Updates of Some Standard EM Models

Mihály Novák CERN (EP-SFT)

28-08-2018

÷,

 299

Contents

[The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

[Standard Pair-Production and Bremsstrahlung models](#page-16-0) ■ Standard e^{-/e+} [Pair-Production models](#page-17-0) Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

[Some possible EM performance improvements:](#page-35-0)

- [G4EmElementSelector](#page-36-0)
- Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

Summarv

イロメ イ押メ イヨメ イヨメ

[Theoretical background \(in a nutshell\)](#page-2-0)

Contents

[The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

[Standard Pair-Production and Bremsstrahlung models](#page-16-0) ■ Standard e^{-/e+} [Pair-Production models](#page-17-0) Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

3 [Some possible EM performance improvements:](#page-35-0)

[G4EmElementSelector](#page-36-0)

• Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

 \sqrt{m}) \sqrt{m}) \sqrt{m}

[Theoretical background \(in a nutshell\)](#page-2-0)

Before (more details can be found [here\)](https://indico.fnal.gov/getFile.py/access?contribId=99&sessionId=31&resId=0&materialId=slides&confId=9717) **:**

- a new version of the Goudsmit-Saunderson multiple Coulomb scattering model was developed [\(3 years ago,](https://indico.fnal.gov/getFile.py/access?contribId=99&sessionId=31&resId=0&materialId=slides&confId=9717) Geant4.10.2)
- employs exact Goudsmit-Saunderson angular distributions
- \bullet based on (relativistic) screened-Rutherford elastic DCS (DCS_{SRF}): scattering of **spinless** e [−] on **exponentially screened**, **point** like Coulomb **potential**
- solution of the relativistic Schrödinger equation (Klein-Gordon equation) for spinless e^{-} ($/e^{+}$) under the first Born approximation
- simple analytical DCS with only one screening parameter \rightarrow smooth transformed GS angular distributions \rightarrow very efficient sampling of angular deflection
- this model was developed by Kawrakow and Bielajew 1 (the EGSnrc one)
- the new Geant4 GS model was significantly faster, more robust and theoretically more consistent compared to the previous version (*<* Geant4.10.2)

 1 I.Kawrakow,A.F.Bielajew, NIMB 134(1998)325-336]

∍

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

[Theoretical background \(in a nutshell\)](#page-2-0)

With Geant4.10.4: Mott or spin-relativistic corrections:

- Mott DCS (DCSMott): scattering of e[−]/e⁺ **with spin** on a point like, unscreened Coulomb potential (the unscreened Rutherford DCS is the spinless correspondence)
- solution of the Dirac equation with a point like, unscreened scattering potential: relativistic Dirac-Coulomb partial wave calculation

o the DCS used is

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \equiv \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(Z, E_{kin}, \theta) = \left[\frac{ZZ'e^2}{\rho c \beta}\right]^2 \frac{R_{Mott}(Z, E_{kin}, \theta)}{[1 - \cos(\theta) + \eta']^2} \equiv \text{DCS}_{SRF \times Mott}
$$

 \bullet where $R_{Mott}(Z, E_{kin}, \theta) = \text{DCS}_{Mott}/\text{DCS}_{RF}$ with DCS_{RF} being the unscreened, relativistic Rutherford DCS η' is a modified screening parameter such that the most accurate PWA first transport cross section (that determines the mean of the GS angular distribution) is reproduced by $\mathsf{DCS}(\eta')_{SRF\times Mot}$ i.e. the solution of

$$
2\pi\int_0^\pi[1-P_{l=1}(\cos(\theta))] \frac{{\rm d}\sigma}{{\rm d}\Omega}\sin\theta{\rm d}\theta=2\pi\int_0^\pi[1-P_{l=1}(\cos(\theta))] \frac{{\rm d}\sigma}{\rm d}\Omega^{\rm PWA}\sin\theta{\rm d}\theta
$$

GS angular distributions were computed based on this form of the DCS and the corresponding rejection functions are stored in files $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Theoretical background \(in a nutshell\)](#page-2-0)

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 6/44

 $2Q$

 \equiv

メロメ メタメ メミメ メミメー

[Theoretical background \(in a nutshell\)](#page-2-0)

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 7/44

 290

Þ

[More results](#page-7-0)

Contents

[The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- **A** [More results](#page-7-0)

2 [Standard Pair-Production and Bremsstrahlung models](#page-16-0) ■ Standard e^{-/e+} [Pair-Production models](#page-17-0) Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

3 [Some possible EM performance improvements:](#page-35-0)

[G4EmElementSelector](#page-36-0)

• Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

More results: low energy e[−] [in water, Dose Point Kernel simulation was a long standing problem \(](#page-10-0)**Geant4.10.5.beta vs EGSnrc**)

EGSnrc doesn't have model for energy loss straggling!

Dose Point Kernel: $E_0 = 15$ [keV] e⁻ in H₂O

メロメメ 御 メメ きょくきょ

 299

Þ

More results: low energy e[−] [in Silicon, depth dose data \(](#page-11-0)**left:** Geant4.10.5.beta vs data; **right:** PENELOPE vs data)

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 12/44

 299

÷.

More results: e[−] [backscattering, Geant4.10.5.beta vs data, EGSnrc, PENELOPE \(](#page-12-0)**left:** Al; **right:** Au)

EGSnrc: based on E.S.M.Ali and D.W.O. Rogers, Phys. Med. Biol. 53 (2008) 1527-1543 PENELOPE: J.Sempau et al. Nucl. Instr. and Meth. in Phys. Res. B 207(2003)107-123

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 13/44

More results: e[−] backscattering (**left:** [Geant4.10.5.beta vs data;](#page-13-0) **right:** EGSnrc vs data)

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 14/44

More results: e[−] backscattering (**left:** [Geant4.10.5.beta vs data;](#page-14-0) **right:** EGSnrc vs data)

(ロ) (母)

 \rightarrow

Þ

GS-Mott conclusion:

- the Geant4 Goudsmit-Saunderson MSC model has settings (version $>$ Geant4-10.4.) to describe e[−]*/*⁺ transport with high accuracy from low to high Z materials down to ∼ keV energies
- in order to demonstrate this, a very detailed e^{-/+} transport benchmark is ongoing: comparing simulated (any and many type of) experimental data:
	- backscattering/transmission coefficients, energy/angular distributions, depth dose
	- wide range of primary energy: form few hundred eV up to few tens of MeV
	- from low to high Z materials
- see more on these results at: **[3rd Geant4 International User Conference at](http://geant4.in2p3.fr/2018/) [the Physics-Medicine-Biology Frontier, Bordeaux \(France\), 29-31](http://geant4.in2p3.fr/2018/) [October 2018](http://geant4.in2p3.fr/2018/)**

∍ .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Contents

1 [The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

2 [Standard Pair-Production and Bremsstrahlung models](#page-16-0) ● Standard e^{-/e+} [Pair-Production models](#page-17-0)

 \bullet Standard e^{-/e+} [Bremsstrahlung models](#page-29-0)

[Some possible EM performance improvements:](#page-35-0)

- [G4EmElementSelector](#page-36-0)
- Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

Summarv

COLLE

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

 QQ

Standard e $^-/\mathrm{e}^+$ [Pair-Production models](#page-17-0)

Contents

[The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

2 [Standard Pair-Production and Bremsstrahlung models](#page-16-0) ● Standard e^{-/e+} [Pair-Production models](#page-17-0) Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

3 [Some possible EM performance improvements:](#page-35-0)

[G4EmElementSelector](#page-36-0)

• Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

Standard e^-/e^+ [Pair-Production models](#page-17-0)

G4BetheHeitlerModel and **G4PairProductionRealModel**

- both model final state sampling is based on the Bethe-Heitler $\mathsf{DCS^1}$ (with screening and Coulomb corrections and including conversion in the field of atomic electrons)
- the low-energy model (G4BetheHeitlerModel) employs parameterised cross section while the high energy model (G4PairProductionRealModel), that includes LPM suppression, makes use of numerically integrated cross sections
- screening correction is introduced through screening functions based on the Thomas-Fermi(TF) model of the atom (Butcher-Messel² analytical approximation)
- complete screening approximation is used, with *radiation logarithms* computed from the "Hartree-Fock" model of the atom, for low Z atoms where the TF model doesn't work (see more on this later)

 $A \oplus B$ and $A \oplus B$ and $A \oplus B$

÷, QQ

 $¹$ H Bethe, W Heitler - Proc. R. Soc. Lond. A, 1934</sup>

 2 J. C. Butcher and H. Messel - Nuclear Physics, vol. 20, pp. 15?128, 196

[G4BetheHeitlerModel, G4PairProductionRealModel](#page-19-0)

Some artificial structures can be observed in the e[−]**/e**⁺ **energy distributions** reduced energy transferred to the e^+ in pair-production

 2990

÷.

[G4BetheHeitlerModel, G4PairProductionRealModel](#page-19-0)

"Spikes" has been removed by improving the G4Pow::A13 approximation. reduced energy transferred to the e⁺ in pair-production

E.

[Screening: coherent](#page-21-0)

Screening: Bethe-Heitler DCS (without any corrections)

- first-order Born approximation, conversion in the field of a point-like nucleus screened by the atomic electrons
- after integrating all angular variables ($\epsilon \equiv E_{+}/E_{\gamma}, \mu \equiv m_{e}c^{2}, \delta \equiv q_{\text{min}})$

$$
\frac{d\sigma}{d\epsilon} = \alpha r_0^2 Z^2 \left\{ \left[\epsilon^2 + (1 - \epsilon)^2 \right] \left[4 \int_{\delta}^{\mu} \frac{(q - \delta)^2}{q^3} \left(1 - \frac{F(q, Z)}{Z} \right)^2 dq + 4 \right] - \frac{2}{3} \epsilon (1 - \epsilon) \left[4 \int_{\delta}^{\mu} \frac{q^3 - 6\delta^2 q \ln \frac{q}{\delta} + 3\delta^2 q - 4\delta^3}{q^4} \left(1 - \frac{F(q, Z)}{Z} \right)^2 dq + \frac{10}{6} \right] \right\}
$$

- \bullet these remaining integrals can be evaluated only numerically because of the atomic form factor $F(q, Z)$
- the atomic form factor is the Fourier transform of the atomic electron density $\rho(\vec{r})$ (spherically symmetric one)

$$
F(q, Z) = \int \rho(\overrightarrow{r}) e^{i\overrightarrow{q}} \overrightarrow{r} d^{3}r = 4\pi \int_{0}^{\infty} \rho(r) \frac{\sin(qr)}{qr} r^{2} dr
$$

O one can introduce the screening functions

$$
\varphi_1(\delta) = 4 \int_{\delta}^{\mu} \frac{(q-\delta)^2}{q^3} \left(1 - \frac{F(q, Z)}{Z}\right)^2 dq + 4 + \frac{4}{3} \ln(Z)
$$

$$
\varphi_2(\delta) = 4 \int_{\delta}^{\mu} \frac{q^3 - 6\delta^2 q \ln \frac{q}{\delta} + 3\delta^2 q - 4\delta^3}{q^4} \left(1 - \frac{F(q, Z)}{Z}\right)^2 dq + \frac{10}{\epsilon^3} + \frac{4}{\epsilon^3} \ln(Z)
$$

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 22/44

[Screening: coherent](#page-21-0)

- using the Thomas-Fermi model of the atom, F(q*,* Z)*/*Z depends only on qZ−1*/*³ which makes possible to δ introduce Z independent $\varphi_1(\gamma)^{TF}, \varphi_2(\gamma)^{TF}$ with $\gamma \equiv 200 \delta Z^{-1/3}/mc^2$
- \bullet $\varphi_1(\gamma)$, $\varphi_2(\gamma)$ were computed numerically by using the numerical Thomas-Fermi atomic potential
-

[Screening: coherent](#page-21-0)

Using this new analytical approximation to the universal(TF) coherent screening functions:

Incoherent screening functions:

- \bullet our models contain corrections to the neglected(in BH DCS) conversion in the field of atomic electrons
- \bullet the incoherent screening (by the other electrons and the nucleus) functions are similar to the coherent one

$$
\psi_1(\delta) = 4 \left[1 + \int_{\delta}^{\mu} \frac{(q-\delta)^2}{q^3} \frac{S(q,Z)}{Z} dq \right] + \frac{8}{3} \ln(Z)
$$

$$
\psi_2(\delta) = 4 \left[\frac{5}{6} + \int_{\delta}^{\mu} \frac{q^3 - 6\delta^2 q \ln \frac{q}{\delta} + 3\delta^2 q - 4\delta^3}{q^4} \frac{S(q,Z)}{Z} dq \right] + \frac{8}{3} \ln(Z)
$$

- \bullet the incoherent scattering function, $S(q, Z)$ plays the role of the atomic form factor $F(q, Z)$ now
- S(q*,* Z) is relatively easy to compute in the Thomas-Fermi model but more involved in case of more sophisticated 0 atomic models(see later)
- using the Thomas-Fermi model of the atom, S(q*,* Z)*/*Z depends only on qZ−2*/*³ , which makes possible to \int introduce Z independent $\psi_1(\epsilon)^{TF}$, $\psi_2(\epsilon)^{TF}$ with $\epsilon \equiv 200 \delta Z^{-2/3}/mc^2$
- ϕ $\psi_1(\epsilon), \psi_2(\epsilon)$ were computed numerically by using the numerical Thomas-Fermi atomic potential

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{B} + \mathbf{A}$

 2990 \Rightarrow

[Screening: Dirac-Fock model](#page-25-0)

Numerical Dirac-Fock computations:

- the Thomas-Fermi model of the atom doesn't work well in case of small Z
- \bullet more sophisticated atomic model need to be used (\rightarrow we lose the universal, Z independent property of the TF model based screening)
- \bullet the DBSR HF^1 general Dirac-Hartree-Fock program was used to compute accurate Dirac-Fock one electron orbitals for $Z = 1 - 103$
- these numerical one-electron orbitals were used to compute the corresponding atomic electron density and the Dirac-Fock atomic form factors F(q*,* Z)
- \bullet similarly, the orbitals were used to compute the Dirac-Fock incoherent scattering functions $S(q, Z)$:

•
$$
S(E, \theta, Z) = \sum_{i}^{all \text{ shells}} f_i \Theta(E - U_i) n_i(p_i^{\text{max}})
$$

- $n_i(p_z) \equiv \int_{-\infty}^{p_z} J_i(p'_z) dp'_z$
- the one-electron Compton profile of the *i-*th shell: $J_i(p_z)\equiv\int\int\rho_i({\bf p})\mathrm{d}\rho_\mathrm{x}\mathrm{d}\rho_\mathrm{y}$ which with spherical symmetry $J_i(p_z) = \frac{1}{2} \int_{p_z}^{\infty} \rho_i(p) p \mathrm{d}p$
- the momentum distribution $\rho_i({\bf p})\equiv |\phi_i({\bf p})|^2$ where $\phi_i({\bf p})$ is the momentum representation of the one electron wave function $\phi_i(\mathbf{r})$
- as a side product of this computation, Dirac-Fock one-electron momentum distributions and Compton profiles were obtained that can be used for an accurate Compton scattering model

 1 O. Zatsarinny and C. F. Fischer - Computer Physics Communications, vol. 202, pp. 287-303, 2016. $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

[Screening: Dirac-Fock model](#page-25-0)

Coherent and incoherent screening functions: Thomas-Fermi vs Dirac-Fock

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 27/44

[Screening: Dirac-Fock model](#page-25-0)

The complete screening approximation is used for low Z:

- the coherent radiation logarithm: $L_{\text{el}} \equiv \varphi_1(\gamma=0)/4 \frac{1}{3}\ln(Z) \to L_{\text{el}}(\delta=0) = \int_{\delta}^{\mu}$ $(q-δ)²$ $\frac{(-\delta)^2}{q^3}\left(1-\frac{F(q,Z)}{Z}\right)^2\mathrm{d}q+1$ and $\varphi_1(0) - \varphi_2(0) = 2/3$ which in the Thomas-Fermi model $L_{el} = \ln[184.15 Z^{-1/3}]$
- the coherent radiation logarithm: $L_{\text{inel}} \equiv \psi_1(\epsilon=0)/4 \frac{2}{3}\ln(Z) \to L_{\text{inel}}(\delta=0) = \int_{\delta}^{\mu}$ (q−*δ*) 2 $\frac{-\delta)^2}{q^3} \frac{S(q,\mathcal{Z})}{\mathcal{Z}} \mathrm{d}q + 1$ and $\psi_1(0)-\psi_2(0)=2/3$ which in the Thomas-Fermi model $L_\mathsf{inel}=\mathsf{In} [1194 Z^{-2/3}]$

New Dirac-Fock(DF) Radiation Logarithms(compared to Tsai's values)

 \overline{C}

 1 YS Tsai - Reviews of Modern Physics, 46(4), 815, (1974); (best estimate)

イロト イ母 トイラト イラト

 QQ

 \Rightarrow

[G4BetheHeitlerModel, G4PairProductionRealModel](#page-28-0)

G4BetheHeitlerModel, G4PairProductionRealModel new versions in Geant4.10.5.beta:

- **•** more robust and coherent model with improved screening correction
- numerical Dirac-Fock coherent and incoherent screening functions \rightarrow possibility to produce more accurate, numerical DCS (also for bremsstrahlung)
- numerical Dirac-Fock one-electron momentum distributions, Compton profiles as side products \rightarrow can be re-used for an accurate impulse approximation based Compton model
- improved and more efficient LPM correction in case of G4PairProductionRealModel
- **•** corrected inefficient use of EM target element selector
- code cleanup and in-code documentation

Speed-up (compared to the original version)

Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

Contents

[The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

[Standard Pair-Production and Bremsstrahlung models](#page-16-0) ■ Standard e^{-/e+} [Pair-Production models](#page-17-0)

Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

3 [Some possible EM performance improvements:](#page-35-0)

- [G4EmElementSelector](#page-36-0)
- Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

[G4eBremsstrahlungRelModel](#page-30-0)

G4eBremsstrahlungRelModel (≤ **Geant4.10.5.beta):**

- based on Tsai's¹ form of the bremsstrahlung DCS, which is a Bethe-Heitler DCS with screening(TF model) and Coulomb(Bethe-Maximon) corrections to the first Born approximation
- **•** photon emission in the field of atomic electrons is explicitly included (similarly to Wheeler and $Lamb²$)
- used at Ee+*/*[−] *>* 1[GeV]: both LPM and dielectric suppressions are included

New version of G4eBremsstrahlungRelModel (*>* **Geant4.10.5.beta):**

- **•** improved and more efficient LPM correction
- more efficient angular generator
- code cleanup and in-code documentation

 1 YS Tsai - Reviews of Modern Physics, 46(4), 815, [\(1](#page-29-0)974[\)](#page-31-0); 2 JA Wheeler, WE Lamb Jr - Physical Review, 55([9\),](#page-29-0) 8[58,](#page-31-0) (1[939](#page-30-0)) э QQ

[G4SeltzerBergerModel](#page-31-0)

G4SeltzerBergerModel (≤ **Geant4.10.5.beta):**

- based on the numerical, Seltzer-Berger $DCS¹$, that is a synthesis of various theoretical results
- used at Ee+*/*[−] *<* 1[GeV]: dielectric suppression is included
- rejection based sampling of emitted photon energy with *heuristic estimate* of function maximum
- 2D run-time interpolation of the numerical DCS during the final state sampling
- all these make the current model sub-optimal

New version of G4SeltzerBergerModel (*>* **Geant4.10.5.beta):**

- \bullet option to use pre-prepared, Z-dependent sampling tables for faster photon energy generation
- \bullet challenging: emitted photon energy distribution has material (dielectric suppression), gamma production threshold and particle type (correction to e^+) dependence
- all these corrections can be included in a rejection loop on top of the sampling tables: very low rejection rate \rightarrow high efficiency
- \bullet some memory is taken by the sampling tables (master only; 6 [MB] in case of CMS geometry)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 1 SM Seltzer, MJ Berger - NIMB, 12(1), 96, (1985)

[G4SeltzerBergerModel](#page-32-0)

New version of G4SeltzerBergerModel (*>* **Geant4.10.5.beta):** all corrections are included

Þ

[G4SeltzerBergerModel](#page-32-0)

New version of G4SeltzerBergerModel (*>* **Geant4.10.5.beta):** speedup

 \leftarrow \Box ∢母 Þ

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 34/44

 299

Þ

[G4SeltzerBergerModel, G4eBremsstrahlungRelModel](#page-34-0): speedup

New version of G4SeltzerBergerModel, G4eBremsstrahlungRelModel (*>* **Geant4.10.5.beta)**

Mihály Novák [23rd Geant4 Collaboration Meeting \(27-31 August 2018\)](#page-0-0) 35/44

Contents

1 [The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

[Standard Pair-Production and Bremsstrahlung models](#page-16-0) ■ Standard e^{-/e+} [Pair-Production models](#page-17-0) Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

3 [Some possible EM performance improvements:](#page-35-0)

[G4EmElementSelector](#page-36-0)

O Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

 $\mathsf{\overline{S}{}um}{}$ mary

 $A \oplus A \times A \oplus A \times A \oplus A$

[G4EmElementSelector](#page-36-0)

Contents

[The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

2 [Standard Pair-Production and Bremsstrahlung models](#page-16-0)

■ Standard e^{-/e+} [Pair-Production models](#page-17-0) Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

3 [Some possible EM performance improvements:](#page-35-0)

[G4EmElementSelector](#page-36-0)

• Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

イロト イ押ト イヨト イヨト

[G4EmElementSelector](#page-36-0)

G4EmElementSelector:

- the G4VEmModel base class provides the possibility to (automatically)build a collection of G4EmElementSelector-s for each material cuts couple
- \bullet this collection can be used by the derived model at run-time, to sample the target atom of the given interaction (in case of multi-element materials)
- **e** each individual (i.e. for a given *model* given material cuts couple) G4EmE1ementSe1ector of the collection stores a table of discrete probabilities of having the given interaction on a given element of the material (i.e. $P(Z_i)=\Sigma_{Z_i}/\Sigma)$ over a discrete energy grid: equally spaced in log energy scale
- the implementation of the table is a vector of G4PhysicsLogVector pointer (as many as elements in the given material)
- at run-time, the target atom is sampled according to this discrete probability distribution: the probabilities are interpolated for the given primary energy
- however, **the energy bin index is re-computed for each possible target element of the material during the interpolation(at each final state sampling): just because they stored as individual log-vectors**
- \bullet each of these re-computation means a (redundant) computation of the logarithm of the primary particle kinetic energy, that can be skipped $(1 + \epsilon)$, $(1 + \epsilon)$, $(1 + \epsilon)$ \equiv ΩQ

Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

Contents

[The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

2 [Standard Pair-Production and Bremsstrahlung models](#page-16-0)

- Standard e^{-/e+} [Pair-Production models](#page-17-0)
- Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

3 [Some possible EM performance improvements:](#page-35-0)

- [G4EmElementSelector](#page-36-0)
- O Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

[Summary](#page-42-0)

イロト イ押ト イヨト イヨト

Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

Storing the logarithm of the primary particle kinetic energy:

- the most optimal and re-usable solution to the G4EmElementSelector problem: having the logarithm of the primary particle kinetic energy $+$ caching the last energy bin index that was used
- \bullet logarithm of the kinetic energy can be stored and updated together with the kinetic energy (in G4DynamicParticle to guarantee consistency!)
- \bullet the logarithm of the kinetic energy can be re-used to speed-up table interpolations: dE/dx , range, lambda table interpolations at run-time
- several redundant computations of the log-kinetic energy can be skipped at each step \rightarrow reduce the cost of G4PhysicsVector::Value: all those tables are G4PhysicsLogVector-s i.e. values over the primary particle kinetic energy spaced equally in log scale

Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

10 [GeV] e[−] **in Simplified Sampling Calorimeter:** 50 layers of 2.3 [mm] Pb and 5.7 [mm] liquid-Ar **CURRENT:**re-compute Log(kinetic energy)

Self Incl. Called Function 10.19 0.80 43 584 415 G4PhysicsVector::Value(double, unsigned long &) co...

=== $Incl.$ Self Called Function 6.92 2.18 57 535 356 G4Log(double)

******* ∼**23 % reduction in calls to G4Log()** → **few % run-time improvement *****

NEW:stored Log(kinetic energy)

Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

Proposition:

- \bullet the solution proposed (see the code in the previous slide) guarantee, that the logarithm of the kinetic energy is computed only on demand and re-computed only if it's necessary
- the corresponding modifications(usually very small, see above) affects several categories (particles, global, emutils, emstand)
- these modifications can be applied in a dedicated git branch on top of a well defined base
- **•** the usual *Geant4 Profiling and Benchmarking* can be done (*Julia&Soon*) and further actions can be taken based on the results
- note, that the proposed modifications:
	- do not change the simulation results (i.e. numerically identical results)
	- practically zero run-time overhead (isLogEkinUpToDate = false by default)
	- one additional double and a boolean member in G4DynamicParticle
	- it should give \sim few % run-time improvement and \sim 23 % reduction in calls to G4Log()

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Contents

1 [The Goudsmit-Saunderson MSC model: Mott-correction](#page-1-0)

- [Theoretical background \(in a nutshell\)](#page-2-0)
- [More results](#page-7-0)

[Standard Pair-Production and Bremsstrahlung models](#page-16-0) ■ Standard e^{-/e+} [Pair-Production models](#page-17-0) Standard e−/e⁺ [Bremsstrahlung models](#page-29-0)

[Some possible EM performance improvements:](#page-35-0)

[G4EmElementSelector](#page-36-0)

• Reducing the cost of [G4PhysicsVector::Value\(G4double, size](#page-38-0)_t&):

[Summary](#page-42-0)

 $-10⁻¹$

 \sqrt{m}) \sqrt{m}) \sqrt{m}

 QQ

Summary:

- the Goudsmit-Saunderson MSC model with its spin-relativistic correction and error-free stepping options provides an accurate model for e[−]*/*+ Coulomb scattering from low to high Z materials down to \sim keV energies
- a detailed e[−]*/*+ transport benchmark against experimental data is ongoing in order to demonstrate this
- standard (and non-standard) bremsstrahlung and pair-production models have been improved both in terms of accuracy and spped
- these computations provided ingredients that can be used in the future for further model improvements
- an optimisation of the EM framework is suggested by significantly reducing the number of calls to G4Log() while keeping the results numerically identical

 QQ

÷,

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$