
Recent HEP Experience
with Common Software Peter Elmer - Princeton University

HEP Software Collaboration

• In this talk I am primarily interested in:

• Understanding better what our common software projects
look like, and how they get adopted by others and evolve.

• Understanding better how and when projects succeed in
"leaving the ghetto" of a particular group, experiment or
the field is potentially interesting.

Application software code bases

• The CMS software (CMSSW) release consists of ~3.6M SLOC of C++
(SLOC = source lines of code)

• Atlas has reported even larger code base (~5M SLOC?)

• BaBar had ~3M SLOC in 2007 in the software release

• CDF (Run 2) had ~2.7M SLOC in 2007 in their software release

• These numbers are for code in releases, analysis code is not counted here

• ROOT is ~1.7 MSLOC, Geant4 is ~1.2 MSLOC, all generators used by
CMS sum to ~1.4M SLOC, gcc is 7M SLOC

People committing code to CMSSW per month

See also "The Life Cycle of HEP Offline Software",
P.Elmer, L. Sexton-Kennedy, C.Jones, CHEP 2007

Common Software Packages

• ROOT and Geant4 are the obvious common packages,
which will in one form or another be part of any HEP
collaboration.

• An important question is: what else could be?

• Another important question is: what else is common
today and how/why did the packages become "common
code"?

• How do we develop more common software?

Physics Generators

• alpgen (187k), cascade (35.9k) charybdis (2.9k) jimmy (5.4k)
LHAPDF (79.6k) Rivet (77.9k) Pythia6 (78k) Pythia8 (75k)
Tauola (21.8k) Tauola++ (58.4k) ThePEG (69k) toprex (33k)
Sherpa (297.5k) MCDB (1.2k) libHepML (2k) HepMC (9.3k)
HepPDT (13.1k) Herwig (120k) Herwig++ (189.9k) Photos
(69.k) Professor (14.5k) EvtGenLHC (38.7k)

• Total of about 1.4 MSLOC, approx. half C++, half Fortran,
clearly HEP-specific, not of interest to others.

• Starting to become more computationally intensive. (And
incentives for theorists are different...)

System and Software Engineering

• General open source: boost bz2lib ccache curl cppunit
distcc DMTCP doxygen expat jemalloc gcc gccxml gdb
git gmake llvm libjpg libpng libtiff libungif libuuid libxml2
opengl openldap openssl oracle SLOCCount TBB
Google-Perftools Valgrind xerces-c xz zlib libSigC++
python python-ldap protobuf ipython sqlite gdbm lcov
cvs2git pacparser pcre rpm apt glimpse

• Developed in HEP: Castor classlib dcap dpm xrootd
IgProf

Data Analysis, Math and Graphics

• General open source: gnuplot matplotlib numpy scipy
GSL meschach lapack fftw3 CGAL graphviz Qt PyQt SIP

• Developed in HEP: CLHEP VDT ROOT (RooFit RooStats)
PyMinuit2

• Several potentially interesting tools for the rest of the
world.

HEP simulation and misc

• CORAL FastJet fftjet frontier-client Geant4 KtJet Hector
TKOnlineSW

Inventory of HEP Common Packages

• I looked through the CMS software externals, the LCG AA
distribution and added a few more examples picked
randomly from outside that

• I will mostly ignore generators here (many with theorist
collaborations) and focus on code developed by or for the
experiments

• I will ignore (mostly) "Grid Tools" in favor of application
software

See accompanying draft note "Case Studies
of Scientific Software Collaborations in

High Energy Physics and Beyond"

Keywords/Questions

• Champions - How do we create them?

• Collaborations and contributors - common aspect of how
things grew (perhaps more important than acquiring new
user communities at the beginning)

• User driven/experiment driven - known to be critical

• Facilitating adoption and distribution

Keywords/Questions

• Longevity/Incentives

• R&D and Novel Ideas - Unique and/or new functionalities,
how can we encourage their creation as common
software and or migration into common software

• Standards and the rest of the world

Glast/Fermi Comments

• Limited effort for in-house software development

• "Beg, Borrow and Steal"

• Gaudi, ROOT, CLHEP, Xrootd, CFITSIO and related tools

• Adopted CMT, but later had to drop it when it seemed support had
vanished

• Gaudi had more dependencies than they needed, "separation of
xrootd from ROOT a godsend"

• Grid not ready for them, they

Other projects - HepForge

• A lightweight development environment for HEP software

• Mailing lists, shell accounts, archiving of releases and low
maintenance web sites

• Perhaps the rest of the Web has caught up in some
aspects (e.g. github), but a logical next step might be
hosted build and runtime tests (with both global and
project specific test configurations and versions?)

An aside: Scientific Software Production,
Cyberinfrastructure, Ecosystems

• While my aims are actually very pragmatic, while looking into this I see
that "Scientific Software Production" is actually an academic area of
research. See, for example, James Howison (http://howison.name/)
and follow references from there. For example:

• http://howison.name/pubs/IncentivesAndIntegration-p459-
howison.pdf

• See also (another aside): "When Authorship Isn’t Enough: Lessons
from CERN on the Implications of Formal and Informal Credit
Attribution Mechanisms in Collaborative Research ", J. Birnholtz

• http://quod.lib.umich.edu/j/jep/3336451.0011.105?
rgn=main;view=fulltext

http://howison.name/
http://howison.name/pubs/IncentivesAndIntegration-p459-howison.pdf

Conclusions

• Common packages succeed for a number of reasons, but
the themes are well known

• In addition to specifying a governance, perhaps we
should document precisely how the collaboration will
foster the creation of software champions, how we
improve incentives (beyond top-down control of
resources) and ultimately how we foster an ecosystem of
software, not a single toolkit

