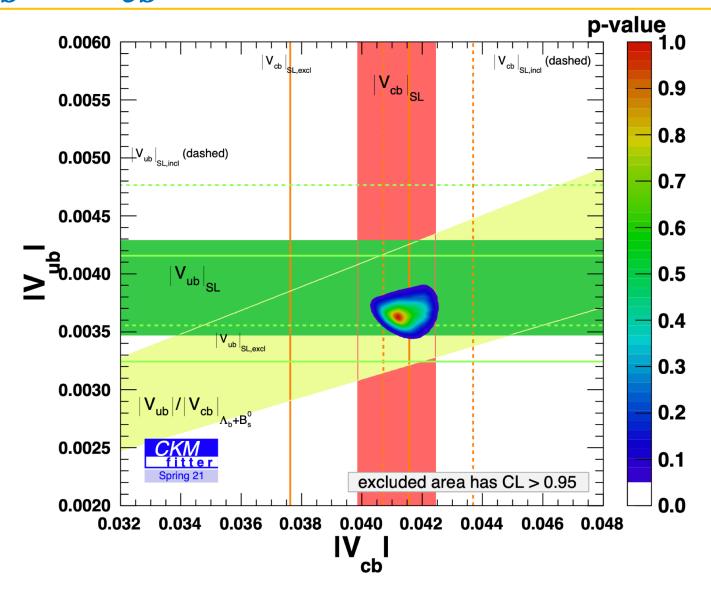
- $|V_{us}|$ from $K o l
 u, K o \pi l
 u, au o$ $K
 u, au o \pi
 u$ etc
- Still consistent with unitary $< 2\sigma$

$$V_{ud}V_{ud}^* + V_{us}V_{us}^* + V_{ub}V_{ub}^* - 1 = -0.00230_{-0.00023}^{+0.00218} (1\sigma)$$

$$-0.00230^{+0.00237}_{-0.00044}$$
 (2 σ)

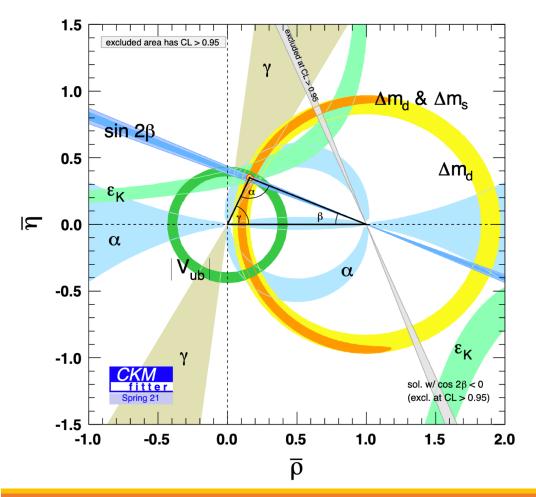
$$-0.00230^{+0.00242}_{-0.00065}$$
 (3 σ)

9


V_{ub} and V_{cb}

• Very small change on inclusive and exclusive V_{ub} and V_{cb} measurements

	Inclusive	Exclusive	Average
$V_{ub}(\times 10^{-3})$	$4.16 \pm 0.12 \pm 0.31$	$3.70 \pm 0.10 \pm 0.21$	$3.88 \pm 0.08 \pm 0.21$
$V_{cb}(\times 10^{-3})$	$42.2 \pm 0.4 \pm 0.5$	$39.6 \pm 0.6 \pm 0.5$	$41.15 \pm 0.34 \pm 0.45$


- New measurements of partial branching fractions of inclusive $B \to X_u l \nu$ decays with hadronic tagging (arXiv:2102.00020) included for V_{ub} inclusive
- V_{cb} exclusive: based on 2020 BGL refit with preliminary non-zero recoil FF ratio JLQCD inputs and new $D \to K\pi$ BF
- New ratio of $|V_{ub}|/|V_{cb}|$ from $B_s^0 \to K^+\mu^-\nu_\mu$ and $B_s^0 \to D_s^+\mu^-\nu_\mu$ (arXiv:1901.02561), only take high q^2 region which uses LQCD inputs (tension between high and low q^2)
- New $|V_{cb}|$ measurements from LHCb (arXiv:2001.03225) not used as knowledge of $B \to D^* l \nu$ required, care needed to consider larger correlations for $|V_{cb}|$ from these measurements

V_{ub} vs V_{cb}

Current status

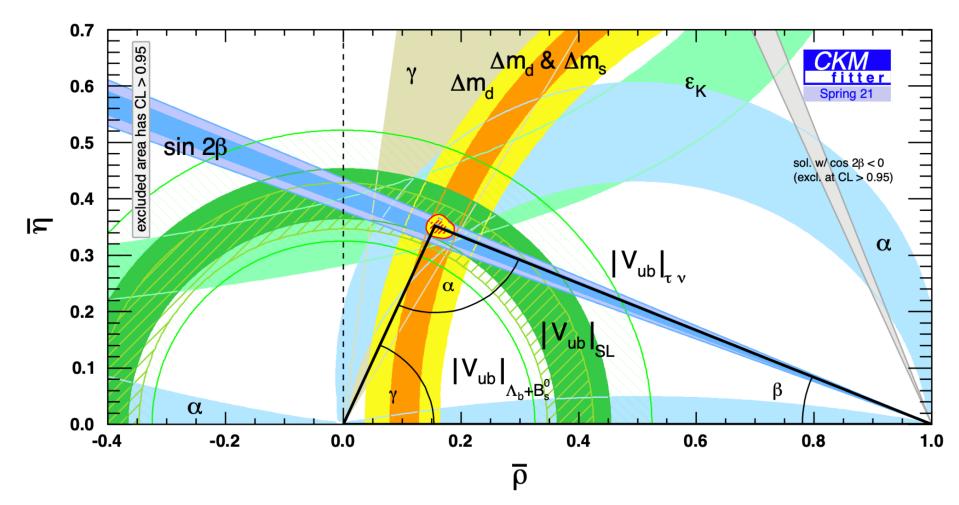
- Inputs till spring 2021 (Moriond)
- χ^2 slightly increased compared to 2019 update, p-value ~ 29%

Wolfenstein parameters:

$$A = 0.8132^{+0.0119}_{-0.0060}$$

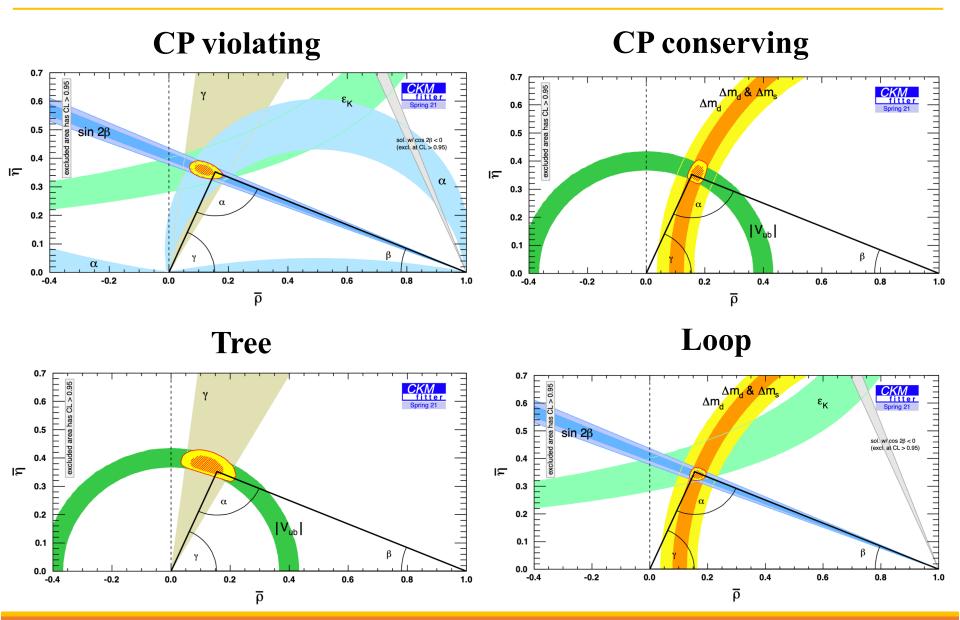
$$\lambda = 0.25500^{+0.00024}_{-0.00022}$$

$$\bar{\rho} = 0.1566^{+0.0085}_{-0.0048}$$

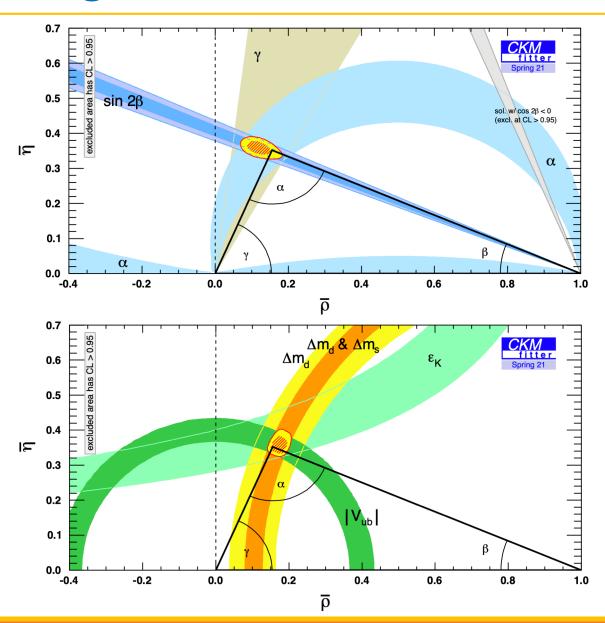

$$\bar{\eta} = 0.3475^{+0.0118}_{-0.0054}$$

Jarlskog invariant:

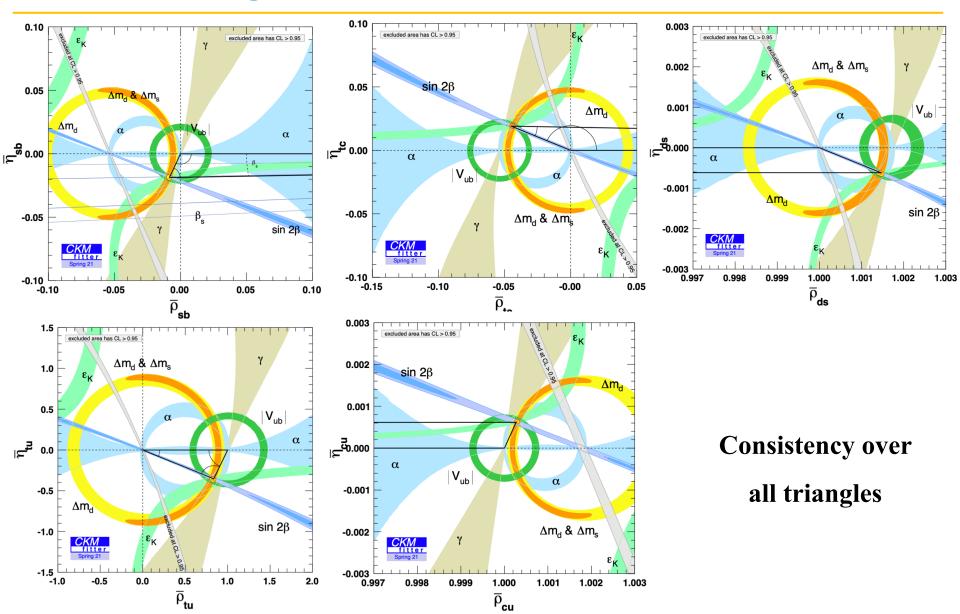
$$J = (3.044^{+0.068}_{-0.084}) \times 10^{-5}$$

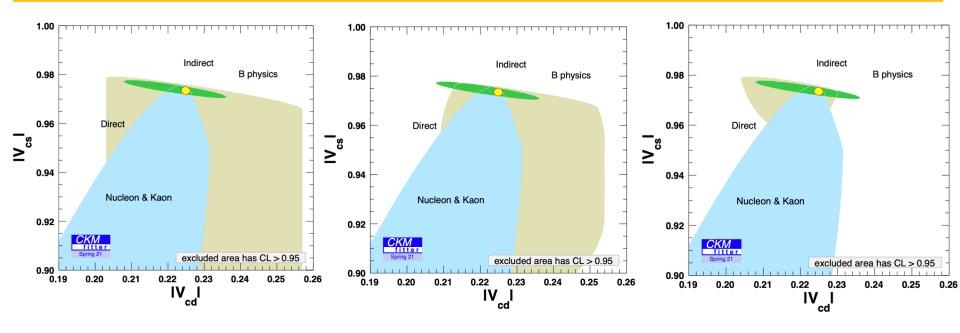

@ 68% CL.

Zoomed version



• Different contributions for $|V_{ub}|$ from $B \to \tau \nu$, inclusive + exclusive semileptonic measurements and $|V_{ub}|/|V_{cb}|$ ratio measurements are explicitly shown


Fits from different subsets

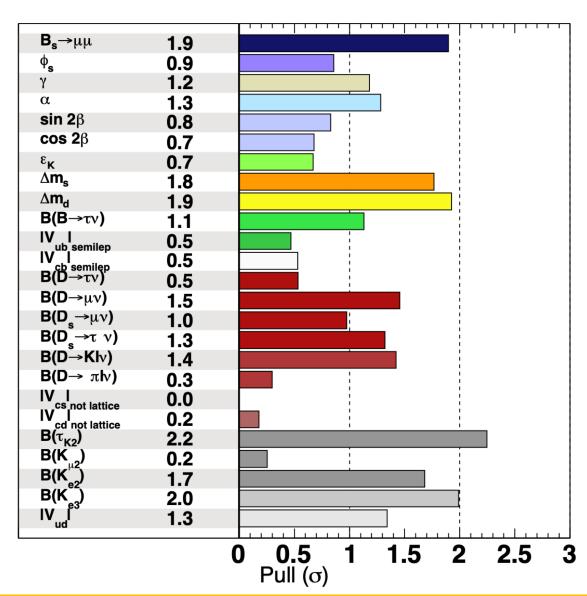

Angle vs magnitude

Other triangles

V_{cd} vs V_{cs}

 $|V_{cd}|$: $\nu - N$ scattering

 $|V_{cs}|$: W decay


Semi-leptonic D decays

Leptonic D decays

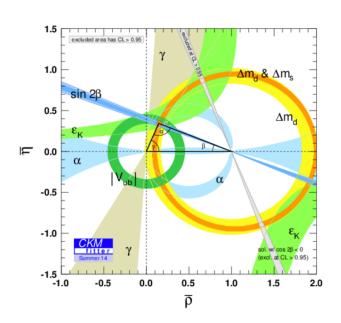
Also other CKM elements + predictions for Br., ϕ_s etc.

	Direct	Indirect
$ V_{cs} $	$0.97508^{+0.00082}_{-0.00668}$	$0.97358^{+0.00015}_{-0.00026}$
$ V_{cd} $	0.2220 ± 0.0038	0.22483 ± 0.00030

Pull

$$Pull = \sqrt{\chi_{\min}^2 - \chi_{\min,!obser.}^2}$$

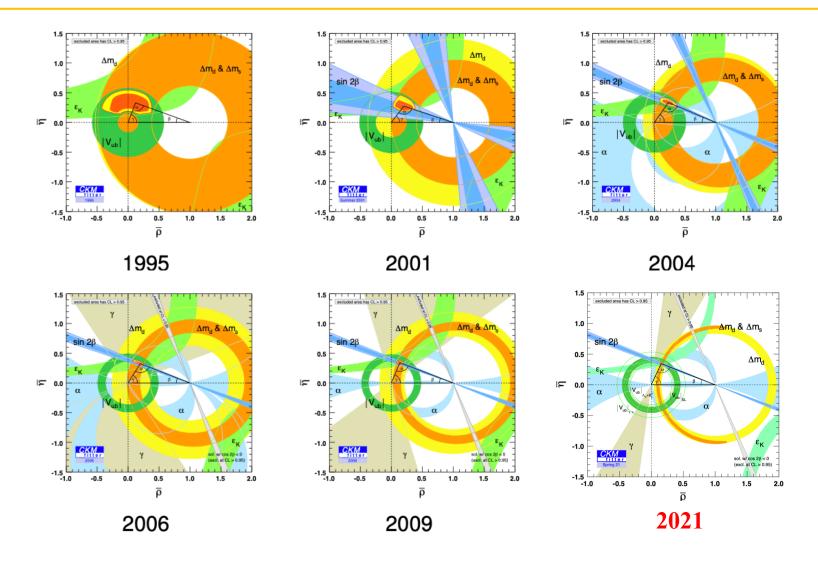
No clear discrepancy seen


Some pull = 0 due to Rfit treatment of systematic uncertainties (theory)

CKMlive

- **CKMlive**: run dedicated analyses with the CKMfitter software
- Your inputs: set of related observables, theoretical and experimental inputs, fitting parameters and relations between them

• Outputs:



$$M_{12}^q = M_{12}^{SM,q} \cdot \Delta_q$$

$$\begin{array}{c} \Delta_{\rm SL}(B_{\rm d}) \& \, a_{\rm SL}(B_{\rm g}) \\ \Delta_{\rm M_d} \& \, \Delta_{\rm M_d} \\ \Delta_{\rm M_d} \& \,$$

• Supports: ckmlive@clermont.in2p3.fr for questions; tutorial available

CKM status over years

Thank you for your attention

Recent updates on V_{ud}

- Precision on $|V_{ud}|$ led by superallowed $0^+ \rightarrow 0^+$ nuclear β decays
- 2020 survey by Hardy and Towner, including recent calculations for radiative corrections:

$$\mathcal{F}t \equiv ft(1+\delta_R')(1+\delta_{NS}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)}$$

 Δ_R^V : process independent radiative correction

Reference	$\Delta_R^V(\%)$	
Marciano and Sirlin [186] 2006	2.361 ± 0.038	OLD
Seng et al. [187,188] 2018/19	2.467 ± 0.022	
Czarnecki, Marciano and Sirlin [189] 2019	2.426 ± 0.032	Two new cal.
Adopted value	2.454 ± 0.019	NEW (averaged

 δ_{NS} shifted G_V^2 to smaller values by 0.09%

Recent updates on V_{ud}

- Precision on $|V_{ud}|$ led by superallowed $0^+ \rightarrow 0^+$ nuclear β decays
- 2020 survey by Hardy and Towner, including recent calculations for radiative corrections:

$$\mathcal{F}t \equiv ft(1+\delta_R')(1+\delta_{NS}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)}$$

 $\mathcal{F}t$ merely changes

Uncertainties on $\mathcal{F}t$ larger (2.6 times) due to new theoretical terms in δ_{NS}