Factorizations, elasticities and zero-sum sequences

Savio Ribas¹

¹ (UFOP)

Abstract: The Fundamental Theorem of Arithmetic states that every natural number can be written, except for the order of the factors, in a unique way as a product of primes. In other algebraic structures, the factorization may not exist or may not be unique. For instance, if a is an element of a monoid H, then it is possible that $a = u_1 \dots u_k = v_1 \dots v_m$, where u_i, v_j are distinct irreducibles. The set of lengths of $a \in H$, $L(a) = \{k \in N \mid \exists u_1, \dots, u_k \text{ irreducible with } \}$ $a = u_1 \dots u_k$, and the system of sets of lengths, $\mathcal{L}(H) = \{\mathsf{L}(a) \mid$ $a \in H$, are ways of describing the non-uniqueness of factorizations in H. For $k \in N$, let $\mathcal{U}_k(H) = \{m \in N \mid \exists u_1, \dots, u_k, v_1, \dots, v_m\}$ irreducibles with $u_1 \dots u_k = v_1 \dots v_m$, $\lambda_k(H) = \min \mathcal{U}_k(H)$ and $\rho_k(H) = \sup \mathcal{U}_k(H)$ (k-th elasticity). The sets $\mathcal{L}(H)$ and $\mathcal{U}_k(H)$ are, in general, well structured and, under reasonably weak hypotheses, one has $\mathcal{U}_k(H) = [\lambda_k(H), \rho_k(H)]$. Moreover, if H is the set of integers of some algebraic number field K, then L(a) is an interval for almost all $a \in H$. It is known that $\lambda_k(H)$ can be written as a function of $\rho_k(H)$. On the other hand, by a sequence over a group we mean a finite sequence of terms of the group whose order is disregarded and repetition is allowed. A sequence S over an abelian group (G, +, 0) is zero-sum if the sum of its terms is 0. The Davenport constant of a group G, D(G), denotes the largest possible length among all minimal zero-sum sequences. There is an intrinsic relationship between $\rho_k(H)$ and $\mathsf{D}(G)$, where G is the group of ideal classes of H. This makes $\rho_k(H)$ and $\mathsf{D}(G)$ two of the most important objects for describing the non-uniqueness of factorizations in H. In this talk, we will introduce the relationship between factorization theory, focused on non-uniqueness, and zero-sum problems. We will present the main results and conjectures about $\rho_k(H)$ (therefore about $\mathcal{U}_k(H)$) and $\mathcal{L}(H)$.

The author is partially supported by FAPEMIG grants APQ-02546-21 and APQ-01712-23.