Reversible primes

Cathy Swaenepoel¹

¹ (Université Paris Cité)

Abstract: The properties of the digits of prime numbers and various other sequences of integers have attracted great interest in recent years. For any positive integer k, we denote by \overline{k} the reverse of k in base 2, defined by

with $\varepsilon_j \in \{0,1\}$, $j \in \{0,\ldots,n-1\}$, $\varepsilon_{n-1} = 1$. A natural question is to estimate the number of primes $p \in [2^{n-1},2^n)$ such that \overleftarrow{p} is prime. We will present a result which provides an upper bound of the expected order of magnitude. Our method is based on a sieve argument and also allows us to obtain a strong lower bound for the number of integers k such that k and \overleftarrow{k} have at most 8 prime factors (counted with multiplicity). We will also present an asymptotic formula for the number of integers $k \in [2^{n-1}, 2^n)$ such that k and \overleftarrow{k} are squarefree.

This is a joint work with Cécile Dartyge, Bruno Martin, Joël Rivat and Igor Shparlinski.