
Autotext: AutoML for Text

Classification

by

Jorge Gustavo Madrid Pérez

Dissertation submitted in partial fulfillment of the requirements

for the degree of

MSc. in Computer Science

at the

Instituto Nacional de Astrof́ısica, Óptica y Electrónica

August, 2019

Tonantzintla, Puebla, Mexico

Advisor:

Hugo Jair Escalante

Coordination of Computer Science

INAOE, Mexico

c©INAOE 2019

All rights reserved. The author grants to INAOE permission to

reproduce and to distribute copies of this thesis document in

whole or in part.

Contents

Acknowledgments xiii

Abstract xv

Resumen xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Research problem . 6

1.3 Scope and limitations . 9

1.4 Thesis organization . 9

2 Theoretical framework 11

2.1 Text classification . 11

2.1.1 Pre-processing methods for text documents 12

2.1.2 Text representation . 13

2.1.3 Classification models . 16

iii

2.1.4 Text classification pipeline . 17

2.1.5 Pipeline performance . 17

2.2 AutoML . 19

2.2.1 Hyper-parameter optimization 19

2.2.2 Meta-learning . 20

2.2.3 Meta-features . 21

3 Related work 23

3.1 Hyper-parameter optimization . 23

3.2 Meta-learning and automated machine learning 26

3.3 Automated text classification . 28

4 An AutoML method for text classification tasks 31

4.1 Meta-learning of textual representations 32

4.1.1 Proposed meta-features . 38

4.1.2 Recommendation of textual representations 44

4.2 Full pipeline selection . 47

4.2.1 AutoSKlearn . 48

4.3 Discussion . 49

5 Experiments and results 51

5.1 Datasets . 51

5.2 Predicting the task . 52

5.3 Recommending textual representations 60

5.4 Recommending pipelines . 64

5.4.1 Comparison with state-of-the-art 64

6 Conclusions and future work 69

6.1 Conclusions . 69

6.2 Contributions . 71

6.3 Future work . 72

Appendix 87

6.4 Meta-feature subsets . 87

List of Figures

List of acronyms . xi

1.1 Proposed method . 8

2.1 Meta-learning overview . 20

4.1 AutoText . 32

4.2 Offline phase . 35

4.3 Meta-learning knowledge base . 37

5.1 Tasks visualization . 52

5.2 Tasks distribution. 56

5.3 Accuracy of predicting representations 60

5.4 Comparison of different meta-feature subsets. 62

5.5 Comparison against a robust representation 63

vii

List of Tables

3.1 State of the art . 29

4.1 Text representations . 34

4.2 SVM for the meta-learning phase . 37

4.3 Symbols for meta-features . 40

4.4 Proposed meta-features . 44

4.5 Model for predicting a representation 46

4.6 Model for predicting a representation performance 46

5.1 List of datasets. 53

5.2 List of datasets. 54

5.3 List of datasets. 55

5.4 Task prediction results with 72 meta-features 57

5.5 Task prediction after meta-feature selection 58

5.6 Relevant meta-features by task-type 59

5.7 Results of predicting representations 61

ix

5.8 Results after meta-feature selection 61

5.9 Difficult classification tasks . 63

5.10 Results in benchmark datasets . 65

5.11 Results in diverse tasks . 66

6.1 38 Meta-features selected by Gini importance 87

6.2 38 Meta-features selected by Gini importance 88

List of acronyms

AutoML Automated Machine Learning

BO Bayesian Optimization

BOW Bag Of Words

DL Deep Learning

GP Gaussian Process

HPO Hyper-Parameter Optimization

KNN K Nearest Neighbors

LDA Latent Dirichlet Allocation

LIWC Linguistic Inquiry and Word Count

LSA Latent Semanteic Allocation

MI Mutual Information

ML Machine Learning

NLP Natural Language Processing

RF Random Forest

SOTA State-Of-The-Art

SVM Support Vector Machine

W2V Word To Vec

XGB eXtreme Gradient Boosting

Acknowledgments

Esta investigación fue posible gracias a CONACyT a través de la beca 634936.

Quisiera agradecer a todas las personas involucradas en el desarrollo de este proyecto.

Primero, mi más sincero agradecimiento al Dr. Hugo Jair por su continuo apoyo y

gúıa durante todo el proceso, sus comentarios y cuestionamientos han ampliado

mi conocimiento y mi formación. Agradezco a todos mis profesores en el INAOE,

especialmente, las observaciones, gúıa y conversaciones de mis sindoles: los doctores

Ariel Carrasco, Luis Villaseor y Manuel Montes.

Este tiempo no hubiera sido lo mismo sin mis compañeros de maestŕıa. Gracias

por sus consejos y amistad.

Finalmente, esta tesis está dedicada con mucho cariño a mis padres y a mi

hermana por su apoyo incondicional durante todos estos años; y a Brenda por creer

en mı́ desde el inicio y animarme siempre.

xiii

Abstract

Non-experts in Machine Learning research have an increasing demand for easy-to-use

methods to model solutions that use the large amounts of data available today, where

such solutions are expected to perform at least as well as one build by a human with

profound knowledge of ML and statistics. AutoML is the area that investigates the

automation of Machine Learning. Some state-of-the-art methods for approaching

this problem are already available, nonetheless none of them concentrate on the

challenges of Natural Language Processing.

This work comprises an extensive study in text classification where 81 different

problems were approached with the most commonly used algorithms. Leveraging

the obtained metadata from these experiments, a method that automatically builds

pipelines for classifying text documents is proposed. This method contemplates

the optimization of a classification model and its hyper-parameters as well as the

selection of the representation vector for a text in a given set of unprocessed text

documents. A characterization for tasks is introduced as part of this method, but

the reach of this novel description is not limited to AutoML problems.

Results in our experimentation show that the proposed AutoML method and

the novel characterization outperform previous approaches for automating text clas-

sification and under certain circumstances obtain comparable results to state-of-the-

art models. Being one of the first works to explore AutoML in NLP, several further

questions can be derived from this thesis with potential impact for both fields.

xv

Resumen

Personas con poca experiencia en aprendizaje de máquina tienen una creciente

demanda de métodos fáciles de usar para modelar soluciones que aprovechen la

gran cantidad de datos disponible en la actualidad, se espera que dichas soluciones

funcionen al menos tan bien como una construida por un humano con profundo

conocimiento en aprendizaje de máquina y estad́ıstica. AutoML es el área que in-

vestiga la automatización del aprendizaje de máquina. En el estado del arte existen

algunos métodos disponibles que abordan dicho problema, sin embargo, ninguno de

ellos se concentra en los retos de Procesamiento de Lenguaje Natural.

Este trabajo comprende un extenso estudio en classificación de textos donde 81

problemas son aborados usando los algoritmos más comunmente usados. Aprovechando

los meta-datos obtenidos de estos experimentos, un método que construye automáticamente

pipelines para clasificar documentos de texto es propuesto. Dicho método con-

templa la optimización de un modelo de clasificación aśı como la selección de una

representación vectorial para los textos dado un conjunto de documentos sin pre-

procesamiento alguno. Una nueva caracterización para las tareas de clasificación es

introducida como parte del método, pero como se muestra en este documento, el

alcance de dicha forma de descripción no está limitada al problema de AutoML.

Los resultados obtenidos en nuestra experimentación muestran que el método

de AutoML propuesto y la caracterización superan los resultados de enfoques ante-

riores para la automatización de tareas de clasificación de texto, y bajo ciertas cir-

xvii

cunstancias obtienen resultados comparables a modelos del estado del arte. Siendo

uno de los primeros trabajos en explorar AutoML en NLP, varias preguntas pueden

derivarse de esta tesis teniendo aśı impacto en ambas áreas.

Chapter 1

Introduction

1.1 Motivation

In an ever growing number of domains, Machine Learning has facilitated the so-

lution to different problems, from face recognition to service robots, from financial

to healthcare, ML has produced a number of pragmatic and powerful tools. The

recent success of these applications has resulted in the development of systems that

are seen as intelligent and has made Artificial Intelligence to gain attention from

different research areas and businesses.

Nowadays the success of Machine Learning relies on manually modeling a com-

plex pipeline which consists of a series of steps that receive a set of data, process

it, and make predictions for solving a problem. The success of the pipeline itself

depends on the availability of 2 crucial factors: data and human expertise. The

first one has become easier to find thanks to the the development in communication

technology and storage systems over the past few years. Nevertheless, the number

of areas and disciplines that could benefit from ML is huge and human experts with

profound knowledge in data science and an specific problem are still scarce in most

1

of them.

In addition, to manually design an ML pipeline consumes a lot of resources

for a highly trained team of experts, it is required to suitably define the problem,

and build a first pipeline with a pre-processing method for the data, a classification

or regression model and a set of values for the hyper-parameters for such model.

This pipeline is usually tested several times and fine tuned by modifying either the

algorithms or their parameters or both. This task quickly becomes monotonous and

is immensely time consuming for any business or research team, efforts of such group

of experts should rather be focused on more complex and rewarding tasks.

Thus, the increasing demand for off-the-shelf tools. According to the no free

lunch theorem [Wolpert et al., 1997] there isn’t a single classification algorithm that

outperforms the rest of the algorithms, it is safe to assume that the same applies

to ML pipelines, as a consequence, for an unseen set of data a new pipeline has to

be built to obtain optimal performance. The automation of the complete process

for finding the best pipeline is known as AutoML [Guyon et al., 2015]. An ideal

AutoML system would work as a black-box that, without any human intervention,

receives as input a set of data and produces predictions as output.

Because of the recent interest in this area, the first successful systems have

already been produced and are available for the public, for instance, there are some

commercial solutions from some of the largest web services companies: Google Cloud

AutoML, Microsoft AzureML and Amazon Web Services (with H20.ai). There are

also some open source libraries for different programming language which have shown

achievements in different aspects of AutoML: auto-sklearn [Feurer et al., 2015a],

auto-weka [Thornton et al., 2013], TPOT [Olson et al., 2016a, Olson et al., 2016b],

and auto-Keras [Jin et al., 2019]. Despite their success, such solutions make sig-

nificant limitations to their systems, namely, the type of data is restricted to one

particular domain or it is expected to be presented in a tabular form after some

2

pre-processing.

It is also worth considering the fact that the raw data (i.e. the format in which

it was originally generated) is completely different between tasks, for instance, data

can be text documents, images, human speech, financial data, etc. The techniques

used for a particular problem change considerably from one domain to another. Such

difference introduces a lot of challenges for AutoML and has motivated researchers

to specialize in one specific domain or to start from the assumption that data has

been already pre-processed, which is the case of the examples mentioned above.

This work recognizes the difficulty of creating a general AutoML system, able

to work with any type of dataset for any type of problem, so it targets one of the

most popular areas related to Machine Learning research, yet almost unexplored in

AutoML to this date: Natural Language Processing (NLP). It is also the first work

in this area to work only with raw text data, assuming no previous transformation

to the text files. As a result, a comprehensive study of the construction of pipelines

for NLP was accomplished, providing practical metadata for the automation of such

process; findings from this research also contributes to the characterization of text

mining tasks by incorporating language features from the raw data. This study of

NLP from an AutoML perspective also generates further research questions. What

pre-processing techniques and classification algorithms have a greater impact in a

pipeline? What optimization methods are more suitable for NLP? What other prob-

lems can be solved exploiting the metadata from different classification tasks?

In NLP some tasks can be modeled as a classification or a regression problem,

one of the most prominent is the automatic categorization of text documents or text

classification, because of the number of problems and applications that can be ap-

proached as a text classification task, such as author profiling [López-Monroy et al.,

2015], sentiment analysis [Nakov et al., 2016] or spam filtering [Fusilier et al., 2015],

methods for pre-processing, feature extraction, feature selection and document rep-

3

resentation have been widely studied and developed over the last decades. Each

of these being appropriate for different scenarios and types of tasks. However de-

spite the progress achieved by the NLP community, nowadays it is still an expert who

determines the pipeline of text classification systems, including pre-processing meth-

ods, representation and classification models together with their hyper-parameters.

Some attempts to automate the design of text classification pipelines have been

made [Lam and Lai, 2001, Yogatama et al., 2015, Gomez et al., 2017, Ferreira and

Brazdil, 2018]. Nonetheless, these works are limited in at least one sense: restric-

tions in the search space of text representations or classification models (up to 48),

experimentation on few classification tasks (up to 9), shallow characterization of text

classification tasks. Furthermore, all prior works assume a previous transformation

of the text documents to a vector-type representation instead of dealing with raw

data. Such restrictions have allowed to explore some approaches to automating text

mining but are too tight for more realistic scenarios.

Instead, the above restrictions have been considerably relaxed for this thesis:

an extensive study was conducted in 81 text classification tasks of both binary and

multi-class problems, a larger number of representations was added to the search

space including different feature extraction algorithms, and a novel characteriza-

tion was proposed for text classification tasks. Subsequently, a new method for

autonomous text classification task is proposed.

The proposed method takes a step forward the automated selection of the

full pipeline for text classification by exploiting metadata from prior knowledge and

using state-of-the art optimization algorithms.

One of the principal novelties of this work is that unlike prior approaches it

deals with raw text documents instead of a matrix representations which might make

the problem of modeling a good pipeline harder, but is also a more realistic scenario

for non-experts and more importantly it enables the extraction of rich textual infor-

4

mation. A key research question of this study is whether meta-data extracted from

unprocessed text is able to characterize text classification tasks.

Meta-learning studies the employment of learning techniques to exploit meta-

data from various tasks and learning how to solve them in a data-driven way instead

of the more traditional manual search. In this work a novel task-characterization

based on traditional and language-based meta-features is proposed for text mining

problems; it is studied if such characterization outperforms the use of only traditional

meta-features, and how this data can be exploited for the recommendation of full

text classification pipelines.

Results in numerous datasets show empirically the effectiveness of both the

proposed characterization for tasks and the proposed method for the recommen-

dation of pipelines for text classification problems. Surprisingly, the recommended

pipelines outperform state-of-the-art Deep Learning methods under some specific

conditions.

This research compiles metadata from numerous tasks and algorithms, the

meta-learning study is interesting for NLP and AutoML fields. The proposed method

illustrates the capability of such information by automatically recommending pipelines

with acceptable performance in almost any English text classification problem. This

study might serve as base for further studies in automating other text mining tasks

or extending the method to other languages.

Some future developments could consist on exploring other language charac-

teristics to be incorporated in the set of meta-features, studying which type of meta-

features work best according to the type of task, or extracting more metadata from

more algorithms to enhance our text mining understanding and developing more

robust AutoML solutions. As a suggestion, the proposed method can be expanded

with state-of-the art representations, more hyper-parameters, and more models; as

in other successful AutoML applications, an optimization method can be added to

5

the first stage of the method to be combined with the existing meta-learning set-

ting. What is the best optimization algorithm for automating text mining tasks is

an interesting question that deserves deeper analysis.

The compilation of text datasets is another contribution of this work, so far

the existing benchmark for state-of-the-art classification models is biased to a couple

of tasks and few datasets with hundreds of thousands of examples. Could a subset

of the presented compilation be a more suitable benchmark for text classification

pipelines? A scenario where traditional representations can outperform DL models

is displayed in this work, other interesting questions arise from these observations.

Is it possible to automatically determine for a text mining task when is it better

to opt for traditional algorithms rather than DL given a budget restriction? If so.

What conditions influence more this decision?

AutoML in NLP is almost uncharted, this work is one of the first attempts in

the automation of time-consuming activities of the field, it is also the largest study

to date in this area, a vast number of questions can be derived from this research.

The following chapters contain more information about related works, details of the

implementation, and the potential impact of this study.

1.2 Research problem

AutoML for text classification is studied in this research, specifically, the problem

of automatically producing predictions for a new corpus is addressed. To make ac-

curate predictions it is necessary to select text mining and classification algorithms,

and to optimize their hyper-parameters. The selected algorithms must follow certain

order to form a pipeline that receives a set of unprocessed text documents grouped

by categories, selects an algorithm to transform them into a vector representation,

selects an optimized classifier that will be trained with the set of transformed doc-

6

uments, and finally makes class predictions for new documents. This approach can

be seen as an extension of the AutoML problem [Feurer et al., 2015a], formally:

For i = 1, ..., n + m let di ∈ D denote an unprocessed set of text documents

and ci ∈ C the corresponding target value. Given a training dataset Dtrain =

{(d1, c1), ..., (dn, cn)} drawn from the same underlying data distribution, as well as

a loss metric L(,), the AutoML problem for text classification is to automatically

produce test set predictions ĉn+1, ..., ĉn+m. The loss of a solution ĉn+1, ..., ĉn+m to

the AutoML problem for text classification is given by 1
m

∑m
j=1 L(ĉn+j, cn+j)

To produce a set of predictions that minimizes the loss metric two types of

algorithms are necessary, namely, classification algorithms A = {A(1), ..., A(k)} and

their associated hyper-parameters spaces Λ(1), ...,Λ(k), as well as, algorithms that

transform the raw text to a numeric vector also known as text representation R =

{R(1), ..., R(l)} and their corresponding hyper-parameters Φ(1), ...,Φ(l).

An important component of the construction of text classification pipelines

in comparison to other classification tasks is the selection of a text representation.

This has a critical impact on the document categorization performance, NLP experts

have a prior knowledge of what representation works best according to the problem

domain, the documents characteristics and the specific classification task. Even

though, small modifications such as changing from 2-grams to 3-grams could make

a big difference in the overall model performance.

Two other aspects make this problem worth to be automated, there isn’t a

representation that works for every problem and it can be composed with: semantic,

lexical, or syntactic features. In addition, there isn’t a general classification model

and testing different algorithms with small modifications to their hyper-parameters

consumes a lot of time; in practical terms it is impossible for a human to test all

the possibilities. There is also the problem that a human can be easily biased based

on their previous experience. Finally, we can establish a general objective for this

7

thesis.

Objective: To develop an AutoML method that chooses a representation and

a classifier to categorize text documents, performing similarly to state-of-the-art

methods among different NLP supervised classification tasks.

Since this is a complicated goal to achieve an strategy was followed with the

following specific objectives.

• To characterize text corpora using meta-features.

• To exploit the characterization and prior knowledge from different datasets to

recommend a representation for text documents.

• To implement and evaluate a method that autonomously selects a classification

model and optimizes its hyper-parameters.

As a result, a two-stage AutoML method is proposed (see Figure 1.1). When

a new set of raw text documents is given, the first stage focuses on exploiting meta-

data, obtained from the extensive experimentation on a large number of text classi-

fication tasks, to recommend an algorithm that will transform raw text into a vector

representation. The second stage uses the transformed set of text documents to se-

lect a classification algorithm and optimize its hyper-parameters. Ultimately, a full

classification pipeline is recommended without the involvement of human experts.

Figure 1.1: AutoML for text classification method.

8

1.3 Scope and limitations

An end-to-end method for automatically designing a model for classifying text doc-

uments is proposed. Despite AutoML aims to do this for any given machine learning

task, this work has some limitations. First of all, the recommended pipelines are

restricted to supervised text classification tasks, such tasks can be either multi-class

or binary classification problems. The recommended representations are also limited

to numeric vectors; graph-based representations are out of the scope of this work.

The proposed method is not guaranteed to work with languages other than

English, other than that, no pre-processing is assumed for corpora, i.e. the proposed

method expects as input the raw texts organized by their classes.

A characterization for text classification tasks is proposed, two problems were

explored with this novel approach, classifying tasks by their type and recommending

classification pipelines. However, related problems, such as determining a priori if a

problem is solvable, with our method were not studied.

1.4 Thesis organization

This document is organized in 6 chapters. Chapter 2 presents the theoretical frame-

work and concepts used throughout the thesis. Chapter 3 discusses the relevant

works that are related to the research problem and to the proposed method. Chap-

ter 4 explains the proposed method. Chapter 5 describes the corpora and the ex-

perimental setup to evaluate the method, likewise, it discusses the obtained results.

Finally, Chapter 6 shows the conclusions of this research work and discusses its

possible future directions.

9

Chapter 2

Theoretical framework

This chapter describes the fundamental concepts of this thesis. First, the task of

text classification is defined and its implicated problems are briefly discussed, then

the theoretical background for AutoML is presented.

2.1 Text classification

Written language is one of the most common forms of communication for the hu-

mankind, as a result, millions of text documents are produced every day. Text

classification is the categorization of such documents into one or many categories,

while this task has been done manually for centuries to organize or structure a docu-

ment collection, in this work we use the term text classification to refer the automatic

process of assigning a single label by extracting information from the raw text and

learning a function from a set of examples (corpus).

Text classification has been used for a number of applications that include the

automation of tasks commonly done by humans such as organizing literature by its

genre [Kessler et al., 1997,Stamatatos et al., 2000] or news by its topic [Lewis et al.,

11

2004, Guo et al., 2006], it has also been useful in applications that leverage recent

scientific advances, for instance, systems that detect depresion or aggressiveness in

social media [Escalante et al., 2017,Schmidt and Wiegand, 2017], profiling an author

by its genre, age, and nationality [Rangel et al., 2016,López-Monroy et al., 2015], or

detecting the sentiments expressed in a text [Pang et al., 2008,Nakov et al., 2016].

Taking a machine learning approach, this problem can be modeled as a super-

vised classification task. Each example is a pair (di, cj) ∈ DxC where D is a set

of text documents and C = {c1, c2, ..., cn} is a set of categories (also called classes).

Specifically, the task is to find a function h(di) that approximates the unknown

function f(di) that determines the correct class cj given a document.

2.1.1 Pre-processing methods for text documents

The first step for classifying text documents is usually the pre-processing, which

consists on at least one method to standardize the data and remove useless infor-

mation. The most common of those methods are stop-word removal, stemming, and

lowercase conversion, tokenization.

Stop-words are the words that appear the most within a document collection

and that are independent from a particular topic or context, stop-words generally do

not provide relevant information for discerning the class of one document to another

and are commonly removed in the pre-processing stage [Uysal and Gunal, 2014].

Stemming is the procedure to obtain the root or stem from all the word deriva-

tions in the corpus, the stem can be as simple as the suffix of a word but due to the

language complexity this is not always the case [Lovins, 1968], different algorithms

have been developed for different languages, for instance, Porter algorithm is one of

the most used for the English language [Porter, 1997].

Another common pre-procesing method, which is closely related to the fol-

12

lowing steps in text classification, is tokenization. It consists on the separation

of elements from the text such as words, sentences, phrases, or other meaningful

parts (tokens). After such segmentation it is easier to extract features from the text

documents to build a representation.

2.1.2 Text representation

How to represent unstructured text documents is an active research field in NLP.

State-of-the-art models are able to perform other tasks such as text generation or

question answering [Devlin et al., 2018]. For problems in specific domains that are

modeled as a text classification task usually a representation that includes task-

specific information is build. This type of representations are not included in this

study, alternatively, methods with a more general scope that focus on text classifi-

cation tasks are described in this section.

Traditionally, the function h(di) is known as hypothesis, classifier or model and

it can’t directly interpret the raw text, instead a compact form of representation is

required, usually a vector obtained by a method that maps di to a set of features [Yan,

2009]. How to retrieve relevant information and how to find features to build such

representations are fundamental questions in NLP.

One of the most common forms of representation for a text document is to

use a vector of term weights ~di = 〈w1,i, w2,i, ..., w|T |,i〉 where T is the set of terms

that appear at least once in the corpus. When the terms are words and the weights

are binary, meaning whether it appears or not in a document, this representation is

called Bag of Words (BOW). Other weights often used are the term frequency tf(t, d)

and term frequency inverse document frequency tfidf(t, d,D) = tf(t, d) · idf(t,D)

with idf = log |D|
|d∈D:t∈d| .

There are two main drawbacks to this type of representation, the first one

13

is that the number of terms in some corpus can be large, thus, making it very

hard for classifiers to deal with the large dimensionality. To address this, some

simple techniques such as eliminating terms only appearing once or only using the n

terms with greater frequency have shown to be effective, other methods for feature

reduction or selection derived from machine learning can also be applied. The other

disadvantage is that they fail to capture term correlations in the text.

A popular solution to the latter is the use of contiguous word or character se-

quences as terms instead of only one. This model is known as n-gram, bi-gram when

n = 2, and tri-gram when n = 3. Usually, the value for n is not set greater than 4.

Because of the exponential growth implied by including more terms, the problem of

the dimensionality is accentuated. To deal with it, the same methods from BOW

can be used. Another weakness of these models is that they aren’t able to capture

semantic information from the documents, therefore, synonymy and polysemy are

concepts that are not considered and that can cause problems when solving a classi-

fication task. Techniques such as Latent Semantic Analysis [Deerwester et al., 1990]

have been developed to include some semantic information.

LSA is a form of topic modeling, a representation can be build by learning

latent topics performing a matrix decomposition on the document-term matrix using

Singular value decomposition [Golub and Reinsch, 1971]. The idea behind it is to

find co-occurrences of groups of words in different documents, each group of words

is regarded as a hidden topics, by using this information it is possible to classify text

documents. Another fundamental technique of topic modeling is latent Dirichlet

allocation (LSA) that takes an statistical approach to find the hidden topics instead

of using SVD. In particular, Dirichlet priors is employed for the document-topic and

word-topic distributions, lending itself to better generalization [Blei et al., 2003].

An alternative approach for text representation is that based on linguistic

information from the documents. What kind of features to extract depends on

14

the application context. A more generic tool for this is Linguistic Inquiry Word

Count [Pennebaker et al., 2015] where a dictionary is used to tag the words from the

document to a pre-defined set of categories that include reflected emotions, thinking

styles, concerns, and other psycholinguistic aspects. LIWC has shown to be effective

in classification tasks where reflected emotions are relevant [Rill-Garćıa et al., 2018].

Recent advances in text representations include word embeddings where terms

are mapped to vectors of real numbers, there exist many methods that can generate

such mapping, however, recent methods rely on the use of Neural Networks. A

practical method of the above is Word2Vec, an algorithm that uses a two-layer Neural

Network to learn a vector for words, it is also able to group similar words together

since it uses the context where each word appears when learning the mapping from

input text to the vectorspace. Similarly, for text classification tasks, documents can

be mapped to a vectorspace [Le and Mikolov, 2014].

New representations are proposed every year, this work doesn’t pretend to be

an exhaustive study of all algorithms to date. A selection of the principal vector

representations was made, these methods are usually the first approach to a text

classification task but have shown effective results in a number of problems [Ag-

garwal and Zhai, 2012, Zhang et al., 2015, Iyyer et al., 2015]. All representations

discussed in this thesis are limited to vector-type. Given the complexity of graph-

based representations and since this work doesn’t assume any prior transformation

to the raw text, these are out of the scope of this work.

Other Deep Learning methods were also excluded from this research because

their time requirements would have made it impossible to explore different ap-

proaches and because a lot of data is needed, which is not available for most of

the corpora.

15

2.1.3 Classification models

After documents are pre-processed and a representations is build, a classifier needs

to be selected. Such selection could have a negative or positive impact in the final

category prediction. Given a dataset C, the goal of classification models is to learn

by example. Essentially, a classification algorithm will adjust the parameters of the

function h(di) with feedback from each of samples in C.

Selecting a suitable classifier is not enough to guarantee a good performance for

the model, an additional set of parameters needs to be set before the learning, also

known as training, phase begins. Since small changes in the values of these hyper-

parameters can have a high impact in the overall model, optimizing such values has

become a relevant problem in machine learning research, this problem is further

discussed later in this chapter.

In text classification, linear classifiers perform well and are usually preferred

to non-linear models because the additional complexity of non-linear classification

does not tend to pay for itself [Aggarwal and Zhai, 2012]. Popular classifiers in text

mining include: Decision Trees, SVM Classifiers, Neural Network Classifiers, and

Bayesian Classifiers [Aggarwal and Zhai, 2012], but in fact, almost any classifier can

be adapted to text data [Aggarwal and Zhai, 2012].

A classifier not well studied in text classification that has gained a lot of at-

tention recently is XGBoost. It is based on an ensemble technique called gradi-

ent boosting and has shown outstanding performance with tabular data [Chen and

Guestrin, 2016]. Gradient boosting follows the idea that a set of weak hypothesis

create a strong hypothesis, it trains several weak classifiers (in this case decision

trees) by optimizing a loss function. XGBoost makes several algorithmic and system

improvements to gradient boosting that allow the method to become scalable, faster,

and more accurate [Chen and Guestrin, 2016].

16

2.1.4 Text classification pipeline

The success of correctly classifying text documents relies heavily on the correct

selection of a text representation which is not an easy task. Empirically, it is known

that the representation depends on the type of task that is being dealt with. For

example, using characters instead of words for the n-gram model has shown to be

effective for authorship attribution tasks. In addition, some classifiers work better

with some representations and a combination of two or more representations can be

used as the document vector.

A pipeline for text classification is the series of steps required to assign a label

to a document since it is received as raw text. These include the pre-processing of

the text (e.g. eliminating stop-words, removing terms, deleting special characters),

selecting the features or terms to extract from the text, building the representation

vector, determining if feature reduction is needed, if so which strategy to apply,

selecting a classifier, and optimizing its hyper-parameters.

Extending the definition in [Zöller and Huber, 2019]. The algorithms to build

a text classification pipeline can be grouped in 2 sets: those needed for build-

ing a text representation R = {Rcleaning, Rfeatures} and those for classifying A =

{A(1), ..., A(k)}. Each algorithm R(i) is configured by a vector of hyper-parameters

φ(i) and each algorithm A(j) by a vector λ(j). A pipeline structure can be repre-

sented as a directed acyclic graph g where the nodes are the different algorithms

and the edges the data flow through them. A text classification pipeline is then a

set (g,R, φ,A, λ).

2.1.5 Pipeline performance

The performance of a given pipeline (g,R, φ,A, λ) can be evaluated in a corpus DxC

with a loss metric L. The performance is calculated as:

17

π =
1

n

i=1∑
n

L(ĉ, c),

where ĉ is the predicted output of (g,R, φ,A, λ) after processing a sample
→
xi

and c is the correct class for such text document di

For evaluating a text classification pipeline, datasets are divided in the same

manner as in machine learning, a subset of the data is used by the model to learn

Dtrain, a disjoint subset is used for the optimization of the hyper-parameters Dvalid,

and another disjoint set Dtest is used by the model to make predictions and finally

use the loss function L or analogously a measure for evaluation.

A popular evaluation measure is accuracy, which is defined as the ratio of

correct predictions to the total number of input samples TP+TN
TP+TN+FP+FN

. Accuracy

results meaningless when classes are unbalanced (i.e. some classes have more samples

than the other) which is common in many text classification tasks, for instance, when

filtering spam, non-spam messages will outnumber the positive class; to overcome

this problem it is common in these tasks to use the f1 score as a performance

measure, this is the harmonic mean of two other measures: precision and recall, and

is defined as 2TP
2TP+TN+FP+FN

.

Evaluation metrics are used to compare the performance of different pipelines

and have a notion of the quality of them for solving a classification task, in the

context of meta-learning this information is useful to acquire prior-knowledge. A

related term are learning curves, these are the changes in performance of a classifi-

cation model while optimizing its hyper-parameters. Learning curves are not only

used to diagnose an overfit or underfit model but also to learn what hyper-parameters

are more sensible to changes in its values, thus, they are also used in meta-learning

to accelerate optimization methods.

18

2.2 AutoML

2.2.1 Hyper-parameter optimization

The performance of most machine learning algorithms heavily relies on the values

of their hyper-parameters that are set before the training begins. Such values can

be categorical like the kernel function of a Support Vector Machine, discrete as in

the number of neighbors in Nearest Neighbors, or continuous like the error rate of

a Neural Network. Hyperparameters have an effect not only on the performance

of a model but also in its required time and memory. Hyper-parameters are usu-

ally tuned by a human-expert that combines knowledge with experimentation on a

validation subset of the data Dvalid. The problem of identifying a good value for

hyper-parameters of a given classifier A is called the problem of hyper-parameter

optimization [Bergstra and Bengio, 2012]. Formally defined as:

λ(∗) = argmin
λ∈Λ

L(Aλ, Dtrain, Dvalid)

Where A is a machine learning algorithm and λ a vector of hyper-parameters in

the hyper-parameter configuration space Λ. An algorithm with its hyper-parameters

instantiated is denoted by Aλ.

The HPO problem has been extended for AutoML [Escalante et al., 2009,Feurer

and Hutter, 2018], a widely adopted approach is Combined Algorithm Selection and

Hyper-parameter optimization (CASH) [Thornton et al., 2013], where instead of

selecting a set of values for hyper-parameters the task is to automatically design

a machine learning pipeline, thus for the selection of pre-processing methods and

machine learning algorithms these are treated as categorical hyper-parameters.

19

Figure 2.1: Meta-learning leverages learning metadata to learn

2.2.2 Meta-learning
For humans, experiences from the past are usually helpful when learning a new skill

or for solving a new problem. Equivalently, in the context of machine learning, meta-

learning takes advantage of prior experience or metadata, acquired when solving a

wide range of tasks, to learn new tasks, thus, learning in a data-driven way instead

of designing algorithms in a hand-engineered fashion [Vanschoren, 2018]. Figure

2.1 illustrates the process of learning from several tasks (meta-learning) and then

adapting to new tasks (learning) with few data points [Finn et al., 2017]. The main

goals are to speed up the learning process and to improve the quantitative perfor-

mance of models. Meta-learning has had an impact into several machine learning

problems such as learning to design optimization algorithms [Andrychowicz et al.,

2016], automatically suggesting supervised learning pipelines [Feurer et al., 2015a],

learning architectures for deep neural networks [Elsken et al., 2018], and few-shot

learning [Ravi and Larochelle, 2016].

One of the fundamental challenges in meta-learning is how to define a task

similarity, the larger the number of similar tasks available the more metadata can

be extracted, when a new completely unrelated task is presented, prior experience

will not be effective. As a result, the success of meta-learning relies on the availability

of data from such tasks, fortunately, nowadays the production and access to huge

20

amounts of data from the real-world is possible.

2.2.3 Meta-features

A rich source of metadata are characterizations (meta-features) of the task at hand.

Each task t ∈ T is described with a vector m(tj) = (mj,1, ...,mj,K) of K meta-

features. This set is useful to define a task similarity measure based on, for instance,

the Euclidean distance between m(ti) and m(tj) so that we can transfer information

from the most similar tasks to the new task tnew. Moreover, together with prior

evaluations, we can train a meta-learner to predict the performance of configurations

in new tasks [Vanschoren, 2018].

21

Chapter 3

Related work

AutoML is closely related to two fields in machine learning, both of which have

been widely studied for several years. The first of them is hyper-parameter opti-

mization because AutoML is often seen as a generalization of the hyper-parameter

optimization problem [Thornton et al., 2013] and because some of the methods with

best empirical results often work well in both fields. The other is meta-learning or

learning to learn [Vanschoren, 2018]. Optimization algorithms can be warm-started

with the best pipelines from similar tasks and in general meta-learning helps to un-

derstand when and where to use a model or which hyper-parameter configuration to

select.

3.1 Hyper-parameter optimization

Given the importance of the problem in empirical machine learning work, hyper-

parameter optimization (HPO) has been studied for decades [Bozdogan, 1987,Kohavi

and John, 1995,Bengio, 2000,Bergstra et al., 2011] . In Bergstra and Bengio, 2012, it

was shown that for a machine learning algorithm, random search is one of the most

effective methods for choosing values for hyper-parameters. Random search consists

23

in selecting randomly different combinations of values from the search space. In

Bergstra and Bengio’s experiments this method showed to achieve better results

than manually selected values and exhaustive Grid Search given a restricted budget

of time, later works have proposed different approaches but Random Search is still

a common baseline for comparison, recent approaches for the HPO problem can

be divided into three type of methods: population-based, multi-fidelity, and model-

based [Feurer and Hutter, 2018].

Due to the non-convex nature of the problem, global optimization algorithms

are preferred [Feurer and Hutter, 2018], some of the most common are population-

based methods where the population is a combination of hyper-parameters values,

and these include genetic algorithms, particle swarm optimization, and evolutionary

strategies [Lessmann et al., 2005,Lorenzo et al., 2017,Hansen, 2016]. The population

in these methods is improved iteratively by mutation and crossover (i.e. modifying

some of its individuals and combining them between each other).

When manually selecting the hyper-parameters for a given learning algorithm

a common practice is to test different configurations in a small subset of the data,

analogously, multi-fidelity methods approximate the loss function of an optimiza-

tion algorithm with low fidelity making a trade-off between the learning algorithm

performance and its required computational resources. Some of these methods are

based on learning curves and deciding to early stop the training of the least promis-

ing configurations [Domhan et al., 2015]. Learning curves can be obtained from the

performance of a set of hyper-parameter values on different subsets of data or from

the performance of a iterative optimization algorithm, for example.

Other multi-fidelity methods are strategies based on the multi-armed bandit

problem [Jamieson and Talwalkar, 2016] that try to approximate the performance

of different configurations to select the best. One of such strategies is sequential or

successive halving algorithm [Karnin et al., 2013] where given a fixed time budget T ,

24

it is evenly divided between log2n rounds, in each round all arms are pulled, which

in HPO this means to empirically test all configurations left, at the end of the round

the worst half of arms (configurations) is eliminated. A problem for this strategy is

the trade off between choosing to test few configurations in a large budget or a lot

in small time. HyperBand [Li and Jamieson, 2018] strategy addresses this problem

by dividing the budget between combinations of configurations with different budget

sizes and applying sequential halving in each division.

Other common global optimization method is Bayesian Optimization (BO)

which has been applied to different optimization problems related to machine learn-

ing, robotics, user interfaces, information extraction, and combinatorial optimiza-

tion, many variants from the original algorithms have been developed over the

years [Shahriari et al., 2016]. Recently, BO has also shown to be an effective method

for HPO [Snoek et al., 2012,Klein et al., 2017].

BO is a sequential model-based approach that consists of two components: a

Bayesian statistical model for modeling the objective function (surrogate model) and

an acquisition function for deciding where to sample next [Frazier, 2018], thus, the

model starts with a prior probability which is updated after each iteration with all

the observations of the target function so far. After the surrogate model is fitted

the acquisition function selects promising candidates by trading off exploration and

exploitation, this function does not only have to predict correctly but it also has to

be cheaper to evaluate than the target function, a common choice is the excpected

improvement (EI) E[I(λ) = E[max(fmin − Y, 0)]. One important disadvantage of

this method is its poor scalability when dealing with large search spaces, to address

this in HPO some improvements have been proposed, one of them is the use of

meta-learning [Feurer et al., 2015b] discused in the next section.

Scalability of the three approaches discussed in this section is an open question

in HPO, research in this direction has lead to the development of AutoML systems

25

that scale one of these three type of methods by enlarging the search space to include

not only hyper-parameter values but also pre-processing and learning algorithms. In-

tegrating meta-learning techniques with these methods is also a common practice

that, given the larger search space, seeks to speed up the optimization process and

to increase the performance of the resulting model. Furthermore, these three ap-

proaches are not necessarily incompatible with each other, in fact, proposals to com-

bine BO with both population-based [Golovin et al., 2017] and multi-fidelity [Falkner

et al., 2018] methods are the state-of-the-art in HPO.

3.2 Meta-learning and automated machine learning

Following the three HPO methods previously presented, this section discusses recent

approaches to the AutoML problem and how meta-learning is applied in each.

Population-based approaches include some of the earliest AutoML works, in

Escalante et al., 2009, particle swarm optimization is applied not only to the HPO

problem but for a full model selection or the optimization of a full machine learn-

ing pipeline including: pre-processing, feature selection, classifier and its hyper-

parameters. This method is known as particle swarm model selection (PSMS) and

was later extended to also use a genetic algorithm for the optimization [Sun et al.,

2013]. Meta-learning has been used with population-based methods to improve their

performance for example to guide the mutation or crossover operations [Schmidhu-

ber, 1987] or to seed the initial population [Kord́ık et al., 2018], however, to date

there isn’t a direct application of meta-learning in population-based methods for

general AutoML.

At the time of writing, Bandit-based methods and Bayesian Optimization are

the most popular approaches to AutoML. One of the Bandit-based methods is Ac-

tive testing [Abdulrahman et al., 2018], a meta-learning strategy that ranks the

26

pipelines predicting a multi-objective measure (A3R) that makes a trade-off between

accuracy and runtime, it then iteratively tests the top N ranked configurations to

find the best. For Deep Learning, Hyperband has shown to outperform random

search and BO methods [Li and Jamieson, 2018]. Auto-Band [das Dôres et al., 2018]

is an extension to Hyperband for AtuoML that incorporates meta-learning. With

experiments on 322 datasets they build a knowledge-base and a meta-regressor to

predict performance of different pipelines, given a new dataset Auto-band assigns a

greater probability to the promising pipelines than those that are predicted to per-

form poorly, with this additions to Hyperband they were able to outperform other

successful AutoML methods: AutoWeka and Autosklearn.

Bayesian Optimization has also proven to be a practical and efficient approach

to AutoML, AutoWeka [Thornton et al., 2013] firstly defined AutoML as the Com-

bined Algorithm Selection and Hyperparameter Optimization (CASH) problem. They

used a Random Forest-based BO (SMAC) [Hutter et al., 2011] for optimization in

their expanded search space. Later, Autosklearn [Feurer et al., 2015a] extended the

AutoML problem and introduced two improvements to the SMAC optimization, the

first is to select as a final model an ensemble of the best classifiers instead of using

only one for the classification and the other was the addition of meta-learning to

warm-start SMAC.

Both Auto-Band and Autosklearn rely on the use of meta-features for describ-

ing classification tasks. In this way, each task is usually represented by a vector

where dimensions are associated to meta-features which can be as simple as the

number of instances and features in a dataset and as complex as statistical mea-

sures from the data distribution. For finding similar tasks the Euclidean distance

or other similarity measure can be used between vectors. Several measures have

been proposed to work as meta-features and different sets have been tested and

compared [Rivolli et al., 2018] however some studies suggest that the optimal set

depends on the application [Vanschoren, 2018].

27

3.3 Automated text classification

In the context of text mining, meta-features from clustering text documents have

been used directly for classification [Canuto et al., 2018]. In the context of meta-

learning these features have been used only in very specific domains [Lee et al., 2007].

Nevertheless, few works have explored the automated selection of different parts of

classification pipelines. With experiments in the Reuters-21578 corpus, [Lam and

Lai, 2001] proposed to characterize documents with 9 (meta) features and to predict

the classification error of different models using data from a previous phase, thus

recommending a classification model. Despite their limited scope, given the lack of

data and computational resources of the time, this work represents one of the first

meta-learning approaches for text classification.

More recently, and in a more AutoML fashion, [Yogatama et al., 2015] searched

for text representations with a state-of-the-art method: Bayesian Optimization

[Snoek et al., 2012]. Their search space was limited to only word n-grams and

experiments were performed in 8 datasets: 4 sentiment analysis tasks and 4 topic

classification tasks. Nevertheless, they outperformed every linear classifier reported

until their publication date.

Other works have explored different meta-learning approaches for text classifi-

cation in small-scale, for example, [Gomez et al., 2017] addressed the problem with

evolutionary computation methods. Specifically, a genetic algorithm was developed

to learn rules to recommend a classification model and some hyper-parameters given

the values of a set of 11 meta-features, thus finding relations between characterized

corpora and the best fitted model. With a broader scope, [Ferreira and Brazdil, 2018]

recommend pipelines with Active testing, in their work they also present statistical

analysis of 48 pre-processing methods and 8 classifiers.

Another related work is that by [Pinto, 2008] where a set of features derived

28

Work M-features Tasks Reps Clsfs Raw Method

Lam, et al. 9 1 1 6 no Low-fidelity

Gómez, et al. 11 9 1 42 no Genetic algorithm

Yogamata, et al. 0 5 36 1 no Bayesian optimization

Ferreira, et al. 0 3 48 8 no Active Testing

Madrid, et al. 72 81 60 110 yes AutoText

Table 3.1: Current approaches to automated text classification.

from the text was proposed for characterizing short-text corpora in the context of

clustering. Although the goal of such reference was to characterize the hardness of

text corpora and not AutoML, such work is relevant because their metrics inspired

some of the meta-features considered in this thesis. In Chapter 3, it is described

how these set of features are combined with other proposed ones for characterizing

text collections in the context of automatic text mining.

In this thesis a novel approach to meta-learning of text representations is pro-

posed. A set of meta-features is defined, comprising standard meta-features from the

machine learning literature, features that have been used for other problems than

meta-learning and novel meta-features that have not been used previously. Some of

these meta-features are derived directly from raw text and aim at capturing complex

language patterns. We approach the problem of recommending textual representa-

tions as well as classification algorithms. Whereas this problem has been approached

in previous work, such references have always pre-processed text files to a matrix-

document representation as input to their systems and have considered only a few

representations and a very limited number of meta-features (up to 11). To the time

of writing this is the largest scale study on meta-learning in the context of text

mining.

29

Chapter 4

An AutoML method for text

classification tasks

A solution to the research problem of this thesis is presented and detailed in this

chapter. A novel meta-learning approach for recommending textual representations

is proposed as a first step of the method, then, auto-sklearn is adopted for the classi-

fier optimization. Figure 4.1 depicts both steps in the proposed method, initially raw

data is taken in the meta-learning phase where pre-processing and feature extraction

algorithms are recommended (Rcleaning,Rfeatures), the text is transformed with those

algorithms and the new representation is fed to auto-sklearn which recommends a

classifier and values for its hyper-parameters (Amodel). As a result the method rec-

ommends a text classification pipeline: an algorithm to transform the raw text into

a vector representation and a classification model.

Compared to AutoML advances in other areas, previous approaches to the

problem have failed to produce the same impact and results for NLP., this is mainly

because of the limited scope of previous works which have only experimented in a

small number of tasks exploring a few text representations, all consisting of different

hyper-parameter values for the n-gram model. In a meta-learning context no other

31

work have extracted metadata directly from the text itself to leverage it when dealing

with unseen tasks.

In comparison, the method described in this chapter has a broader approach, a

wider range of representations has been added to the search space, a characterization

that extracts rich meta-features from the text is presented for the first time and 4

strategies to exploit metadata and recommend textual representations are proposed.

Additionally, a new set of datasets gathered from different sites have been comprised

in a repository and made publicly available. The proposed method is the most

ambitious attempt to date for the automation of text classification tasks.

Figure 4.1: AutoText. A text representation is recommended via meta-learning, then,

auto-sklearn selects a classifier.

4.1 Meta-learning of textual representations

A human-expert uses knowledge acquired in the past when a new task is presented,

equivalently, meta-learning imitates this process. As the first step to the automated

selection of text classification pipelines, a meta-learning method is proposed. It takes

as input the labeled raw text from a corpus associated to a text classification task

and automatically selects a representation. As an output the method recommends

32

vector representations for text classification tasks based on which one worked best for

similar tasks. Although this approach is common within meta-learning [Vanschoren,

2018], it has not been widely explored for text classification (see Chapter 3).

In fact, this work is the first attempt to deal with raw data; despite some

formatting and encoding issues that had to be addressed, this novelty is fundamental

to the proposed method. It is a more likely setting for non-expert but the method

also explores for the first time how to extract rich information from the language to

incorporate it for the characterization of NLP tasks.

One of the key ideas of meta-learning is to describe a task and then find similar

tasks from a large pool. The more similar two or more tasks are, the more likely

it is that using the same model to solve them will perform similarly. Consequently,

this meta-learning approach relies on 3 essential factors:

• Describing a task clearly

• Determining the similarity between tasks

• Extensive availability of different tasks

The proposed method acknowledges these three points. Firstly, a novel text

classification task characterization is described, that unlike previous work it rec-

ognizes the difference between a text corpus represented in a tabular form and the

corpus raw text itself. Secondly, different strategies are compared to find which lever-

ages better prior knowledge finding the most similar tasks. Lastly, a wide variety of

tasks is studied, 81 text corpora were gathered among different public websites. A

complete list of them can be found in Chapter 5 as well as a brief description.

Several vector-type representations have been selected for our method to choose

from. Table 4.1 sums up the feature extraction methods that with some pre-

processing techniques or hyper-parameters give a total of 60 representations. While

33

not exhaustive, this work is the first to consider representations not only based on

simple features, but also those based on topic modeling, embeddings, and semantic

analysis.

Features Hyper-parameters

N-grams [words, char], stop words[None, ‘English’], range[1,3], weight[bi,tf,tfidf]

LDA stop words[None,’English’]

LSA stop words[None,’English’], weight[tf,tfidf]

LIWC categories[60]

W2V pre trained[True,False], vector[mean, sum]

Table 4.1: Representations considered

The selected representations can be regarded as the main approaches with a

broad scope for the categorization of text documents, a description of them can be

found in Chapter 2. Recent efforts for text representations are centered on Deep

Learning methods where usually a recurrent network is trained to learn a language

model. Results of such methods have outperformed the traditional text representa-

tion forms in a number of tasks including text classification problems. Despite their

success there are critical limitations of these methods.

The most relevant of these limitations being the need for large amounts of data

(benchmark datasets for DL have at least 100,000 documents and up to millions).

Although big datasets that contain millions of samples for the English language are

already available, that is not the case for most of the text classification tasks. Besides,

language components vary noticeably from one context to another, this has been

accentuated with the recent emergence of social media and other specialized websites.

For instance, text samples from corporate emails will be completely different from

those found on Facebook, where even the spelling of words will change and additional

characters like emojis will appear.

34

To address the lack of samples in every scenario a common practice is to transfer

learning between tasks by training a model on the larger dataset and fine-tuning in

the smaller and specialized corpus. In these situations, the proposed method in

this research explores whether it is possible to outperform DL representations with

the traditional ones being selected in a data driven way by exploiting information

obtained from a large number of both big and small corpora for text classification

tasks.

Due to the quantity of data required and the number of operations, DL also

consumes a lot of computational time. Since experimentation for this method in-

volves a variety of tasks and metadata is collected for as many configurations as

possible, introducing DL representations to the pool wouldn’t adjust to the scope of

this study.

The proposed meta-learning method comprises 2 stages, an offline phase where

it learns how to learn and a predicting phase where it uses the data collected in phase

1 to recommend a text representation for classifying.

Figure 4.2: Offline phase. All representations are evaluated.

The first step of the method is an offline phase that is executed once; the

purpose of it is to extract metadata for each of the 60 representations and all of

the tasks, intuitively, we want to know which is the best representations for each of

the tasks. Then the extracted knowledge will be used for recommending the most

35

suitable representation according to previous experimentation.

So, the 60 configurations are evaluated. A common practice in AutoML is to

approximate the performance of a configuration using surrogate models or heuristics

that reduce the search time [Vanschoren, 2018, Feurer and Hutter, 2018, Quanming

et al., 2018]. Because obtaining an exact evaluation for all the combinations of rep-

resentations, classifiers, and hyper-parameter values is prohibitively expensive to be

invoked repeatedly, the performance on an linear SVM classifier is proposed to esti-

mate the quality of each representation. The hyper-parameters of this classification

model are detailed in Table 4.2. The linear SVM is a popular classification model

in text classification problems given its robustness to high dimensionality and its

general effectiveness in these tasks [Allahyari et al., 2017,Aggarwal and Zhai, 2012].

It is also common to make the model evaluations with either holdout or cross-

validation techniques depending on the size of the datasets [Vanschoren, 2018, Ali

and Smith, 2006]. For evaluating the text representations, a 3-fold cross validation

was selected considering 3 to be a fair number of splits for evaluating small datasets

and not too time-consuming for large datasets.

As the evaluation measures for this phase two metrics where selected: accuracy

because of its wide adoption in the community in a number of tasks and f1 score

for the tasks where the positive class is more relevant or when there is presence

imbalance in a dataset. Although metadata for both measures was obtained, only

one can be selected at a time as a loss function to optimize, which to select will

depend for instance on what type of task is being attacked, as default, accuracy

showed good performance for diverse datasets.

This process is repeated for all of the 81 text classification tasks, each of them

described by a vector of novel meta-features extracted directly from the documents

of the corpus associated to each of the tasks. As a result a meta-knowledge-base

that contains information about the performance of each of the representations for

36

Hyper-parameter Value

Kernel linear

Loss function Squared Hinge loss

Stopping criteria 0.0001

C 1.0

Max iterations 1000

Multiclass strategy one vs all

Table 4.2: Hyper-parameters for the Support Vector Machine used to evaluate representa-

tions in the offline phase.

each of the tasks is generated (see Figure 4.3. The predicting phase leverages this

metadata to recommend a text representation for a classification problem. Even

though, the offline phase requires a lot of processing time, it is only executed once.

Moreover, metadata for new tasks or for new representations can be added with ease

to the knowledge base, the rest of the steps of this method will then make use of the

new data without further modifications.

Figure 4.3: Offline phase. A meta-knowledge base is built experimenting on all tasks.

This data is later used to train meta-models that recommend representations.

Previous works related to text classification with meta-learning have always

assumed prior pre-processing for the text documents, the input for our method does

37

not require any pre-processing as it takes the raw text and its output can be useful

for both human experts designing text classification pipelines and for complement-

ing other optimization methods for AutoML (e.g. it can be useful for warm-starting

Bayesian Optimization [Feurer et al., 2015b] for a wider search space of text repre-

sentations or easily combined with existing AutoML solutions).

4.1.1 Proposed meta-features

Our method applies meta-learning to learn from the performance of different rep-

resentations on the 81 corpora which are stored and described in a knowledge base

with a meta-features vector. This is a common approach to characterizing classifi-

cation tasks (see Chapter 2) however none of the prior work have acknowledged the

complexity and features of written natural language.

This method represents a novel approach to meta-learning of text representa-

tions. A new set of meta-features is proposed, comprising standard meta-features

from the machine learning literature, features that have been used for other prob-

lems than meta-learning and novel meta-features that have not been used previously.

Some of which are derived directly from raw text and aim at capturing complex

language patterns. Whereas the problem of recommending has been addressed in

previous work, such references have considered only a few representations and a very

limited number of generic meta-features (up to 11).

Meta-features are a common form of characterizing tasks, these attempt to

capture relevant information from datasets related to their distribution form or

the statistics of their features [Vanschoren, 2018]. Some sets of meta-features have

proved to be useful for supervised machine learning problems, however these are not

descriptive enough to characterize tasks in text classification.

Traditionally, meta-features extract metadata from a dataset to capture rel-

38

evant information and use it to characterize classifications tasks, commonly used

measures include statistics of the distribution of the classes or more simple charac-

teristics like the number of samples and attributes. Such meta-features have proved

to be useful for supervised machine learning problems and for AutoML. However,

extracting them usually requires a tabular representation of the data, in the case of

text documents some representation such as Bag-of-Words would be necessary.

When a representation is selected some fundamental characteristics of language

are lost, extracting traditional meta-features from raw text would result in a limited

characterization of the task. In the proposed set this type of features are contem-

plated as well as other attributes extracted directly from the raw text. A total of 72

meta-features are proposed combining traditional meta-learning features with NLP

ones. Below they are organized in groups and a description is provided. Table 4.3

defines the symbols of some corpus data extracted from text that is used to calculate

a number of the proposed measures.

For the non-traditional meta-features metrics that somehow measure the fol-

lowing characteristics of the written language are proposed: vocabulary, complexity

of sentences, lexical features, writing style, readability. Despite not being exhaustive

the new characterization should capture differences between different usage contexts.

• General meta-features. The number of documents and the number of cat-

egories.

• Corpus hardness. These features aim to capture information on the hardness

of text corpora, they were originally used in [Pinto, 2008]

Domain broadness. Measures that capture the broadness degree of the corpus,

a narrow broadness includes terms closely related to each other while a wide

one has more diversity on its terms. For instance, we would expect a corpus of

several news categories such as 20Newsgroups to have a wider broadness than a

39

Symbol Description

n Number of documents

k Number of classes

D = {d1, d2, ..., dn} Corpus

C = {C1, C2, ...Ck} Classes

|D| Number of words in the corpus

|di| Words in document i

|Ci| Words in class i

V (...) Vocabulary of...

ϕ(Ci, Cj) Similarity

ENDC(D) Expected Number of DoCuments

tf(ti, D) Frequency of term ti

DL(D) Average Document Length

Table 4.3: Nomenclature of metadata from corpus.

corpus of hotel reviews. Measures included are based on the vocabulary length

and overlap: Supervised Vocabulary Based (SVB):

SV B(D) =

√√√√1

k

k∑
i=1

(
|V (Ci)| − |V (D)|

|D|

)2

Unsupervised Vocabulary Based (UVB):

UV B(D) =

√√√√ 1

n

n∑
i=1

(
|V (di)| − |V (D)|

|D|

)2

Macro-averaged Relative Hardness (MRH):

MRH(D) =
1

k(k − 1)/2

k∑
i,j=1;i<j

ϕ(Ci, Cj)

ϕ (Ci, Cj) =
|C∗i ∩ Cj|
|Ci ∪ Cj|

40

Class imbalance, Refers to the document distribution across the classes. A

simple Class Imbalance (CI) ratio was implemented:

CI(D) =

√√√√1

k

k∑
i=1

(|Ci|ENDC(D))2

ENDC(D) =
|D|
k

Stylometry. The writing style of a text usually attributed to a specific author.

Stylometric Evaluation Measure (SEM), this is obtained by calculating the

asymmetrical Kullback-Leibler distance of the term frequency distribution of

D P (ti) with respect to its Zipfian distribution Q(ti)

P (ti) =
tf(ti, D)∑

ti∈V (D) tf(ti, D)

Q(ti) =
1/i∗∑V (D)

r=1 1/rs

SEM(d) =
∑

ti∈V (D)

P (ti) log
P (ti)

Q(ti)

Shortness. Features based on the length of the text or the vocabulary used in

the corpus. Vocabulary Length (VL):

V L(D) =
1

n

n∑
i=1

|V (di)|

Vocabulary Document Ratio (VDR):

DL(D) =
1

n

n∑
i=1

|di|

V DR(D) =
log(V L(D))

log(DL(D))

and average word length.

• Statistical and information theoretic. Meta-features that are derived from

a document-term matrix representation of the corpus. The corpus documents

41

are described with a document-term matrix and the following meta-features

are calculated:

min, max, average, standard deviation, skewness, kurtosis, ratio average-standard

deviation, and entropy of: vocabulary distribution, documents-per-category

and words-per-document:

Landmarking. 70% of the documents are used to train 4 simple classifiers

and their performance on the remaining 30% was used based on the intuition

that some aspects of the dataset can be inferred: data sparsity - 1NN, data

separability - Decision Tree, linear separability - Linear Discriminant Analysis,

feature independence Näıve Bayes. The percentage of zeros in the matrix was

also added as a measure for sparsity.

Principal Components (PC) statistics. Another frequent group of meta-features

come from Statistics derived from a PC analysis: from the Principal Com-

ponent Analysis of the data, in our representation the components are the

most relevant terms for a corpus, we included the following measures: pcac

from [Gomez et al., 2017]; for the first 100 components, the same statistics

from documents per category and their singular values sum, explained ratio

and explained variance, and for the first component its explained variance.

• Lexical features. The distribution of parts of speech tags was included.

The frequency of some lexical items will be higher depending on the task

associated to a corpus, for instance a corpus for sentiment analysis may have

more adjectives while a news corpus may have less. The words were tagged

in the document and computed the average number of adjectives, adpositions,

adverbs, conjunctions, articles, nouns, numerals, particles, pronouns, verbs,

punctuation marks and untagged words in the corpus.

• Corpus readability. Statistics from text that determine readability, com-

42

plexity and grade from textstat library1: Flesch reading ease:

206.835− 1.015

(
|D|

|Sentences(D)|

)
− 84.6

(
|Syllables(D)|

|D|

)
SMOG grade:

1.043

√
|Polysyllables(D)| × 30

|Sentences(D)|
+ 3.1291

Flesch-Kincaid grade level:

0.39

(
|D|

|Sentences(D)|

)
+ 11.8

(
|Syllables(D)|

|D|

)
− 15.59

Coleman-Liau index:

0.0588L− 0.296S − 15.8

where L is the average number of letters per 100 words and S the average

number of sentences per 100 words, automated readability index:

4.71

(
|Chars(D)|
|D|

)
+ 0.5

(
|D|

|Sentences(D)|

)
− 21.43

Dale-Chall readability score:

0.1579

(
|difficult words(D)|

|D|

)
+ 0.0496

(
|D|

|Sentences(D)|

)
the number of difficult words, Linsear Write formula:

(3|complex words(D)|) + (|D| − |complex words(D)|)
2|Sentences(D)|

where complex words are those with more than 3 syllablesGunning fog scale:

0.4

(
|D|

|Sentences(D)|

)
+ 40

(
|complex words(D)|

|D|

)
and the estimated school level to understand the text that considers all the

above tests.

Apart from general, statistical and PC based, the rest of the listed features have not

been used in a meta-learning context. After the offline phase takes place, for a new

task the same meta-features are extracted and compared with the prior knowledge,

to recommend a representation.

1https://github.com/shivam5992/textstat

43

Group Meta-features

General number of documents, number of categories

Hardness SVB, UVB, MRH, CI, SEM, VL, VDR

Statistical
word per document statistics, document per category statistics,

landmarking metrics, PC statistics

Lexical features Parts of Speech distribution

Readability
SMOG, Flesch-Kincaid, Coleman-Liau, Dale-Chall, difficult

words, Linsear Write, Gunning, school level

Table 4.4: Summary of proposed meta-features.

4.1.2 Recommendation of textual representations

For the predicting phase, 4 strategies were considered that leverage learned experi-

ences and make predictions in a new task. Which (meta)model to adopt could be

approached as another meta-learning problem itself, the possibility and effectiveness

of several meta-learning levels is a known but unexplored problem in the field.

The first strategy follows the most common approach in meta-learning, de-

termining the closest task with a similarity measure. For strategies 2-4 different

models were tested with the evaluation described in Section 5.3. Ranking configura-

tions by their expected performance is common within meta-learning [Vanschoren,

2018] methods, this is done by training regression models. XGB and RF have suc-

cessfully accomplish this ranking task [Vanschoren, 2018,Brazdil and Giraud-Carrier,

2018] and thus were selected for the models to test, analogously, the classification

version of those models was also chosen. Because of their success in many machine

learning tasks, SVM classifiers and regressors with different kernels were also tested.

For comparison, some linear regression methods were also tested obtaining poor re-

sults. Finally, the best performing models were selected: Random Forest classifier

for strategy (2) and Random Forest regressor for both strategies (3) and (4). All

44

strategies are described below.

• (1) or 1NN Using directly the representation with best performance of the

nearest corpus. This strategy directly follows the idea of finding the most

similar task in order to know what model will work best. The Euclidean

distance is used to determine the similarity between the new task and those

in the knowledge base. This approach can also be seen as classifying unseen

tasks with a Nearest Neighbors algorithm using only 1 neighbor, in which case

each of the 60 representations constitutes a class.

• (2) Predicting the representation as a classification problem, where each rep-

resentation is a class and every prior task is a sample represented by its 72

meta-features. m(ti) = (mi,1, ...,mi,72) In this case every sample was labeled

with the representation with best performance as its class (m(ti), R
(j)
φ) ∈MxR,

where M is the set of meta-features and R the set of representations. Thus,

the problem is to find a model that automatically select the correct class

h(m(ti)) = R
(j)
φ , finding complex patterns among the tasks and using 81 sam-

ples for training. Since the dimensionality of this problem is big given the

number of samples available this isn’t an easy task, so different classification

models were tested. In the end, a Random Forest classifier was selected as the

model for this strategy. Hyper-parameters of this RF model are listed below

in Table 4.5. Strategy (1) can be considered a particular case of (2), however,

a distinction is made because the former is widely popular but the latter isn’t.

• (3) Predicting the performance for every representation and selecting the one

with the smallest error. In this strategy 60 different regression models are

needed, one for each representation, they are trained using the performance of

each representation for the different tasks, the objective is to correctly predict

the performance for each representation given a new task (described by the

same 72 meta-features). As for (2) several models were trained and compared,

45

Hyper-parameter Value

Estimators 200

Quality criteria Gini

Max depth Unlimited

Min features 2

Max features
√
|features|

Table 4.5: Hyper-parameter for the Random Forest Classifier used in strategy (2).

finally, a Random Forest Regressor was found to work best.

Hyper-parameter Value

Estimators 200

Quality criteria Mean absolute error

Max depth Unlimited

Min features 2

Max features |features|

Table 4.6: Hyper-parameter for the Random Forest Regressor used in strategies (3) and

(4).

• (4) Predicting the rank of each representation and selecting the one with the

best predicted rank. 60 regression models are trained with performances in 81

different tasks. Given a new task the 60 trained models predict the expected

rank for each representation, the results are ordered and the representation

with lowest rank is recommended. Like before various regression models were

tested and again a regression with Random Forest was selected (see Table 4.6).

Strategies (1) and (3) are the most common approaches in meta-learning [Van-

schoren, 2018]. Both follow an intuitive idea, either finding the most similar task

46

or learning to predict the performance of a pipeline. Strategies (2) and (4) respec-

tively expand those ideas and address some of the particular disadvantages of (1)

and (3). It is also important to notice that any of the strategies can be expanded

from recommending a single representation to the best n.

(1) is more sensitive to outliers, similar tasks where the representation is com-

pletely different or tasks that are not related to the others, (2) is more robust to

such situations if considered as a traditional classification problem. (4) simplifies the

regression problem from (3), performances can vary little between representations

making it hard to train a model for any task, the ranking can potentially be easier

to predict accurately.

Between regression strategies (3 and 4) and classification strategies (1 and 2)

there is also an important difference in computation time. A different prediction

for either ranking or performance is needed for each of the representations, thus,

60 different models have to be trained, in comparison, only one is necessary for the

classification strategies. The difference is accentuated if the search space is expanded.

The proposed method includes both approaches since the decision of which to utilize

will depend on the resources available for a certain user.

4.2 Full pipeline selection

The meta-learning approach comprises the first step in the proposed method for rec-

ommending text classification pipelines. It leverages prior knowledge from extensive

experimentation to select automatically pre-processing methods to form a represen-

tation for the raw text documents. However, the problem of selecting a classification

model and optimizing its hyper-parameters remains.

To address it state-of-the-art AutoSklearn is adopted. This receives as input

tabular data and recommends and ensemble of the best classification models with

47

their hyper-parameters optimized. In the proposed method, the corpus is trans-

formed used the previously recommended representation and then given as input to

AutoSklearn.

4.2.1 AutoSKlearn

Auto-sklearn is an AutoML solution that has succeeded in recent academic com-

petitions [Feurer et al., 2015a, Guyon et al., 2017]. It is the state of the art on

AutoML for tabular data and for that reason it was considered for this study. Auto-

Sklearn is implemented in scikit-learn [Pedregosa et al., 2011], it initially comprised

15 classification algorithms, 14 preprocessing methods, and 4 data preprocessing

methods. Similarly to Auto-WEKA [Thornton et al., 2013], Feurer et al. tackle the

Combined Algorithm Selection and Hyper-parameter problem (CASH) or full model

selection [Feurer and Hutter, 2018,Escalante et al., 2009], which they approach with

SMAC, a three-based Bayesian optimization method. There are two key components

that make Auto-Sklearn so competitive.

The first is based on meta-learning, complementary to Bayesian optimization,

it is used to warmstart the optimization by quickly suggesting instantiations The

second feature is the automated ensemble construction of models evaluated during

optimization, when finding the best model instead of discarding the rest of the

models found in the Bayesian optimization process, Feurer, et. al. store them and

then build and ensemble using a greedy ensemble selection algorithm.

For the method proposed in this work the meta-learning component is skipped

because all of the task are text classification and because it doesn’t work well with

sparse matrices. With BO the best classifiers are selected and an ensemble is re-

turned as the recommended model. The output of this method combined with that

of AutoSKlearn results in an automatic full pipeline recommendation for any text

classification task.

48

4.3 Discussion

A two stage method was proposed in this chapter, being one of the first attempts to

recommend full pipelines for text classification tasks some limitations were necessary.

One of them is that even if the scope of the method is to solve any text mining task

most of the datasets in the knowledge base are in English and some of the meta-

features proposed only work for the English language, thus, there is no guarantee

for the method to work on corpora that includes texts in another language.

Another limitation is the search space of textual representations, the method

includes the largest search space until now but it is by no means an exhaustive pool of

representations, as a consequence, the optimal pipeline is impossible to recommend

if it needs an algorithm not included in the method; the restriction for the search

space exists mainly due to the hard decisions of the meta-learning phase. The pool

of representations could be expanded by extending this method with an optimization

algorithm (see Chapters 2 and 3). Which is the best optimization method in the

context of NLP is out of the scope of this research and is left as an open question

for future work.

On the other side, the contributions of this method should be highlighted.

A pipeline recommendation can be made for any type of text classification task

without the intervention of human experts. The proposed characterization can be

useful for future research in NLP since it can compare different tasks by incorporating

information of a corpus and the language used in it. The ability to process raw text

instead of pre-processed data is a novelty for AutoML in NLP, it is a crucial feature

for any AutoML system yet almost unexplored to date.

Finally, the compilation of vast text classification tasks is another important

contribution of the method. To the time of writing benchmark datasets for NLP

are limited to some tasks where a large number of documents are included, the two

49

main type of tasks in such benchmark are sentiment analysis and topic categorization

(for news). The bias for such tasks has left out a number of relevant tasks in NLP

that have been studied for decades until the advent of Deep Learning; the complete

compilation of datasets as well as the metadata extracted so far for different repre-

sentations has been made available to the public. The new information is relevant

for research in both NLP and AutoML fileds. More details about the diversity of

the tasks can be found in Chapter 5.

50

Chapter 5

Experiments and results

To test the effectiveness of the proposed method a series of experiments were de-

signed. First, the effectiveness of the meta-learning approach is validated, then,

the whole method is tested and compared to state-of-the-art classification methods.

This chapter describes the datasets used for such experimentation, it also details the

configuration and discusses the results obtained.

5.1 Datasets

For the extraction of the meta-features and the experimental evaluation, 81 text

corpora associated to different problems were collected. Each corpus was associ-

ated with a task-type-label according to the associated classification problem, where

the considered labels were: authorship analysis, sentiment analysis, topic/thematic

tasks, irony and deception detection. Figure 5.2 illustrates the distribution of the

datasets as labeled by their task.

Tables 5.1, 5.2, 5.3 show the full list of datasets. Some of them are well

known benchmarks (e.g. Yelp) while the rest can be found in competition sites like

51

Figure 5.1: 2 PCA of the datasets described by their meta-features. Each corpus was

tagged with a task-type-label.

Kaggle and SemEval. After pre-processing each corpus to share the same format

and codification 72 meta-features were extracted for each of the 81 collections. To

accelerate the feature extraction process the number of documents were limited

to 90,000 per category, where these were randomly sampled from the categories

of the corpus. The resultant matrix of size 81×72 comprises our knowledge base

characterizing multiple corpora. All of the metadata reported in this work is publicly

available at https://github.com/jorgegus/autotext.

5.2 Predicting the task

The novel characterization proposed in this research is not limited to select represen-

tations, the proposed set of meta-features can describe text mining tasks to compare

them or study their differences. In order to evaluate the effectiveness of such char-

acterization and making use of all the collected metadata from the variety of tasks,

the problem of recognizing the classification task-type of a dataset is proposed.

52

https://github.com/jorgegus/autotext

Name Task # of docs Voc size # of classes

20 Newsgroups Topics 18828 229710 20

Women’s reviews Author 23473 15153 8

Amazon cellphones Sentiment 999 2241 2

Every song Author 20779 48752 40

authorship poetry Author 200 9141 6

SouthPark episodes Author 11953 14068 5

Spanish songs Author 3947 35571 23

Bias Politics Sentiment 5000 21328 2

Brown Topics 500 48778 15

Progressive tweets Topics 1159 5491 4

ccat Author 1000 20416 10

Classic Topics 7095 29518 4

Cyber trolls Hate 20001 21193 2

Davidson hate Hate 24678 24289 2

BBC News Topics 2225 33771 5

BBC Summaries Topics 2225 22921 5

Doctor deception Sentiment 556 4453 2

Op spam- Sentiment 800 8819 2

Op spam+ Sentiment 800 6548 2

Restauran reviews Sentiment 400 5353 2

Deflate Sentiment 11786 25616 5

Gender-microblog Author 781 2439 2

Gender-twitter Author 19953 50910 4

Imperium Hate 6593 28031 2

Hate tweets Hate 24783 41639 3

Iro-eduReyes Irony 20000 32714 2

Iro-humReyes Irony 19870 30485 2

iro-mohammad Irony 1929 6040 2

Iro-polReyes Irony 20000 31882 2

iro-riloff Irony 2080 6132 2

Iro-semeval18 Irony 4466 10906 2

Kaggle hate Hate 6594 25646 2

Table 5.1: List of datasets.

53

Name Task # of docs Voc size # of classes

Machado Topics 246 79461 8

Hate-Malmasi Hate 7162 14456 3

masc tagged Topics 389 43234 20

Medium papers Topics 185 530 3

Movie reviews Sentiment 2000 39768 2

polarity Sentiment 1386 36614 2

Politic Topics 5000 21328 9

Pros cons Sentiment 45875 14015 2

Women’s clothing Sentiment 23486 15160 5

rawdata cric Author 158 13787 4

rawdata fin Author 175 15517 6

rawdata nfl Author 97 8940 3

rawdata travel Author 172 15560 4

Recommendations Sentiment 23486 15160 2

Relevance economic news Sentiment 8000 53162 3

Relevance short news Sentiment 5007 20111 3

Reuters Topics 13328 41600 84

Sarcasm Headlines Irony 26709 25437 2

IMDB short Sentiment 748 3401 2

Sent-semeval16 Sentiment 30631 36451 3

sent-semevalSA Sentiment 6999 18042 3

Twitter-airline Sentiment 14640 18614 3

Twitter-self-dirve Sentiment 7156 18017 6

Short yelp Sentiment 1000 2379 2

Sharktank Sentiment 706 5175 2

smsspam Sentiment 310 1610 2

Socialmedia disaster Sentiment 10860 33768 2

Starter test Sentiment 10876 33606 3

subjectivity Sentiment 10000 21001 2

Tripadvisor reviews Sentiment 17223 32423 5

Sentences polarity Sentiment 10662 18408 2

Yahoo answers Sentiment 1459998 180241 10

Table 5.2: List of datasets.

54

Name Task # of docs Voc size # of classes

YouTube Sentiment 1956 5929 2

Yelp Sentiment 699998 125757 5

Ag News Topics 127598 64504 4

Kickstarter Sentiment 215513 81252 2

News Categories Topics 124989 37183 30

Ohsumed Topics 56984 79479 23

Short Amazon Sentiment 568454 68831 5

Amazon Sentiment 3649998 139289 5

sarcasm Sentiment 1010826 62765 2

Amazon B Sentiment 3999998 138968 2

Sentiment140 Sentiment 1600000 93115 2

Semeval17 Sentiment 62618 62304 3

Yelp B Sentiment 597998 113897 2

Sogou news Topics 509998 42991 5

Dbpedia Topics 629998 199912 14

Victorian authorship Author 53678 9977 45

Stanford Sentiment 25000 95550 2

Table 5.3: List of datasets.

55

Figure 5.2: Tasks distribution.

The ultimate goal of this work is to automatically suggest pipelines for solving

text classification problems. As a first step in such direction, it is shown in this

section that the proposed meta-features can be used as predictive variables to learn

models able to recognize the type of task associated to a dataset. Different text

classification tasks can be derived given the same dataset, our set of meta-features

also acknowledges this since some of the proposed measures provide statistical in-

formation about the classes.

In NLP it is empirically known that certain methods work better according to

the type of task that is aimed, for instance, character-based n-grams are known to

perform better than other representations in authorship attribution tasks because

they determine better an author’s style. Identifying correctly the type of task that

is tackled is a fundamental step when modeling a text classification pipeline, thus

it is proposed to automate this task in pursuit of an automated recommendation

system.

Using the proposed set of meta-features, this problem was studied as both,

a multiclass (predicting one of the 5 task labels) and a binary (distinguishing one

label from the rest at a time) classification problem. The same classifiers discussed

on section 4.1.2 were considered for the evaluation: Random Forest (RF), XGBoost

(XG), linear Support Vector Machines (SVM) and KNN (1 neighbor).

56

For the evaluation a leave-one-out evaluation is adopted: 80 tasks were used

for training and 1 for testing, repeating this process 81 times, each time changing

the test task; the average performance over the 81 folds is reported. As evaluation

measures for the binary classification approach accuracy and f1 measure for the

positive class are reported; in the case of the multiclass problem average accuracy

and Macro-averaged-f1 score are used instead.

Accuracy f1

Task / Model XG RF SVM KNN XG RF SVM KNN

Hate 0.94 0.94 0.93 0.91 0.29 0.29 0.00 0.36

Irony 0.95 0.93 0.91 0.93 0.67 0.25 0.00 0.5

Sentiment 0.89 0.85 0.67 0.69 0.83 0.77 0.00 0.60

Topics 0.86 0.89 0.80 0.77 0.62 0.64 0.00 0.30

Author 0.90 0.89 0.84 0.84 0.60 0.52 0.00 0.38

All 5-tasks 0.77 0.75 0.48 0.51 0.64 0.59 0.13 0.43

Table 5.4: Task prediction results with 72 meta-features

Table 5.4 shows the results obtained by the 4 classifiers. It can be seen that for

XG and RF performance for all of the tasks is greater than random guessing. The

high accuracy contrasted by moderate f1 values reveals the models are favouring

the majority class. In fact, high imbalance makes prediction quite difficult, specially

for the hate and irony detection tasks where there are 6 and 7 positive examples,

respectively.

An additional experiment involved a feature selection process prior to the clas-

sification stage. Since the number of possible meta-feature subsets is 272, it results

impossible to experiment with all of them, hence, mutual information was used to

rank the top 25 features. Then, subsets with the top ranked meta-features, from 2

to 25, were used for training and predicting. Table 5.5 shows the best performance

obtained and the optimal number of meta-features found when performing feature

57

selection. It can be seen that there is a performance improvement after the selection

of meta-features in all binary cases. Improvements are dramatic in terms of the f1

measure in some cases (e.g., Hate, Topics, Author). Surprisingly, for some problems

only few meta-features were required to achieve better performance, see, e.g., Hate.

For the multiclass problem meta-feature selection did not improve the initial results

on either evaluation measures.

Task Model K Accuracy f1

Hate RF 2 0.94 (+0%) 0.55 (+89.6%)

Irony XG 15 0.96 (+1%) 0.73 (+8.9%)

Sentiment XG 24 0.90 (+1%) 0.85 (+2.4%)

Topics RF 3 0.90 (+1%) 0.75 (+17.1%)

Author RF 3 0.91 (+1%) 0.70 (+16.6%)

5 tasks XG 12 0.70 (-7%) 0.64 (+0%)

Table 5.5: Results with meta-feature selection

Table 5.6 shows the complete subsets of features considered for obtaining the

results from Table 5.5. Meta-features are ordered by their mutual information values.

It is hard to find a common pattern but it was found that some features are part of

almost every subset: the percentage of adverbs, the number of categories, vocabulary

overlapping in classes: MRH, and some statistic of documents per category. Hence

showing the importance of the novel meta-features extracted from raw text. For hate

detection and authorship analysis simple statistical measures appear to be better to

describe the corpora, for the rest of the tasks the subsets that improved the original

performance include a wide variety of meta-features from the groups.

58

Hate Irony Sentiment Topics Author All 5 TASKS

number of categories number of categories dpc min adverbs dpc min number of categories

dpc min dpc kurtosis numerals MRH 100pca skewness dpc kurtosis

Flesch reading ease adpositions SMOG pronouns dpc max dpc min

dpc kurtosis wpd average unmarked nouns feature independence NB dpc entropy

zeros in matrix Flesch reading ease pca singular sum punctuation marks number of documents MRH

voc skewness zeros in matrix pca explained variance dpc entropy pca kurtosis adverbs

dpc entropy readability index adpositions number of categories pca explained ratio adjectives

pca explained variance Kincaid grade pca max scholar grade dpc entropy wpd average

imbalance degree dpc min number of categories SMOG pcac Flesch reading ease

voc kurtosis dpc skewness wpd average data separability DT pca explained variance pca explained variance

Linsear Gunning zeros in matrix

MRH Linsear SMOG

pca singular sum zeros in matrix

voc kurtosis Articles

pca min Flesch reading ease

dpc skewness

MRH

adverbs

Coleman-Liau

number of documents

nouns

wpd entropy

pca explained variance

conjuctions

dpc entropy

Table 5.6: Meta-features identified as relevant after feature selection. We show the ranked

features for each problem, in bold we show the features used for obtaining the results from

Table 5.5.

59

5.3 Recommending textual representations

The 4 meta-learning strategies described in Chapter 4 were evaluated with unseen

tasks following a leave-one-out setting, using the results from 60 representations in

the rest of the tasks as knowledge to decide which representation to recommend. The

objective for the strategies, then, is to select what in exhaustive search was found

to be the best representation. the average performance achieved by our strategies is

compared in 5 runs against the best solution found and the average performance of

all of the considered representations. Table 5.7 shows the average performance for

each strategy after 5 runs in terms of the average accuracy and average rank. Figure

5.3 depicts the performance of the method and the baselines in 9 corpora (these

representative corpora were selected to cover a wide variety of tasks and because

they are well known benchmarks).

Figure 5.3: Accuracy of the strategies in 9 selected corpora.

The 4 strategies clearly outperform the mean of the performance of all repre-

sentations and while in terms of average ranking they could be closer to the optimal,

the average accuracy of (2) and (4) strategies was only 2% behind the best. (2) also

found the best representation 35% of the time. Results show strong evidence that the

60

Method Best (1) (2) (3) (4) Mean

Avg Accu 77.06±0 73.75±0 75.25±0.12 73.34±0.34 75.20±0.07 68.45±0

Avg Rank 1.00±0 14.20±0 8.71±0.46 14.30±1.31 8.51±0.34 30.30±0

of 1s 81.00±0 17.00±0 25.80±0.45 4.20±0.84 14.80±0.84 0.00±0

Table 5.7: Average accuracy [0,1] and average rank [60,1] of different strategies in 81

corpus, the last row indicates the number of times the best representation was predicted.

(1) Nearest corpus, (2) classification, (3) performance regression, (4) rank prediction.

meta-learning approach finds relations between corpora and pipeline performances

that exploits prior knowledge for the autonomous classification of texts.

From the 72 proposed meta-features we tested different subsets according to

their Gini importance from the Random Forest used in strategy (2). A subset of 38

meta-features improved the results relatively by 8% with (2), and 38% with (1) in

terms of average ranking. This subset was also compared against a subset comprised

of 19 traditional meta-features used in related work. Using strategy (2) our subset

outperformed the traditional one by almost 0.8% in average accuracy and 3 places

in average rank. The results also showed a significant difference between using both

subsets (p<.001 Student’s t-test) The subset of 28 meta-features is detailed in Tables

6.1 and 6.2 in the appendix. And the results for the average ranking of the different

subsets are depicted in Figure 5.4.

Method (1) (2) (3) (4)

Avg Accu 75.16±0 75.39±0.13 73.57±0.14 75.16±0.05

Avg Rank 8.68±0 8.00±0.47 14.42±0.53 9.05±0.25

of 1s 27.00±0 26.44±0.56 6.40±1.34 16.00±0.87

Table 5.8: Results after meta-feature selection

The results for all the methods after applying (meta) feature selection are pre-

61

sented in Table 5.8. The number of meta-features was reduced by 50%. Strategies

(3) and (4) maintained their performance while strategy (1) got an important im-

provement in its average accuracy and average rank. Strategy (2) remains as the

best option for the meta-learning phase. The consistency of the results among the

different approaches shows the effectiveness of the proposed set of meta-features.

Figure 5.4: Comparison of different meta-feature subsets.

In addition, the strategies were compared with commonly used representations

such as pre-trained Word2Vec and Bag-of-Words outperforming them in average by

9% and 3% respectively, Figure 5.5 depicts this comparison (between strategy (4)

and W2V) in the 9 corpora we selected. Despite the robustness of such common

representations their performance can usually be improved by fine tuning some of

their hyper-parameters or they are largely outperformed by another, as shown in the

results the strategies are able to find these improvements.

After extensive experimentation with different approaches it was found that

all strategies and all different subsets of meta-features give poor recommendations

in some datasets. Specifically, for corpora in Table 5.9, the representations selected

were never ranked in the top-10. Such results adhere to the intuitive idea behind

62

Figure 5.5: Accuracy comparison between (2), (4), Word2Vec, and BOW in 9 corpora.

meta-learning. The metadata extracted from each of these corpora, despite being

associated to a text classification task, isn’t related to the rest of the metadata stored

in the knowledge base. How to determine a priori if a new dataset will work with

the available metadata wasn’t explored in this study but is an interesting question

for further research.

Corpus Size Categories Avg. rank

age-Wom 23473 8 20.88

cyber trolls 20001 2 40.85

davidson-hate 24678 2 29.43

iro-mohammad 1929 2 26.84

medium-papers 185 3 27.90

relevance-economic-news 8000 3 20.20

Table 5.9: Datasets with complications. Avg. rank among all strategies and subsets is

shown.

In some of these datasets the task is completely unique and there is no other

similar task, that is the case of age-Wom, cyber trolls, and relevance-economic-news

63

corpora, where their associated task: profiling women by age ranges given their

reviews in some products, detecting trolls in social media, and deciding whether a

news will have a relevant impact in the economy of a country, are very specific and

data for similar problems will be hard to find.

On the other hand, the rest of the datasets from this analysis present tasks that

are rather common in the knowledge base: irony detection and topic categorization.

It is difficult to identify a single reason for the failure of the method, by looking at

the texts from these corpora they are very similar to texts from the similar tasks,

however, the representation that worked for the rest isn’t the best for these special

cases. Such behaviour isn’t alarming, it is actually expected from the hard meta-

learning approach proposed.

In spite of the promising results of the proposed method, the search space isn’t

exhaustive, thus, finding the perfect representation or pipeline couldn’t be possible

with the current approach. Nevertheless, the experimentation of this work is exten-

sive and the method presented here presents results that are solid enough to continue

research in this direction. The special cases where it fails can be easily addressed

by extending this method with state-of-the-art optimization techniques allowing the

enlargement of the search space or the fine-grain hyper-parameter optimization of

the current algorithms in consideration, some examples of this approach (in other

areas) can be found in Chapter 3.

5.4 Recommending pipelines

5.4.1 Comparison with state-of-the-art

The final method: AutoText (meta-learning of textual representations + AutoSKlearn)

was compared against some of the most recent text classification methods in the lit-

64

erature, all of which are Deep Learning methods. Following the same validation that

such works make, the proposed method was trained and tested using the benchmark

datasets used for Deep Learning, these are also the largest datasets available for the

meta-learning phase.

As evaluation measure most works report accuracy, each score is taken directly

from what is reported in the cited papers, for AutoText the dataset being tested on

is removed from the knowledge base. Additionally, the experiments are not limited

to the recommendation of a single representation but also a concatenation of the top

3 best representations, experiments are performed using strategies (2) and (4) and

using the 72 meta-features and the sub-set of 38 after feature selection.

Method AG Dbpedia YelpB Yelp Yahoo Amazon AmazonB

CNN 92.36 98.69 95.64 62.05 73.43 59.57 95.07

LEAM 92.45 99.02 95.31 64.09 77.42 - -

ULMfit 94.99 99.2 97.84 70.02 - - -

AutoText1 83.88 93.23 85.98 45.36 53.98 46.24 80.64

AutoText2 81.97 85.90 83.78 49.17 29.12 40.03 79.39

AutoText3 84.15 87.62 88.26 46.09 10 20 50

Table 5.10: Results in benchmark datasets. For DL methods, claimed results from the

original papers are used for comparison.

While most works focus on solving a specific task some propose a more general

classification method, those were selected for the comparison against the method

from this thesis, namely: character level Convolutional Neural Networks(CNN)

[Zhang et al., 2015], Label Embeddings Attentive Model (LEAM) [Wang et al.,

2018], and Universal Language Model Fine-tuning (ULMfit) [Howard and Ruder,

2018]. Table 5.10 includes the results for this comparison. Variations of Autotext

are listed below:

65

• AutoText1: Strategy (4), 72 meta-features

• AutoText2: Strategy (2), 38 meta-features

• AutoText3: Strategy (4), 72 meta-features, top-3 representations

For the largest datasets, AutoText performs well but it is outperformed by

the state-of-the-art. There was a slight improvement in some of the results when a

concatenation of 3 representations was used, but this approach failed for 3 datasets

because of the huge dimensionallity. Deep Learning approaches rely heavily on

the availability of extensive data and do not generalize well to different tasks. To

demonstrate this point one of the SOTA methods was implemented and tested on

smaller datasets. Table 5.11 shows the comparison of ULMfit and AutoText1 in a

wider variety of tasks and smaller datasets.

Method 20NGs Movie reviews Reuters SemEval18

ULMfit 79.74 77.61 72.53 62.42

AutoText1 85.09 84.90 72.79 64.82

Table 5.11: Results in diverse tasks. Accuracy achieved by each method is reported after

training with 70% of the data and testing with the remaining 30%.

In this setting AutoText outperforms ULMfit most of the time, it was also

found that with very small datasets a Deep Learning method can be easily overfit-

ted achieving performance of a random classifier making it necessary to fine-tune

the hyper-parameters of such models whereas the proposed method requires little

to none human intervention; for a fair comparison and because of memory lim-

itations, only the last layer of the ULMfit’s language model and the classification

neural network were fine-tuned (instead of gradual unfreezing), the rest of the hyper-

parameters of ULMfit were set to default [Howard and Ruder, 2018]. The aim of this

comparison is not to criticize Deep Learning methods, as a mater of fact a tailored

66

model could significantly improve its results, but rather to show evidence that a

more classical pipeline can achieve similar performance when selected optimally and

in a data driven fashion, potentially saving thousands of computation hours due to

the inherent requirements of fine-tuning DL models.

67

Chapter 6

Conclusions and future work

6.1 Conclusions

This one of the first studies so far in NLP regarding meta-learning and AutoML

research. The findings and proposals of this work make several noteworthy contri-

butions to both fields. Furthermore, they have enhanced the understanding of the

construction of pipelines for text mining tasks. Several questions were out of the

scope for this work, however, this research could serve as base for future studies in

AutoML for text classification.

A novel characterization for text classification corpora is proposed using a set

of 72 meta-features and evaluated in 81 datasets that combine generic meta-learning

and natural language processing techniques. Experimental results showed that this

metadata can be used to recommend models with acceptable performance in many

tasks.

Metadata extracted from extensive experimentation as well as the compilation

of datasets was made public; this information along with the proposed characteri-

zation can potentially help understand differences between the diverse text mining

69

tasks, determine existing biases in the construction of text corpora, or defining new

benchmarks for text classification algorithms with a broad scope.

The problem of automatically predicting the type text classification task is pro-

posed and approached from meta-features derived from text. Experimental results

demonstrate that the proposed meta-features entail discriminative information that

could be useful for other meta-learning tasks. Results of a meta-feature selection

analysis has shown that traditional meta-features are not good enough to character-

ize datasets by themselves, proving the effectiveness of the newly introduced ones.

As part of the developed method, a meta-learning stage was also proposed,

it takes as input an unprocessed corpus and without human intervention builds a

model to solve a text classification task, first focusing on the selection of a vector-

based representation and then employing auto-sklearn to optimize a classification

model. The results show empirically that this approach is able to characterize tasks

and approximate an optimal representation.

The final method recommends a full pipeline for text classification problems.

In extensive experimentation it obtained satisfactory results among a large number

of tasks without the traditional tuning of a human expert, the method has also been

made publicly available in order to encourage further extensions to it and develop

a robust system for both non-experts in NLP and data scientist that seek to reduce

the devoted time to adjust hyper-parameters.

Evidence also supports the effectiveness of the method by achieving results

comparable to state-of-the-art Deep Learning approaches in datasets with few sam-

ples. To conclude this document some suggestion of future research directions are

discussed below.

70

6.2 Contributions

1. A method that automatically recommends a text representation, a classifier,

and its hyper-parameters values given a corpus. The proposed method takes

as input a raw set of documents and automatically transforms it, trains a

classifier, and produces predictions. It represents the first effort for solving

any text classification task without human input, further research can also

extend the method to include state-of-the-art optimization algorithms or to

aim for solving other text mining problems.

2. A novel set of meta-features that describe a text classification task. The char-

acterization showed to be effective for describing tasks and two problems were

addressed exploiting this information, however, it would be interesting to ex-

plore other problems with this approach. For instance. What makes different

a task from another? Is this metadata useful for generating useful datasets to

aid other Machine Learning tasks?

3. The problem of text classification task-type prediction is introduced. Manually

determining this is usually the first step when dealing with a new task. Future

work for this problem could help to understand if this step is helpful for building

efficient pipelines or human bias to such decisions could potentially ignore

promising algorithms.

4. An empirical study of the different representations used across types of tasks.

The proposed method relies on the metadata obtained from this study, while

being the largest to date, it can be extended to include DL models or exploited

to understand different steps in a classification pipeline.

Derived from the research in this area and from this thesis three papers have

been or will be presented:

71

Jorge G Madrid, Hugo Jair Escalante, Eduardo F Morales, Wei-Wei Tu, Yang

Yu, Lisheng Sun-Hosoya, Isabelle Guyon, and Michèle Sebag. Towards AutoML in

the presence of Drift: first results. In Workshop AutoML 2018 @ ICML/IJCAI-

ECAI, Stockholm, Sweden, July 2018. Pavel Brazdil, Christophe Giraud-Carrier,

and Isabelle Guyon.

Jorge G Madrid, Hugo Jair Escalante and Eduardo F Morales. Meta-learning

of textual representations. In Workshop AutoML 2019 @ ICML, Long Beach, USA,

July 2019. Katharina Eggensperger, Matthias Feurer, Frank Hutter, and Joaquin

Vanschoren. Also presented in ECMLPKDD Workshop on Automating Data Science

(ADS).

Jorge G Madrid and Hugo Jair Escalante. Meta-learning of text classification

tasks. Accepted in the 24th Iberoamerican Congress on Pattern Recognition (CIARP

2019).

6.3 Future work

This research has thrown up many questions in need of further investigation. The

representations in the search space are by far the most varied compared to related

work but because it is a prominent research area where new representations are pro-

posed every year. What other representations should be explored for AutoML? The

first stage of the proposed method can be used to warm-start an optimization tech-

nique with the proposed meta-learning setting allowing to expand the search space

and ideally finding pipelines that perform better than those designed by humans, as

shown by AutoML in other fields. This work approaches the problem by sequentially

recommending a representation and a classifier, the question of whether optimizing

both type of algorithms at the same time will perform better remains.

Characterizing text mining tasks is one of the novelties of this work. Two

72

problems where tackled with the proposed description vector: identifying the type

task associated with a corpus and recommending text representations based on what

worked previously for similar tasks. Future work might explore existing problems or

suggest new ones with the proposed characterization.

The findings suggest that meta-features related to language richness and com-

plexity outperform those using only statistics from the dataset. The set of meta-

features discussed in this document is not a definitive list, what other language

features could be exploited to characterize text mining tasks is another interesting

research question that could be studied.

Some topics out of this thesis scope also need further research. Currently Deep

Learning models are very time-consuming, in AutoML for DL, specifically, Neural

Architecture Search, this situation is aggravated. Computational requirements of DL

should not be disregarded. Reducing the experimentation time is one of the main

motivations for AutoML. In addition, such demanding conditions have a negative

impact in real life scenarios, for instance, small research teams or companies could

not afford the required hardware or would lose a significant part of their financing

for a small gain in accuracy.

To continue the wide adoption of Machine Learning in different areas, efficient

algorithms and methods have to be developed. The extensive meta-learning study

from this thesis might provide some insights to the construction of optimal text classi-

fication pipelines. Further investigation in AutoML is needed for optimizing existing

DL methods but also to automatically determine what are the correct conditions for

adopting a DL model over traditional pipelines. The proposed characterization of

tasks provides a practical mechanism to approach both research directions.

This work comprises a first attempt towards the automated recommendation

of full text classification pipelines. The source code of the method is available under

an open source license at: https://github.com/jorgegus/autotext.

73

Bibliography

[Abdulrahman et al., 2018] Abdulrahman, S. M., Brazdil, P., van Rijn, J. N., and

Vanschoren, J. (2018). Speeding up algorithm selection using average ranking and

active testing by introducing runtime. Machine learning, 107(1):79–108.

[Aggarwal and Zhai, 2012] Aggarwal, C. C. and Zhai, C. (2012). A Survey of Text

Classification Algorithms, pages 163–222. Springer US, Boston, MA.

[Ali and Smith, 2006] Ali, S. and Smith, K. A. (2006). On learning algorithm selec-

tion for classification. Applied Soft Computing, 6(2):119–138.

[Allahyari et al., 2017] Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe,

E. D., Gutierrez, J. B., and Kochut, K. (2017). A brief survey of text mining: Clas-

sification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919.

[Andrychowicz et al., 2016] Andrychowicz, M., Denil, M., Gomez, S., Hoffman,

M. W., Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N. (2016). Learning

to learn by gradient descent by gradient descent. In Advances in Neural Informa-

tion Processing Systems, pages 3981–3989.

[Bengio, 2000] Bengio, Y. (2000). Gradient-based optimization of hyperparameters.

Neural computation, 12(8):1889–1900.

[Bergstra and Bengio, 2012] Bergstra, J. and Bengio, Y. (2012). Random search

for hyper-parameter optimization. Journal of Machine Learning Research,

13(Feb):281–305.

75

[Bergstra et al., 2011] Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011).

Algorithms for hyper-parameter optimization. In Advances in neural information

processing systems, pages 2546–2554.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet

allocation. Journal of machine Learning research, 3(Jan):993–1022.

[Bozdogan, 1987] Bozdogan, H. (1987). Model selection and akaike’s information

criterion (aic): The general theory and its analytical extensions. Psychometrika,

52(3):345–370.

[Brazdil and Giraud-Carrier, 2018] Brazdil, P. and Giraud-Carrier, C. (2018). Met-

alearning and algorithm selection: progress, state of the art and introduction to

the 2018 special issue.

[Canuto et al., 2018] Canuto, S., Sousa, D. X., Gonçalves, M. A., and Rosa, T. C.

(2018). A thorough evaluation of distance-based meta-features for automated

text classification. IEEE Transactions on Knowledge and Data Engineering,

30(12):2242–2256.

[Chen and Guestrin, 2016] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable

tree boosting system. In Proceedings of the 22nd acm sigkdd international confer-

ence on knowledge discovery and data mining, pages 785–794. ACM.

[das Dôres et al., 2018] das Dôres, S. C. N., Soares, C., and Ruiz, D. (2018). Bandit-

based automated machine learning. In 2018 7th Brazilian Conference on Intelli-

gent Systems (BRACIS), pages 121–126. IEEE.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,

T. K., and Harshman, R. (1990). Indexing by latent semantic analysis. Journal

of the American society for information science, 41(6):391–407.

76

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018).

Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805.

[Domhan et al., 2015] Domhan, T., Springenberg, J. T., and Hutter, F. (2015).

Speeding up automatic hyperparameter optimization of deep neural networks by

extrapolation of learning curves. In Twenty-Fourth International Joint Conference

on Artificial Intelligence.

[Elsken et al., 2018] Elsken, T., Metzen, J. H., and Hutter, F. (2018). Neural archi-

tecture search: A survey. arXiv preprint arXiv:1808.05377.

[Escalante et al., 2009] Escalante, H. J., Montes, M., and Sucar, L. E. (2009). Par-

ticle swarm model selection. Journal of Machine Learning Research, 10(Feb):405–

440.

[Escalante et al., 2017] Escalante, H. J., Villatoro-Tello, E., Garza, S. E., López-

Monroy, A. P., Montes-y Gómez, M., and Villaseñor-Pineda, L. (2017). Early

detection of deception and aggressiveness using profile-based representations. Ex-

pert Systems with Applications, 89:99–111.

[Falkner et al., 2018] Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust

and efficient hyperparameter optimization at scale. In International Conference

on Machine Learning, pages 1436–1445.

[Ferreira and Brazdil, 2018] Ferreira, M. J. and Brazdil, P. (2018). Workflow rec-

ommendation for text classification with active testing method. In Workshop

AutoML 2018@ ICML/IJCAI-ECAI.

[Feurer and Hutter, 2018] Feurer, M. and Hutter, F. (2018). Hyperparameter

optimization. In [Hutter et al., 2018], pages 3–38. In press, available at

http://automl.org/book.

77

[Feurer et al., 2015a] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.,

Blum, M., and Hutter, F. (2015a). Efficient and robust automated machine learn-

ing. In Advances in neural information processing systems, pages 2962–2970.

[Feurer et al., 2015b] Feurer, M., Springenberg, J. T., and Hutter, F. (2015b). Ini-

tializing bayesian hyperparameter optimization via meta-learning. In Twenty-

Ninth AAAI Conference on Artificial Intelligence.

[Finn et al., 2017] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-

learning for fast adaptation of deep networks. In Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume 70, pages 1126–1135. JMLR.

org.

[Frazier, 2018] Frazier, P. I. (2018). A tutorial on bayesian optimization. arXiv

preprint arXiv:1807.02811.

[Fusilier et al., 2015] Fusilier, D. H., Montes-y Gómez, M., Rosso, P., and Cabrera,

R. G. (2015). Detection of opinion spam with character n-grams. In International

Conference on Intelligent Text Processing and Computational Linguistics, pages

285–294. Springer.

[Golovin et al., 2017] Golovin, D., Kochanski, G., and Karro, J. E. (2017). Black box

optimization via a bayesian-optimized genetic algorithm. In Advances in Neural

Information Processing Systems 30 (NIPS 2017). To be submitted to Opt2017

Optimization for Machine Learning, at NIPS 2017.

[Golub and Reinsch, 1971] Golub, G. H. and Reinsch, C. (1971). Singular value

decomposition and least squares solutions. In Linear Algebra, pages 134–151.

Springer.

[Gomez et al., 2017] Gomez, J. C., Hoskens, S., and Moens, M.-F. (2017). Evolu-

tionary learning of meta-rules for text classification. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion, pages 131–132. ACM.

78

[Guo et al., 2006] Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2006). Using

knn model for automatic text categorization. Soft Computing, 10(5):423–430.

[Guyon et al., 2015] Guyon, I., Bennett, K., Cawley, G., Escalante, H. J., Escalera,

S., Ho, T. K., Macia, N., Ray, B., Saeed, M., Statnikov, A., et al. (2015). Design

of the 2015 chalearn automl challenge. In 2015 International Joint Conference on

Neural Networks (IJCNN), pages 1–8. IEEE.

[Guyon et al., 2017] Guyon, I., Sun-Hosoya, L., Boullé, M., Escalante, H., Escalera,

S., Liu, Z., Jajetic, D., Ray, B., Saeed, M., Sebag, M., et al. (2017). Analysis of

the automl challenge series 2015-2018.

[Hansen, 2016] Hansen, N. (2016). The cma evolution strategy: A tutorial. arXiv

preprint arXiv:1604.00772.

[Howard and Ruder, 2018] Howard, J. and Ruder, S. (2018). Universal language

model fine-tuning for text classification. In Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

328–339.

[Hutter et al., 2011] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequen-

tial model-based optimization for general algorithm configuration. In International

Conference on Learning and Intelligent Optimization, pages 507–523. Springer.

[Hutter et al., 2018] Hutter, F., Kotthoff, L., and Vanschoren, J., editors (2018).

Automatic Machine Learning: Methods, Systems, Challenges. Springer. In press,

available at http://automl.org/book.

[Iyyer et al., 2015] Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé III, H.

(2015). Deep unordered composition rivals syntactic methods for text classifica-

tion. In Proceedings of the 53rd Annual Meeting of the Association for Computa-

tional Linguistics and the 7th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), volume 1, pages 1681–1691.

79

[Jamieson and Talwalkar, 2016] Jamieson, K. and Talwalkar, A. (2016). Non-

stochastic best arm identification and hyperparameter optimization. In Artificial

Intelligence and Statistics, pages 240–248.

[Jin et al., 2019] Jin, H., Song, Q., and Hu, X. (2019). Auto-keras: An efficient

neural architecture search system. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 1946–

1956. ACM.

[Karnin et al., 2013] Karnin, Z., Koren, T., and Somekh, O. (2013). Almost opti-

mal exploration in multi-armed bandits. In International Conference on Machine

Learning, pages 1238–1246.

[Kessler et al., 1997] Kessler, B., Nunberg, G., and Schutze, H. (1997). Automatic

detection of text genre. In 35th Annual Meeting of the Association for Computa-

tional Linguistics, pages 32–38.

[Klein et al., 2017] Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F.

(2017). Fast bayesian optimization of machine learning hyperparameters on large

datasets. In Artificial Intelligence and Statistics, pages 528–536.

[Kohavi and John, 1995] Kohavi, R. and John, G. H. (1995). Automatic parameter

selection by minimizing estimated error. In Machine Learning Proceedings 1995,

pages 304–312. Elsevier.

[Kord́ık et al., 2018] Kord́ık, P., Černỳ, J., and Frỳda, T. (2018). Discovering pre-

dictive ensembles for transfer learning and meta-learning. Machine Learning,

107(1):177–207.

[Lam and Lai, 2001] Lam, W. and Lai, K.-Y. (2001). A meta-learning approach for

text categorization. In Proceedings of the 24th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 303–309.

ACM.

80

[Le and Mikolov, 2014] Le, Q. and Mikolov, T. (2014). Distributed representations

of sentences and documents. In International conference on machine learning,

pages 1188–1196.

[Lee et al., 2007] Lee, S.-I., Chatalbashev, V., Vickrey, D., and Koller, D. (2007).

Learning a meta-level prior for feature relevance from multiple related tasks. In

Proceedings of the 24th international conference on Machine learning, pages 489–

496. ACM.

[Lessmann et al., 2005] Lessmann, S., Stahlbock, R., and Crone, S. F. (2005). Op-

timizing hyperparameters of support vector machines by genetic algorithms. In

IC-AI, pages 74–82.

[Lewis et al., 2004] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1:

A new benchmark collection for text categorization research. Journal of machine

learning research, 5(Apr):361–397.

[Li and Jamieson, 2018] Li, L. and Jamieson, K. (2018). Hyperband: A novel

bandit-based approach to hyperparameter optimization. Journal of Machine

Learning Research, 18:1–52.

[López-Monroy et al., 2015] López-Monroy, A. P., Montes-y Gómez, M., Escalante,

H. J., Villaseñor-Pineda, L., and Stamatatos, E. (2015). Discriminative subprofile-

specific representations for author profiling in social media. Knowledge-Based

Systems, 89:134–147.

[Lorenzo et al., 2017] Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., and

Pastor, J. R. (2017). Particle swarm optimization for hyper-parameter selection

in deep neural networks. In Proceedings of the Genetic and Evolutionary Compu-

tation Conference, pages 481–488. ACM.

[Lovins, 1968] Lovins, J. B. (1968). Development of a stemming algorithm. Me-

chanical Translation and Computational Linguistics, 11:22–31.

81

[Nakov et al., 2016] Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., and Stoy-

anov, V. (2016). Semeval-2016 task 4: Sentiment analysis in twitter. In Proceedings

of the 10th international workshop on semantic evaluation (semeval-2016), pages

1–18.

[Olson et al., 2016a] Olson, R. S., Bartley, N., Urbanowicz, R. J., and Moore, J. H.

(2016a). Evaluation of a tree-based pipeline optimization tool for automating data

science. In Proceedings of the Genetic and Evolutionary Computation Conference

2016, GECCO ’16, pages 485–492, New York, NY, USA. ACM.

[Olson et al., 2016b] Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender,

N. A., Kidd, L. C., and Moore, J. H. (2016b). Applications of Evolutionary

Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal,

March 30 – April 1, 2016, Proceedings, Part I, chapter Automating Biomedical

Data Science Through Tree-Based Pipeline Optimization, pages 123–137. Springer

International Publishing.

[Pang et al., 2008] Pang, B., Lee, L., et al. (2008). Opinion mining and sentiment

analysis. Foundations and Trends R© in Information Retrieval, 2(1–2):1–135.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duch-

esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830.

[Pennebaker et al., 2015] Pennebaker, J. W., Boyd, R. L., Jordan, K., and Black-

burn, K. (2015). The development and psychometric properties of liwc2015. Tech-

nical report.

[Pinto, 2008] Pinto, D. (2008). On clustering and evaluation of narrow domain

short-text corpora. PhD. UPV.

82

[Porter, 1997] Porter, M. F. (1997). An algorithm for suffix stripping. In Readings

in information retrieval, pages 313–316. Morgan Kaufmann Publishers Inc.

[Quanming et al., 2018] Quanming, Y., Mengshuo, W., Hugo, J. E., Isabelle, G.,

Yi-Qi, H., Yu-Feng, L., Wei-Wei, T., Qiang, Y., and Yang, Y. (2018). Taking

human out of learning applications: A survey on automated machine learning.

arXiv preprint arXiv:1810.13306.

[Rangel et al., 2016] Rangel, F., Rosso, P., Verhoeven, B., Daelemans, W., Potthast,

M., and Stein, B. (2016). Overview of the 4th author profiling task at pan 2016:

cross-genre evaluations. In Working Notes Papers of the CLEF 2016 Evaluation

Labs. CEUR Workshop Proceedings/Balog, Krisztian [edit.]; et al., pages 750–784.

[Ravi and Larochelle, 2016] Ravi, S. and Larochelle, H. (2016). Optimization as a

model for few-shot learning.

[Rill-Garćıa et al., 2018] Rill-Garćıa, R., Villaseñor-Pineda, L., Reyes-Meza, V., and

Escalante, H. J. (2018). From text to speech: A multimodal cross-domain ap-

proach for deception detection. In International Conference on Pattern Recogni-

tion, pages 164–177. Springer.

[Rivolli et al., 2018] Rivolli, A., Garcia, L. P., Soares, C., Vanschoren, J., and

de Carvalho, A. C. (2018). Towards reproducible empirical research in meta-

learning. arXiv preprint arXiv:1808.10406.

[Schmidhuber, 1987] Schmidhuber, J. (1987). Evolutionary principles in self-

referential learning. On learning how to learn: The meta-meta-... hook.) Diploma

thesis, Institut f. Informatik, Tech. Univ. Munich.

[Schmidt and Wiegand, 2017] Schmidt, A. and Wiegand, M. (2017). A survey on

hate speech detection using natural language processing. In Proceedings of the

Fifth International Workshop on Natural Language Processing for Social Media,

pages 1–10.

83

[Shahriari et al., 2016] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and

De Freitas, N. (2016). Taking the human out of the loop: A review of bayesian

optimization. Proceedings of the IEEE, 104(1):148–175.

[Snoek et al., 2012] Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical

bayesian optimization of machine learning algorithms. In Advances in neural

information processing systems, pages 2951–2959.

[Stamatatos et al., 2000] Stamatatos, E., Fakotakis, N., and Kokkinakis, G. (2000).

Automatic text categorization in terms of genre and author. Computational lin-

guistics, 26(4):471–495.

[Sun et al., 2013] Sun, Q., Pfahringer, B., and Mayo, M. (2013). Towards a frame-

work for designing full model selection and optimization systems. In International

Workshop on Multiple Classifier Systems, pages 259–270. Springer.

[Thornton et al., 2013] Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown,

K. (2013). Auto-weka: Combined selection and hyperparameter optimization of

classification algorithms. In Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’13, pages 847–855,

New York, NY, USA. ACM.

[Uysal and Gunal, 2014] Uysal, A. K. and Gunal, S. (2014). The impact of prepro-

cessing on text classification. Information Processing & Management, 50(1):104–

112.

[Vanschoren, 2018] Vanschoren, J. (2018). Meta-learning. In [Hutter et al., 2018],

pages 39–68. In press, available at http://automl.org/book.

[Wang et al., 2018] Wang, G., Li, C., Wang, W., Zhang, Y., Shen, D., Zhang, X.,

Henao, R., and Carin, L. (2018). Joint embedding of words and labels for text

classification. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 2321–2331.

84

[Wolpert et al., 1997] Wolpert, D. H., Macready, W. G., et al. (1997). No free

lunch theorems for optimization. IEEE transactions on evolutionary computa-

tion, 1(1):67–82.

[Yan, 2009] Yan, J. (2009). Text Representation, pages 3069–3072. Springer US,

Boston, MA.

[Yogatama et al., 2015] Yogatama, D., Kong, L., and Smith, N. A. (2015). Bayesian

optimization of text representations. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 2100–2105.

[Zhang et al., 2015] Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level

convolutional networks for text classification. In Advances in neural information

processing systems, pages 649–657.

[Zöller and Huber, 2019] Zöller, M.-A. and Huber, M. F. (2019). Survey on auto-

mated machine learning. arXiv preprint arXiv:1904.12054.

85

Appendix

6.4 Meta-feature subsets

Meta-feature selection

average word length

document per category:

min

max

average

standard deviation

average / stdev

entropy

word per document:

average

skewness

entropy

Imalance Degree

SEM

UVB

SVB

MRH J

VDR

Table 6.1: 38 Meta-features selected by Gini importance

87

Meta-feature selection

max vocabulary

average vocabulary

sd vocabulary

skweness vocabulary

avg/stdev vocabulary

pca:

singular values sum

explained ratio

explained variance

explained variance (1)

pca max

pca skewness

pca kurtosis

data sparsity

data separability

linear separability

% of zeros

% of adpositions

% of adverbs

% of conjunctions

% of nouns

% of numbers

% of untagged words

difficult words

Table 6.2: 38 Meta-features selected by Gini importance

88

	Acknowledgments
	Abstract
	Resumen
	Introduction
	Motivation
	Research problem
	Scope and limitations
	Thesis organization

	Theoretical framework
	Text classification
	Pre-processing methods for text documents
	Text representation
	Classification models
	Text classification pipeline
	Pipeline performance

	AutoML
	Hyper-parameter optimization
	Meta-learning
	Meta-features

	Related work
	Hyper-parameter optimization
	Meta-learning and automated machine learning
	Automated text classification

	An AutoML method for text classification tasks
	Meta-learning of textual representations
	Proposed meta-features
	Recommendation of textual representations

	Full pipeline selection
	AutoSKlearn

	Discussion

	Experiments and results
	Datasets
	Predicting the task
	Recommending textual representations
	Recommending pipelines
	Comparison with state-of-the-art

	Conclusions and future work
	Conclusions
	Contributions
	Future work

	Appendix
	Meta-feature subsets

