The neuron-specific N1 exon of the mouse c-src transcript is normally skipped in nonneuronal cell... more The neuron-specific N1 exon of the mouse c-src transcript is normally skipped in nonneuronal cells. In this study, we examined the sequence requirements for the exclusion of this exon in nonneuronal HeLa cell nuclear extracts. We found that the repression of the N1 exon is mediated by specific intron sequences that flank the N1 exon. Mutagenesis experiments identified conserved CUCUCU elements within these intron regions that are required for the repression of N1 splicing. The addition of an RNA competitor containing the upstream regulatory sequence to the HeLa extract induced splicing of the intron downstream of N1, indicating that the competitor sequence binds to splicing repressor proteins. The similarities between this mechanism for src splicing repression and the repression of other regulated exons point to a common role of exon-spanning interactions in splicing repression.
The neuron-specific N1 exon of the mouse c-src transcript is normally skipped in nonneuronal cell... more The neuron-specific N1 exon of the mouse c-src transcript is normally skipped in nonneuronal cells. In this study, we examined the sequence requirements for the exclusion of this exon in nonneuronal HeLa cell nuclear extracts. We found that the repression of the N1 exon is mediated by specific intron sequences that flank the N1 exon. Mutagenesis experiments identified conserved CUCUCU elements within these intron regions that are required for the repression of N1 splicing. The addition of an RNA competitor containing the upstream regulatory sequence to the HeLa extract induced splicing of the intron downstream of N1, indicating that the competitor sequence binds to splicing repressor proteins. The similarities between this mechanism for src splicing repression and the repression of other regulated exons point to a common role of exon-spanning interactions in splicing repression.
Uploads
Papers by Raymond C Chan