Conferences and Workshops by Alessandro Cammarano
The increasing popularity of micro-scale energy-scavenging techniques for wireless sensor network... more The increasing popularity of micro-scale energy-scavenging techniques for wireless sensor networks (WSNs) is opening new opportunities for the development of energy-autonomous systems. To sustain perpetual operations, however, environmentally-powered motes must adapt their workload to the stochastic nature of ambient power sources. Energy prediction algorithms, which forecast the source availability and estimate the expected energy intake in the near future, are precious tools to support the development of proactive power management strategies. In this work, we propose Pro-Energy-VLT, an enhancement of the Pro-Energy prediction algorithm that improves the accuracy of energy predictions, while reducing its memory and energy overhead.
Papers by Alessandro Cammarano
IEEE Transactions on Parallel and Distributed Systems, 2014
ABSTRACT We present a distributed, integrated medium access control, scheduling, routing and cong... more ABSTRACT We present a distributed, integrated medium access control, scheduling, routing and congestion/rate control protocol stack for Cognitive Radio Ad Hoc Networks (CRAHNs) that dynamically exploits the available spectrum resources left unused by primary licensed users, maximizing the throughput of a set of multi-hop flows between peer nodes. Using a Network Utility Maximization (NUM) formulation, we devise a distributed solution consisting of a set of sub-algorithms for the different layers of the protocol stack (MAC, flow scheduling and routing), which result from a natural decomposition of the problem into sub-problems. Specifically, we show that: 1) The NUM optimization problem can be solved via duality theory in a distributed way, and 2) the resulting algorithms can be regarded as the CRAHN protocols. These protocols combine back-pressure scheduling with a CSMA-based random access with exponential backoffs. Our theoretical findings are exploited to provide a practical implementation of our algorithms using a common control channel for node coordination and a wireless spectrum sensor network for spectrum sensing. We evaluate our solutions through ns-2 MIRACLE-based simulations. Our results show that the proposed protocol stack effectively enables multiple flows among cognitive radio nodes to coexist with primary communications. The CRAHN achieves high utilization of the spectrum left unused by the licensed users, while the impact on their communications is limited to an increase of their packet error rate that is below 1%.
IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014
2013 Proceedings IEEE INFOCOM, 2013
Uploads
Conferences and Workshops by Alessandro Cammarano
Papers by Alessandro Cammarano