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Preface

These Lecture Notes are addressed to the reader with some fami-
liarity with the Foundations of Ordinary Differential Equations and

of Classical Differential Geometry.

The subject developed here centers around the local and global
geometry on a surface: Fundamental Forms, principal curvatures,
Gauss and Codazzi equations, Gauss-Bonnet Theorem. To represent
the level required, references such as [16], [40], [44], [94], [100], [126],
[164] and [166] can be mentioned.

The authors believe that from the Introduction provided here the
reader will be encouraged to approach and study the papers quoted
here, where more complete treatments and details are presented, and
become interested in some of the many lines for advanced study and
research outlined here, open in the field of interaction between Ge-
ometry and Differential Equations (O.D.E’s).

This work attempts to illustrate the penetration that ideas such as
genericity and structural stability of O.D.E’s have in the development
of the qualitative theory of differential equations of classical geometry.

Here an effort has been made to present most of the developments
addressed to improve the local and global understanding of the struc-

ture of principal curvature lines, asymptotic lines and geodesics on



surfaces. The emphasis has been put on those developments derived
from the assimilation of ideas coming from the QTDFE and Dynami-
cal Systems into the classical knowledge on the subject, as presented
in prestigious treatises such as Darboux [37], Eisenhart [44], Struik

[166], Hopf [85], Spivak [164].

The starting point for the results presented here, concerning prin-
cipal lines, can be found in the papers of Gutierrez and Sotomayor

[71, 72] and in the book of the same authors [75].

The authors acknowledge the influence they received from the well
established theories of Structural Stability and Bifurcations which
unfolded from the inspiring classical works of Andronov, Pontrjagin,
Leontovich [1] and Peixoto [130, 131]. Also the results on bifurcations
of principal configurations outlined in [75] and further elaborated

along this work are motivated in the work of Sotomayor [158].

The vitality of the @QTDFE and Dynamical Systems, with their re-
markable present day achievements, may lead to the belief that the
possibilities for directions of future research on the differential equa-
tions of lines of curvature and other equations of Classical Geometry
are too wide and undefined and that the source of problems in the
subject consists mainly in establishing an analogy with one in the
above mentioned fields.

While this may partially true in the present work, History shows
us that the consideration of problems derived from purely geometri-
cal sources and from other fields such as Control Theory, Elasticity,
Image Recognition and Geometric Optics, have also a crucial role to
play in determining the directions for relevant research in our sub-
ject. In fact, at the very beginning, the works of Monge and Dupin

and, in relatively recent times, also the famous Carathéodory Con-



jecture [51], [23], [76], [77, 78, 79], [90], [111], [126, 127], [156, 157],
[155], [182], represent geometric sources of research directions lead-
ing to clarify the structure of lines of curvature and their umbilic
singularities.

Some of the problems and exercises proposed at the end of each
chapter are not of routine sort. They are formulated in order to guide

the reader into the classical literature on curves and surfaces and also
into subjects of current research.

Many students and colleagues contributed with helpful comments
and suggestions. In particular Pedro S. Salomao and Luis F. Mello
pointed out important improvements to the text. Warm thanks to

all them are recorded here.
The authors are fellows of CNPq. This work was done under the

project CNPq 473747 /2006-5.

Ronaldo Garcia Jorge Sotomayor

Goiania and Sao Paulo, May 2009.
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Chapter 1

Differential Equations

of Classical Geometry

1.1 Introduction

In this chapter the basic notions of differential geometry of curves
and surfaces in R?® will be reviewed. The differential equations of
geodesics, principal curvature lines and asymptotic lines will be ob-
tained.

The references for this chapter are [4], [16], [37], [40], [44], [75],
[164] and [166].

The principal curvature lines are the curves along which the sur-
face bends extremely. It can be said that the theory of curvature
lines was founded by G. Monge (1796), who determined explicitly all
the principal curvature lines of the ellipsoid with three different axes.
This is probably the first example found in the literature of foliations

with singularities.

15



16 [CAP. 1: DIFF. EQ. OF CLASSICAL GEOMETRY

The geodesics, also a classical notion, are obtained as a critical
points (local minimizers of the length) applying the Calculus of Vari-
ations. They can also be regarded, infinitesimally, as the curves of
zero geodesic curvature.

The asymptotic lines are characterized geometrically as the curves
along which the osculating plane of the curve coincides with the tan-

gent plane of the surface.

1.2 The First Fundamental Form

Let a: M? — R3 be a C", r > 3, immersion of a smooth surface
M into R3.

The space R3 is oriented by a once for all fixed orientation and is
endowed with the Euclidean inner product (,).

The induced metric on T),M is defined by
(u,v), == (Da(p)u, Da(p)v), where u, v € T,M.

In a local chart (u,v) : M — R?, consider a parametric curve c(t) =

(u(t),v(t)). Then it follows that x(t) = (a o ¢)(t) is a curve and

' = auu’ + ayv’ is a tangent vector of T,M, where p = ¢(0).
Therefore, (z/,2") = (v, ) (/)2 +2 (v, ) 4V + {uy, i) (V)2

and the expression

ds® = Edu® + 2Fdudv + Gdv® (1.1)

where E = (ay,a), F = (ay,a,) and (a,, @), is called the first
fundamental form of a and is of class C"~'. This form is positive

definite, i.e., E > 0, G > 0 and EG — F2 > 0. The distance, in the
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induced metric, between two points p = ¢(tp) and ¢ = ¢(t1) on the

curve ¢, supposed rectifiable, is defined by:

L) = 2 [ECe 1op B &) 6 e

The angle between two directions, defined in a local chart by,

dx = ayduta,dv and dy = o, dut-o,6v is defined by: cosf = fjflyltfiﬁ'

Therefore the angle between the parametric curves u = cte and

_ . . . o F . _ EG?F?
v = cte is given by: cosf = NiTel and sinf = £¥=-—— N

From the metric ds?, induced by « it is possible to define a dis-

tance d in M such that (M, d) become a metric space.

Given two points p and ¢ the distance between them is defined by:

d(p,q) = inf{L,(p,q) : v is a rectifiable curve connecting p to ¢}.

It can be shown, when (M, d) is a complete metric space, that
given any two points p and ¢ of M such that d(p,q) > 0 there is a
curve 7 : [a, b] — M of class C! by parts, such that y(a) = p, v(b) = ¢
and L (p,q) = d(p, q).

In this way the surface M has a strictly complete intrinsic distance
and (M, d) is called a length space. See [35, Chapter 2]. A useful
property of length spaces is that they have the middle point property.
Given p,q € M such that d(p,q) = 2§ > 0 there is at least a point
r € M such that d(p,r) = d(r,q) = 9.

In particular B(p, ) N B(q,8) # (. Here B(p,d) is the open ball

centered at p and radius 4.
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1.3 The Second Fundamental Form

In this section assume that M is oriented by means of collection
of positive charts, denominated an atlas, whose domains constitute a
covering. Let N, be the vector field orthonormal to a defining the
positive orientation of M. This means that if (u,v) is a positive chart
then {ay,a,, N} is a positive frame in R3. This means that N, is
the unit vector (ou, A aw)/|ay A awl, called the positive normal of a.

The second fundamental form is introduced in order to define
the concept of curvature of a surface. Let z(s) = a(u(s),v(s)) be
the space curve obtained mapping the curve on M whose image by a
positive chart (u,v) has the parametric equations u = u(s), v = v(s).
Suppose that |#/| = 1, i.e. z is parametrized by arc length. The
curvature vector k(s) = 4L where T(s) = 92 has the orthogonal
decomposition k = k, N +k,N AT'; k,, is called the normal curvature

and kg is called the geodesic curvature.

From (T, N) = 0 it follows that <%, N> =— <T, M> and there-

ds
fore k,, = — iﬂézvt;f;’;.
du? + 2fdud dv?
So it is obtained, &, — 4w+ 2/dudv+ gdv

 Edu? + 2Fdudv + Gdv?’

Here, e = — (o, Nu), 2f = —((@u, Np)+{ay, Ny)) and g = — (a,, Ny).
Also, as {(ay, N) = (ay,, N) = 0 it follows that e = (ayq, N),

f = (auy, N) and g = (@, V) . Using the expression of N = |33ﬁ35|
it is obtained that
[a'zu Qg s auu] [a'zu Qg s au'u] [Oéu, Qs a'vv]

‘=T " Vee—r ' Vra—m
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where [.,.,.] means the mixed product of three vectors in R3. The

quadratic form I, = edu?® + 2fdudv + gdv®

is called the second fundamental form of a and is of class C" 2.

1.4 Fundamental Equations

The two fundamental forms, which define the length and curva-
ture of curves on surfaces are related to the Fundamental Equations
of Surface Theory.

These equations are obtained writing the vectors oy, Quy, o,
N, and N, in terms of the frame {c,,a,, N}. Here N is the unit
normal defined by N = (au, A o) /| A a.

Direct calculation gives

Qs =THa, +T3a, +eN
Qo =Tha, +T%a, + fN
Qo =T, + T3, +gN (1.2)

(EG — F*)N, = (fF —eQ)ay, + (eF — fE)a,
(EG — F?)N, = (9F = fG)ow + (fF — gE)a,

where it is assumed that « is of class at least C3, qtuy = (yu, and the

Christoffel symbols are given by:

Fl _ E,G—2F,F+E,F I‘\Q _ 2F,E-E,E—E,F
11— 2(EG—F?) 1 — 2(EG—F?)

1 _ E,G-G.F 2 _ G,E—-E,F

The = StEe—rm U7 = 5tea=r) (1.3)
Fl _ 2F,.G—-G,G—-G,F I‘\Q _ GyE—2F,F4+G,F

2 T T 2(EBG_F?) 2= T 2EG-_F?)

The equations (1.2) are the fundamental equations of the surface.

They express the derivatives of higher order of « in relation to the
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frame {au,a,, N}. In a certain sense this is the correspondent of
Frenet equations for space curves.

Now consider the compatibility equations, (yy)y = (@ )u and
(uw)v = (o )u. They are equivalent to six scalar equations, which
in fact are redundant and reduce to three essential ones. See [165].

The first compatibility equation, known as Gauss Weingarten
equation, is given by:

egfo _81“?2_81“%1

_EEG—F2_ ou ov

+ 105, — T DT + 13,1, — T3, (1.4)

p— 2 .
This equation expresses the Gaussian curvature C = bféj;z in terms

of the first fundamental form. This means that the Gaussian curva-
ture is an intrinsic entity. The other two compatibility equations

are:

o
9e _OF D}, + f(I3, —Th) — T3,

of _ 9 (1.5)
8_£ — oy = L3+ (T35 —Tly) — gI'%.

They are called Codazzi Equations.
A geometric and dynamical interpretation of Codazzi equations

was established in [162].

Remark 1.4.1. The method of moving frames developed by E. Cartan is
also useful to establish the compatibility equations of Surface Theory. See

[149].
1.5 The Fundamental Theorem of Surfa-

ce Theory

In section 1.4 it was introduced the fundamental forms I =
Edu? 4+ 2Fdudv + Gdv?, IT = edu® + 2fdudv + gdv? and the com-
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patibility equations (1.4) and (1.5) between these two forms.
The main results of this section are the following theorems, known

as Bonnet’s Theorem.

Theorem 1.5.1. Let Q C R? be a connected and simply connected
open set. Consider two forms I = Edu® + 2Fdudv + Gdv?, II =
edu® + 2fdudv + gdv?, I being positive definite. Suppose that the
functions E, F and G are of class C? and e, f and g are of class
C*! satisfying the compatibility equations given by equations (1.4) and
(1.5). Then there exists an immersion a : Q — R3 of class C3
having I as first fundamental form and II as the second fundamental
form, i.e, E = (o, ), F = (o, ), G = {ay,an), e = {ayu, No),

[ = (s Na), 9= (0w, Na), No = (ay A o) /|y A ayl.

Proof. See [40], [94] and [165]. O

Theorem 1.5.2. Let Q C R? be a connected and simply connected
open set. Let a: Q@ — R3 and & : Q — R? two immersions of class
O3 with associated fundamental forms 1, = Edu? + 2Fdudv + Gdv?,
I, = edu® + 2fdudv + gdv?, Iy = Edu® 4+ 2Fdudv + Gdv?, 115 =
edu? + 2fdudv + gdv®. Suppose that I, = I5 and I, = I15. Then
there exists a vector v € R and an orthogonal matriz M : R? — R3

such that o= Mo + v.

Proof. See [40], [94] and [165]. O

The continuity of the immersion « with respect to the forms
I, = Edu® + 2Fdudv + Gdv?® and 11, = edu® + 2fdudv + gdv?,
for some natural topologies in the appropriate space of functions,

was established in [30]. This Fundamental Theorem, existence and
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uniqueness, in the case where I is only of class C' and II is of class

C" was established in [82] and [83].

1.6 Differential Equations of Curvature

Lines

The normal curvature in the direction [du : dv] also denoted by

A = dv/du is given by:

b edu? + 2fdudv + gdv® B e+2fA+g)\?
" Edu?+2Fdudv + Gdv?  E +2FX+ G2’

The extremal values of k,, are characterized by CZ“—)’\“” =

Direct calculations, differentiating k,, with respect to A = dv/du

and equating to 0, gives
(Fg—Gf)N* + (BEg — Ge)A\+ (Ef — Fe) =0
Or equivalently,
(Fg — Gf)dv? + (Eg — Ge)dudv + (Ef — Fe)du* = 0. (1.6)

Also, the equation above can be interpreted as the annihilation of

Jacobian of the map (du, dv) — (I1(du,dv), I(du, dv)).

A(II,1)

A(du, dv) A(edu+ fdv)(Fdu+Gdv)—4A(fdu+gdv)(Edu+Fdv) = 0.

This equation defines two directions %, at which k,, attains the ex-
tremal values, minimal and mazimal.
They are called principal directions and the correspondent curva-

tures are called principal curvatures.
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The normal curvature in the principal directions will be denoted
by k1 (minimal curvature) and ko (maximal curvature).

The Gaussian curvature is defined by K = k;ks; the (arithmetic)
Mean curvature is defined by H = (k1 + k2)/2.

Proposition 1.6.1. The expressions for K and H in terms of the

coefficients of I, and I1, are as follows:

K — eg — f? HieG—l—gE—QfF
T EG-—F2 T T2EG-F?)
Proof. Follows from equations (1.2). O

A point p is called, respectively, elliptic, parabolic or hyperbolic
when K(p) > 0, K(p) =0 or K(p) < 0.

See Fig. 1.1 for an illustration of the contact of a surface with the
tangent plane at an elliptic, parabolic and hyperbolic point. In the
case of parabolic point, in general, the curve of intersection between
the tangent plane and the surface has a singularity of cuspidal type

(t2,#3) at p. The principal directions are well defined outside the

Figure 1.1: A surface and the tangent planes at elliptic, parabolic
and hyperbolic points

points where the two fundamental forms are proportional, i. e. k; =

ko. These points are called umbilic points.
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The set of umbilic points of a will be denoted by U,.

Another geometric interpretation of the differential equation of
curvature lines is obtained from Rodrigues’ equation dN + kdp = 0,
which defines the principal curvatures and the principal directions as
eigenvalues and eigenvectors of the selfadjoint operator —dN. This
operator in matrix form, with a change in sign, is given by equations
(1.2). See also [166] and [164].

Outside the umbilic set the principal directions are orthogonal
relative to the metric ds? = Edu? + 2Fdudv + Gdv? and define two
lines fields, called principal line fields which will be denoted by £ o
and Lo 4.

In fact this is a consequence of the selfadjointness of dN. Also
taking \;,7 = 1, 2, the roots of equation (1.6) in A = dv/du, it follows
that

GMAa+F(M+ X))+ E

-1

=g G(eF — fB) = F(eG - gB) — E(gF - Gf)] = 0.

The integral curves of these line fields are called principal curvature
lines or simply principal lines. The principal foliations defined by the
ensemble of the principal lines will be denoted by P; o and Pz o. The

triple Py, = {P1,a, P20, Ua} is called the principal configuration of

the immersion o.
The implicit differential equation

H(u,v, [du : dv]) = (Fg—Gf)dv?+(Eg—Ge)dudv+(E f—Fe)du?® = 0

defines a surface, or better a variety H~1(0) in the projective bundle

PM. This variety in general is regular (i.e. a smooth surface) but it
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can present singularities.

The line field in the chart (u,v,p), p = g—z, defined by,

0 0 0
Xy :Hp% +pHP% 7(Hu +pHv)8_p (17)

is called a Lie-Cartan line field. In the chart (u,v,q), ¢ = 9, the

duv

line field is defined by, Xy = qua% + Hq% — (Hy + qHu)(%.

The projections of the integral curves of Xy by 7(u, v, [du : dv]) =
(u,v) are the principal curvature lines.

The projection 7 is a double covering outside the set 7~1(U,,) and
71 (pg) = P1(R) at an umbilic point p.

In chapter 3 will be studied the stability properties of principal

configurations P, under small perturbations of the immersions a.

1.7 Differential Equations of Asymptotic

Lines

The directions where k,, = 0 are called asymptotic directions and

therefore are defined by II = edu?® + 2fdudv + gdv?® = 0.

The line fields of asymptotic directions will be denoted by Aj «
and A . They are called asymptotic line fields.

It can be proved that the ordered pair {A; o, A2} is well defined
in the hyperbolic region of the surface, where these directions are real.

At the parabolic points defined by K = 0 the two asymptotic

directions coincide and are well defined when one principal curvature
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is not zero. When both principal curvature are zero (umbilic point)
all directions are asymptotic directions.

The triple Ay = {A1,a, A2,a, Pol is called the asymptotic con-
figuration of the immersion a.

Here also the method of Lie-Cartan can be used to consider the

implicit differential equation of asymptotic lines as an implicit surface
in the projective bundle PML.

The asymptotic lines are the projections of the integral curves of
Lie-Cartan line field. See [4].

Denote by Z™*(M, R?) the space of immersions of class C" of M
to R3, endowed with the C* topology.

Proposition 1.7.1. Let o be in I"" (M, R?). Suppose that H, =
{p : K(p) < 0} is a surface with regular boundary OH, = P,. Then
the implicit surface of the asymptotic directions L(u,v,[du : dv]) =

edu® + 2 fdudv+ gdv?® = 0 is a reqular surface in the projective bundle

PM and the Lie-Cartan line field X1 = +pr% —(Lu erLv)2

0
LP% op
is globally defined in L=1(0) and it is singular at the points where the

asymptotic directions are tangent to the parabolic set P, .
Proof. See Proposition 6.2.1, page 130 of Chapter 6. O

The asymptotic foliations of o are the integral foliations 4; o of
01,0 and Ag o of 05 o; they fill out the hyperbolic region H,. When
non-empty, the region H, is bounded by the set P, of parabolic points
of a, on which K, vanishes. On P,, which generically, i.e. for most
o’s, is a regular curve, [12], [18], [45], [93], the pair of asymptotic di-

rections degenerate into a single one or into the whole tangent plane.
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This last case happens at flat umbilic points, where k1 = ko = 0,
which generically are disjoint from the parabolic curve.

In order to characterize the class of immersions which are asymp-
totic structurally stable, it is useful to consider the following geome-
tric approach. See chapter 6, page 141.

On the projective bundle PM = {TM\0}/{v = rw,r # 0} of M,
consider the submanifold A, defined by all the asymptotic directions.
That is by the zeros of the second fundamental form of «. The first
condition to be imposed on « is precisely that 0 is a regular value of
the projectivization of 11, that is DIC # 0 at parabolic points.

The restriction of the projection II of PM to A, covers ClosH,,.
Over H, it is a double regular covering. Over P, it has a Whitney
fold [18], [167], [179]. Therefore the Euler -Poincaré characteristics
are related by x(Aq) = 2x(H,).

Lifting to this manifold the line fields A4; o, and A3, defines a
single line field £, on [T~ (H,) which, under the conditions of regu-

larity, uniquely extends to a smooth line field £,, defined on the whole
A,,. Tts singularities, when present, are contained in P, = II7}(P,).
These singularities are localized exactly where the asymptotic direc-
tion is collinear with the tangent vector to the parabolic line. It can
be shown that these singularities are the the cuspidal points of the
Gauss map N, : M — S?, [18], [167].

The surface A, is compact, oriented and in a local chart (u,v) is

defined by H(u,v,p) =e+2fp+gp* =0, p= g—z and the line field

L., defined in A, is locally given by the vector field Lie-Cartan line
field given by X = (H,,pHp, —(Hu + pH,)).

The leaves of integral foliation of this line field, denoted by A,
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contains the pullback of the leaves of the pair of asymptotic foliations
Agyi, i=1,2.
The projection of the leaves of A, into Clos(H,) which intercept

the set P, are called the folded asymptotic lines of a.

A folded closed asymptotic line is the projection of a closed integral

curve of the single line field L,, defined on ‘He, which intersects Py.

A closed asymptotic line contained in H,, is called regular.

1.8 Differential Equations of (Geodesics

For a curve ¢ parametrized by arc length s, write its unit tangent

vector as T = v/« + v'a,. Differentiation of T' gives:
T =) oty + 20/ vy, + (V)2 v 4+ u" vy + 0"y
=[u" + (u')°T}; + 20T}, + (v) Thylay
Ho + (W)°T3; + 20T, + () Thla,
He()* + 2fu'v’ + g(v')*)N

Therefore the geodesics are characterized by the following system:

2 u u ’U
§5§+F1 (%) +2r§2§;§;+r (g—) =0

Eliminating ds? = Edu? + 2Fdudv + Gdv® from the system above it
follows that:

d?v dv dv dv

W = F%z(%)?’ + (QF}2 F%Q)(du) + (Fh QFfz)d F§1 (1 9)
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Or equivalently,

d

&2 d d
g “ d—zfréz (1.10)

7oz = Th(5) = (T = 2T%)()? = (2T}, ~T3,)

Remark 1.8.1. Following [166], an expression for the geodesic curvature

kg =((NAT), T") =[T,T',N] is given by:

ko =03 (u)? + (207, — T11) (v))%0 4 (35 — 2 0)u’ (v))? — Taa(v))?

+u'v" — "NV EG — F?, whereu' = Z—u and v = %
s s

For the parametric curves it follows that:

VEG — F?

kg)u—ug = —I'5
( 9) 0 22 G\/a

In particular when the parametric curves are orthogonal (F = 0) it holds

that:

B, d
ko) omn, = — = —— InVE,
( fJ)l 0 QE\/E dSQ n\/_
(1.11)
Gu _ d
(kg) lumug =20vE = s nVvG

The equation above shows that the geodesic curvature depends only of
the first fundamental form and therefore is an intrinsic entity.

The geodesics are the curves of zero geodesic curvature on the surface.

Also the geodesics are defined as the curves of shortest distance between
two nearby points. See [40] and [166].

This key connection with the Calculus of Variations leads to fruitful

applications to Geodesy and Cartography.
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Proposition 1.8.1. Let M be a regular surface of class C", r > 3.
Then for every p € M and v € T,M, v # 0, there exist € > 0 and a
unique geodesic 7y : (—e,€) — M such that v(0) = v(0,p,v) = p and
7(0) = v.

The map exp : U C TM — M x M defined by exp(p,v) =
(p, exp, (v)) == y(|v],p, 7). v # 0, and exp(p,0) = (p,p) is a local
diffeomorphim of class C"=2 on an open set U and Dexp(p,0) = Id.
Also, {71((=€,€)), v € oM, [v] = 1} = B(p,€) = {g € M : d(p,q) <
€}.

Proof. This follows from the theorem of existence, uniqueness and
smooth dependence on initial conditions for ordinary differential equa-

tions applied to the C"~2 homogenous differential equation (1.8). O

Proposition 1.8.2. Let M be a regular surface of class C", r > 3.
Consider the length space (M, d). Then for any p € M there exists a
number € > 0 such that for any points r,s € B(p,€), there is a unique
geodesic v passing through r and s, contained in B(p,€), such that
d(r,s) = L(r,s). That is, v is the shortest path in B(p,€) and so a

geodesic line minimizes distances locally. See Fig. 1.2.

Proof. See [40] and [165]. O

In Chapter 7 will be discussed some classical results about geo-
desics such as the Hopf-Rinow theorem. The derivative of the return
map near a closed geodesic will be obtained in an elementary way.
Also the qualitative theory of geodesics in the ellipsoid with three

different axes and in surfaces of revolution will be described.
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Figure 1.2: Geodesic triangle, positive and negative curvature

1.9 Exercises and Problems

1.9.1. Let p be a non umbilic point of a surface M. Show that a neigh-
borhood of p can be parametrized by a chart whose coordinate curves are
principal lines. Write the Codazzi equations in such chart, called a princi-

pal chart, which is characterized by f = F = 0.

1.9.2. Let p be a hyperbolic point of M, i.e. K(p) < 0. Show that a
neighborhood of p can be parametrized by a chart whose coordinate curves
are asymptotic lines. Write the Codazzi equations in such a chart, called

an asymptotic chart which is characterized by e = g = 0.

1.9.3. Suppose that M is a smooth surface in the euclidian space R®. Let
p € M such that K # 0 and N : M — S? the normal Gauss map.

Take an orthonormal frame such that N(p) = (0,0, —1).
Let also 7 : %\ {(0,0,1)} — R? be the stereographic projection.
Consider the map 3 : U C R? — M defined by g = (mo N)™ .

Introduce the support function f(u,v) = (1 +u*+v?)D(u,v) where D
is the distance (with sign) from Tg(,,,)M to the origin 0 € R3. Tt follows
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that B(u,v) = (z(u,v),y(u,v), z(u,v)) is given by:

1 _uufu'i‘va_f

2(u,v) = §fu u2 402 +1 "7
(1.12)
_1 ufutvfo— f ufutvufo—f
y(u,v)— 2f11 v u2+v2+1 ,Z(’LL,'U)— U2+U2+1

This parametrization is is said to define Bonnet coordinates on a surface

with non zero Gaussian curvature.

i) Show that in the Bonnet coordinates above the differential equation of

curvature lines is given by:
fuo(du® — dv®) + (foo — fuu)dudv =0 (1.13)

ii) Show that the differential equation of asymptotic lines is given by:

ufu +ofo = f1, 2 ufu +0fo = f1 2
uu72 d 2uvdd 'u'u*2 d =
[f 1+U2+’l)2 ]’LL + f UU+[f 1+U2+U2 ]’U 0

ili) Let z = u+ivand £ = Z —i2 2 = & 40 he the com-

plex differentiation operators. Show that equation (1.13) is equivalent to
Im(fz:dz*) = Im(f..dz*) = 0. See also [23].

In [111] the same form of the equation in (1.13 is obtained for the
function f and coordinates (u, v) of Ribaucour, instead of those of Bonnet,
without assuming that I # 0. On the other hand, for the study of lines
of curvature, whose properties are invariant under inversion, it is always

possible to assume that IC # 0.
1.9.4. Let F : R® — R be a function of class C",r > 2. Consider the
implicit surface F~*(0).

i) Show that the differential equation of principal lines is given by:

de dy dz
F, F, F.|=0, Fudx+ Fydy+ F.dz=0.
dF, dF, dF.
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ii) Consider the matrix equation

F'"— Xl F

—a+br+c\, AeR
(F)!

where F’ is the column gradient vector of F' and " is the Hessian of F.

Show that K = ——%¢_ and H = — b/c

2 2 2 1 -
FE+Fy+F: 2AF2ZHF24+F2)2

1.9.5. Show that the differential equation of geodesics on an implicit sur-

face F'(x,y,z) =0 is given by:

F. F, F,
de dy dz|=0, Fydx+ Fydy+ F.dz=0.
Pz APy d*z

1.9.6. Let (u,v) be alocal positive principal chart on a surface S. Express
the geodesic curvatures (see equation (1.11), page 29) of the coordinates
lines in function of the principal curvatures k1 and ko2 and their derivatives,
i.e., show that

7(k2)u
ko — k1

7(k1)'u

Rk )

k9|U:U0 (u7 UO) = (u,'Uo), k9|u:u0 (UO,’U) =

1.9.7. Given a parametric smooth surface a : U — R? define the square
distance function D : U x R®* — R by the equation D(u,v,p) = |p —
a(u,v)|*. Geometrically, from the singularities of D it can be measured
the contact between the surface o and spheres in R3.

In terms of critical points of of D as a family of functions of (u,v),
depending on the parameter p, define the focal set of a and classify its
generic singularities. Regard the focal set as the set of points p where the
normal rays issuing from «a(u,v) converge. Find that this set is given by

the union of two sheets p = N, /k;, i =1,2.
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For this project see the steps taken in [137]. This subject is still source

of current research.

1.9.8. Show that an oriented connected surface having both principal cur-
vatures constant, or, equivalently, those such that the Mean and Gaussian
curvatures are constant, is an open set of the plane, of a sphere, or of a

circular right cylinder. See [148].
1.9.9. Let S be a surface of revolution parametrized by
a(s,v) = (r(s) cosv,r(s)sinwv, z(s)).

Consider a geodesic line y(t) of S making an angle «a(t) with the meridians
and let r(¢) the radius of the correspondent parallel. Write the differential

equation of the geodesic lines and show that r(t)sin a(t) = cte.

1.9.10. Let ¢ be a closed principal line of a surface S. Show that a tubular
neighborhood of ¢ can be parametrized such that the coordinates curves

orthogonal to ¢ are principal lines of S.

1.9.11. A non zero symmetric bilinear form V5, and its associated quadratic

form Bou = Va(u,u) in R?, with the canonical coordinates (z,y) are given

by:
. a b To
Va(u,v) = Vauv = v’ Bav = (371 yl) b e )
2

The bilinear form V5 and the quadratic form Bs are called hyperbolic,
parabolic or elliptic according as the determinant of its matrix Bz above is
negative, zero or positive.

Two vectors u = (z1,y1) and v = (z2,y2) are called conjugate when
Vouv = 0, i.e. azim2 + b(z1y2 + T2y1) + cy1y2 = 0.

A non-zero quadratic form is said to be right-angled if it is hyperbolic
and its roots are mutually orthogonal with respect to the canonical inner

product of R
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i) Show that V4 is parabolic, if and only if there is a non zero vector u € R?
such that the linear form Vou = 0. In this case V3 is a perfect square.
ii) Let V5 be a parabolic form in R? with Vau = 0 and let A; be a linear

form such that Aju = 0. Show that there is a vector v € R? such that
A1 = BQU.

iii) Show that Ba(x,y) = az® + 2bxy + cy? is right-angled if and only if
a+c=0.

1.9.12. Consider two bilinear symmetric forms V2 and W» in R%. A
vector u # 0 is called a Jacobian of the pair if the two linear forms
Vou and Wau are equivalent, i.e., the determinant of the matrix map
u— (Va(u,u), Wa(u,u)) is zero.

i) Show that u is a Jacobian of the quadratic forms Va(z,y) = az® +
2bzy + cy® and Wa(z,y) = Az? + 2Bxy + Cy? if and only if it is a root of

the quadratic form

Jac(Va, Wa) = (aB — Ab)z* + (aC — Ac)zy + (bC — Be)y®

ii) Show that when W3 is positive definite (elliptic form) the quadratic
form Jac(Va, W2) is hyperbolic and its roots w1 and wus are right-angled

with respect to Wa, i.e., Wauiuz = 0.

1.9.13. Given a three linear symmetric form V3 its associated cubic form
in R?, with the canonical coordinates (x,y), is given by Vi(z,y) = az® +

3ba?y + 3cxy® + dy® = [a,b, ¢, d]3(x,y). The determinant of

ax +by bxr+cy
Hy =
bx +cy cx+dy

is called the Hessian of V' and is given by

(ac — b*)z® + (ad — be)zy + (bd — )y,
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A non zero vector u = (z,y) is called a Hessian vector of V3 if the bilinear
form Vo = Vau is parabolic.

i) Show that the condition for u = (z,y) to be a Hessian vector of V3 is
independent of coordinates of R2.

ii) Classify the cubic forms V3 according the nature of its roots.

iii) Show that the Hessian of a three linear form V3 is parabolic if and
only if there is a non-zero vector u € R? such that Vzu? = 0.

iv) Let Vi(z,y) = az® + 3bzy + 3cxy® + dy® = [a,b,¢,d|3(z,y). Show
that there is a non-zero vector u' = (z,y) such that the matrix Hy is a
real multiple of the identity matrix, if and only if the Hessian lines of the
cubic, the root lines of its Hessian, are mutually orthogonal, or the Hessian

vanishes.

1.9.14. Show that the eigenspaces of the matrix

<“ b>, (a—c)® +b* £0,
b ¢

are the root lines of the Jacobian of the quadratic forms Vs = ax? 4 2bzy +
cy® and Wo = 22+, Verify that these root lines are mutually orthogonal.

For more on quadratic and cubic forms in R? see [137, Chapter 7].

1.9.15. Let ¥ be a quadratic surface in R and ~ be a principal curvature

line of 3. Show that there exist an infinity of quadrics containing ~.

1.9.16. Consider a surface and parametric curves (u,v) such that I =
du® + dv® 4 2 cos w(u,v)dudv. Parametric curves with this property are
called Tchebychef nets.

i) Show that the following partial differential equation holds.

9w

Sude + Ksinw = 0.
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ii) Show that K1 = wa+ws—w1 —ws = 27— 3 _+_, a;, where Kr is defined
by the integral of the Gaussian curvature with respect to the area element
in the parallelogram shown in Fig. 1.3. The integral Kr is called the total

curvature.

iii) Interpret geometrically and physically the meaning of Tchebychef nets.
See [165].

Figure 1.3: Angles of a Tchebychef net

1.9.17. Let f:R® = R and h : R®* — R defined by

f(z,y,2) =(\/22+y2 —R)>+2° —r°, R>r,
h(z,y,2) =y + z(z — a))* + 2" = r”.
i) Show that 0 is a regular value of f and h, R > r > 0 and 1612 —a* # 0,
respectively. Plot f7'(0) and h~'(0).
ii) Show that f~'(0) is diffeormorphic to h~*(0) when 162 — a* < 0 and
that h~'(0) is diffeomorphic to the unitary sphere S* when 16r% —a* > 0.
What happens when 1612 — a* = 07?
iii) Obtain regular compact surfaces of genus g > 0 as level sets of poly-

nomial functions h: R* — R and H : R* — R2.

1.9.18. Let P(z,y) be a polynomial of degree n > 2 and consider the
polynomial surface M defined by the graph z = P(z,y).
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i) Show that the parabolic set of M, when it is not empty or all M, is an
algebraic curve of degree | < 2(n — 2).

ii) Open problem: How many (compact) parabolic curves can belong
to the graph of a polynomial of a given degree n? Try the cases of degree
3 and 4. See [8], [6] and [123].

iii) Show that the umbilic set of M when it is a discrete set has at most
(3n — 4)? points.

iv) Show that the Gaussian curvature I of M is integrable and that

Ji IKIdA < 2m(n — 1)2. Here dA is the area element of M. See [124].

1.9.19. Show that the differential equation of asymptotic lines of an im-
plicit surface f(z,y,z) = 0 is given by:

d(fz)dx +d(fy)dy + d(f.)dz =0, fzdx + fydy + f-dz=0 (1.14)

Equivalently show that v € T}, f 7 (0) is an asymptotic direction if f'(p)v =
0 and f”(p)(v,v) = 0.

1.9.20. Let M be a surface of class C® in R? with first fundamental form
I = Edu® + 2Fdudv + Gdv® in a local chart (u,v).

i) Show that the Gaussian curvature IC of M is given by:

Fu'u - %(Guu + E’uv) %Eu Fu - %Ev 0 %Ev %Gu
WK = F,-1aG, E F |-|te, EF F
ia, F G 3Gu.  F G

where W = vVEG — FZ.

ii) Show that the Gaussian curvature does not depend on coordinates.

iii) Analyze the items i) and ii) when M is only of class C*.

1.9.21. Let M be a compact and oriented surface in R®. Suppose that M is

oriented such that the normal vector N is the inner normal vector. Consider
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the one parameter family of parallel surfaces defined by M; = M +¢N with
t| small.

i) Show that A(t) = A(0)—2¢[[,, HdA]+t*[[,, KdA]. Here A(t) is the area
of the surface M.

ii) Show that V(t) = V(0) — £*[,, HdA] + L[ f,, KdA]. Here V(t) is the
volume of the region bounded by the surface M;.

iii) Show that if M is convex then [, HdA > 0.

1.9.22. Consider the surface defined by the graph (z,y, h(z,y)),
1 1
h(z,y) = EaxQ — by + E[A.I'g + 3Bax’y 4 3Bizy® + Cy®] +---, ab> 0.

i) Compute the curvature of each branch of the planar curve h(z,y) =0
at p = 0 (intersection of the surface and the tangent plane at 0).

ii) Compute the curvature and torsion of each asymptotic line passing
through 0.

iii) Compare the curvatures evaluated in i) and ii) and interpret geome-

trically the above results.

1.9.23. i) Show that a regular curve c(s) on a surface M C R? is a
principal curvature line of M if and only if the ruled surface (s, v) = ¢(s)+
vN(s) is developable (this means that its Gaussian curvature vanishes).

ii) Show that the principal curvatures of 8 are given by k?(s,v) =
kg (s)/(1—ki(s)v) and k = 0, where k1 (s) and k,(s) are the principal and
geodesic curvature of ¢ as a curve of M, respectively.

iii) Characterize the singularities and the umbilic set of 3. Describe the

principal configuration of .

1.9.24. Let v be a smooth closed curve in R? of length L parametrized by

arc length s. Let {¢,n,b} the Frenet orthonormal frame associated to .
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Let ve(s) = v(s,€) = v(s) + e(ar(s)n(s) + a2(s)b(s)) a smooth variation of
~ with a;(s) = ai(s+ L).

i) Compute the total torsion of v and v. and write the first and second
derivatives of the total torsion of . with respect to € at e = 0.

ii) Give an example of a closed curve 7 such that the total torsion fw T=
2mm,m € Z \ {0}.

iii) Let r € R given. Give an example of a closed curve ~ of length L such

that fOL 7(s)ds = r. See [29] and [75].

1.9.25. Consider the metric ds® = h(v)(du® + dv?), where h is a positive
function of class C in neighborhood of 0.

i) Write the differential equation of the geodesic lines for this metric.
ii) Give examples of functions h such that the curves v = 0 and v = u*

are geodesics through (0, 0).

1.9.26. Consider the parametric surfaces a(u,v) = (ucosv,usinv,v) and
B(u,v) = (usinv,ucosv, logu).
i) Compute the Gaussian curvature of a and 3.

ii) Show that the two surfaces are not isometric.

1.9.27. For a surface M C R? of class C® define the third fundamental form
by IT1(p)(u,v) = (DN (p)u, DN(p)v), u, v € TyM. Here N : M — S? is
the Gauss map of M.

i) Show that III — 2HII + KI = 0.

ii) Let a be alocal immersion o : U C R? — R* and the Gauss map given
by No = (@u A aw)/|otu A aw|. Suppose that N, is an immersion. Show
that [Tl = In, = —IIn,.

1.9.28. A closed surface M in R? is called rigid if any other surface M’

in R® that is isometric to M is congruent to it. That is, if there is a
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diffeomorphim between M and M’ preserving the first fundamental forms
then it is a restriction of a rigid motion of R® composed (possibly) with a
reflection.

i) Show that any smooth compact convex surface in R? is rigid.

ii) Show that the torus of revolution is rigid. See [85] and [122].

1.9.29. Let h: U C C — C an analytic complex function defined in the
open set U. Write h(z) = U(z) + iV (z) = W(z)e"®®). The graph surface
(z,W(2)), z=u+iv = (u,v) is called a modular surface.

i) Visualize and analyze the geometry of modular surfaces for h(z) = 2*
and h(z) =sinmz.

ii) Show that near a pole of h the modular surface has negative Gaussian

curvature. See [99].

1.9.30. Let o and 8 be two regular curves of R®. Define I'(u, v) = (a(u) +
B(v))/2. The surface I' is called a translation surface. It is regular when
o' A3 #0. See [42], [99] and [135].

i) Visualize and analyze the geometry of the translation surface I defined
by a(u) = (cosu,sinu,0) and S(v) = (a + cosv,0,sinv),a € R. Find the
singular points of I'.

ii) Show that the minimal surface defined by h(z,y,z) = € cosx —cosy =
0 is a translation surface.

iii) Show that any minimal surface of R? is a translation surface.



Chapter 2

Classical Results on
Principal Curvature

Lines

2.1 Introduction

In this chapter will be considered triply orthogonal systems of sur-
faces in R3, envelopes of families of surfaces and also some examples

of principal configuration and umbilic points on algebraic surfaces.

The basic references for this chapter are [37], [44], [85], [94], [100],
[164], [166] and [174], where additional developments can also be

found.

For beautiful illustrations of sculptures and clay models of surfaces

see [46] and [84].

42
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2.2  Triply orthogonal systems

Theorem 2.2.1 (Joachimsthal Theorem). Let two surfaces My and
My intersecting on a curve v along which their normals N1 and No
make constant angle, i.e. (Ni,Na3) |, is a constant, and such that
DNy A" = 0. Then it also holds that DNy’ A" = 0. In other
words, if two surfaces intersect with constant angle along a curve
which is the union of principal lines and umbilic points of the first
one, then this is also the case for the second one.

Conversely, if DN1v' A" =0 and DNyy' A" =0 along a curve
v of intersection of My and My, then the angle between the surfaces,

i.e., (N1, Na) |y is constant.

Proof. By hypothesis the mixed product [N7, Na2,v’] can be assumed

to be non zero. Otherwise the conclusion is obvious.
So, differentiating the equation (N7, No) = ¢ it follows that

[N1, DNa(v)Y',~'] = =[DN1(v)y', N2,~'] = 0.

This implies that DNa(y)y = Ay'. By Rodrigues formula, dN +
kdp = 0, it follows that ~ is the union of curvature lines and umbilic

points of M. The converse is direct. This ends the proof. O

From this follows directly that the principal configurations for sur-
faces of revolution are given by the umbilic points which are located
at the poles and also along some parallels; the principal foliations are
given by arcs of non umbilical meridians and non umbilical circular
parallels.

For a non spherical ellipsoid of revolution, however, the unique
umbilic points occur at their poles, as follows from a direct calcula-

tion.
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A more precise formulation of Joachimsthal Theorem is the fol-

lowing.

Theorem 2.2.2. Consider a principal line v of an immersion « :
M — R3? of class C". Suppose that the principal curvatures of a are
such that ky = k¢ < kS = ko holds along . Let 3 : M — R3 be
an immersion of class C" such that (No, Ng) = 0 along . Then =y
is the union of principal lines of B3; also one principal curvature of
B, restricted to v, is the geodesic curvature £ky of v considered as a
curve on . Furthermore, any other immersion & making a constant
angle 8 with o along v, i. e. (Na,N¢) = cos@, has this curve as
the union of principal lines and has one principal curvature equal to

ki cosf + kgsinf.

Proof. The Darboux frame {t, N, At, N, } associated to v as a curve
of « is defined by the equations:

t' =kgNo At + k1 No, (NoAt) =—kgt+0.Ny

N, = kit +0.Ny At, 7,={((NoAt),Ns)=0.

Along v the normal vector to 8 is Ng = £N, A t. Therefore by
Rodrigues equation and the equation (No At)" + kgt = N+ kgt =0
it follows that ~y is a principal line of 8 and one principal curvature
is kg, when the unit normal to 3 is chosen as N, A t. The other
principal curvature of [ is the curvature of the plane curve defined
by the intersection of 8 with the plane generated by [N, No At].

The case of constant angle is immediate from the above conside-
rations observing that the normal vector N¢ of the immersion ¢ is

N¢ = cos N, + sin O Ng. O
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Definition 2.2.3. An orientation preserving diffeomorphism

H:U CcR3— R? on an open set where U, such that

H
(Huy Ho) = {Hu, Hy) = (Ho, Hy) =0, Hy= O

is called a triply orthogonal system of coordinates.

The simplest examples of triply orthogonal systems are the carte-
sian, cylindrical and spherical coordinates in 3-space.

In cylindrical coordinates, two families are given by planes and
the other consists of circular cylinders.

In spherical coordinates, the first family is given by concentric
spheres with center at 0, the second by planes containing one coordi-
nate axis and the third one by cones with vertex at 0.

For each fixed coordinate, for example when w is fixed, the map

(u,v) — H*(u,v) = H(u,v,w) is the parametrization of a surface.

Lemma 2.2.1. Let p = |H,|, ¢ = |H,| and r = |Hy,| The following

relations hold,

H ANHy=Ym, v, nH, =21, H,AH,=YH,,
p q r
<Hua H’Uw> = 0; <H’U) Huw> = 0;; <Hun Hu'u) = 07
<Hua H’U A Hw> = pqr.
2.1)

Proof. Consider the unit fields Ny = H,/|H,|, N2 = H,/|H,| and
N3 = Hy/|Hy).

By the hypothesis it follows that Ny A No = N3, No A N3 = Ny,
NsAN; = Ngand (N7,Na A N3y = 1. Then H,AH, = pN1 AqNs =
pqN3 = 22 H,,. The same for the other relations.



46 [CAP. 2:  RESULTS ON CURVATURE LINES

Differentiating the equation (H,,, H,) = 0 with respect to w it fol-
lows that (Hyw, Hy) + (Hy, Hyw) = 0. Also it holds that (H.,, Hy,) +
(Hy, Hyw) = 0 and (Hyy, Hy) + (Hy, Hyw) = 0.

S0, (Huw, Hy) = = (Hy, Hyw) = —(— (Huy, Hy)) = — (Hy, Hyw).
This amounts to 2 (Hy., H,) = 0. The same holds for the other
relations. This ends the proof. O

Proposition 2.2.1. Consider the parametrized surfaces St : (u,v) —
H"(u,v) = H(u,v,w), Sy : (w,u) — H"(w,u) = H(u,v,w) and
S3 ¢ (v,w) = H"(v,w) = H(u,v,w). Then the coefficients of, I;,
the first, E;, F;, G;, and of, I1;, the second, e;, f;, gi, fundamental

forms of the surfaces S;, 1 =1,2,3 are given by:
I = p*du® + ¢?dv? I = PPu g2 Lw g2
r r

L=r2de® +p?d® 1L =—"dw? - a2 (99
q q

Ty

Is = ¢*dv® + r?dw® II3 = —%va dw?
Proof. By lemma 2.2.1 it follows that F; = f; = 0 for the three
parametrized surfaces.

The positive unit normal field to the surface S is given by Nj,
that for Sy is Ny and the one for S3 is V7.

Consider the surface Sy : (w,u) — H"(w,u). Then it follows that

H, |Hw|12] Ty
€2 = N7wa = 7wa = - H’U’UJ7HUJ H’U = - = —
s = (N Hu) = (27 H ) = = (How, F) ] = =zl T
H, |Hul? PP
= (N2, Hyu) = yHyw ) = = (Huw, Hu) [|Hy| = — = — .
g2 = (o, o) = (105 Ho ) = = (s 1) |11 = el 2

The same for the other two surfaces. O
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Remark 2.2.4. Proposition 2.2.1 implies mean that for the parametrized
surfaces S; of a coordinate system, the coordinates define curvature lines.
This is a form of Dupin theorem, revisited below (2.2.6) for coordinate

surfaces in an orthogonal system.

Remark 2.2.5. The local inverse G of the diffeomorphism H = (h1, ha, hs)

is also an orthogonal coordinate system in the space, i.e., for (G; = %),
(Gi,Gj) =0, for i#j (23)

as follows from a direct calculation that gives Gi = Vh;/|Vhi|>.

Theorem 2.2.6 (Dupin). The intersection of the level surface foli-
ations Ma(ca) = {ha = ca} and M(c3) = {hg = c3} with a surface
M;(a1) = {h1 = a1} produce on it a net of curves, along each of
which, say v, holds that DN1y' AN ~t = 0; that is, v is the union of

principal curves and umbilic points of M.

Proof. Direct consequence of proposition 2.2.1 and remark 2.2.5.

Remark 2.2.7. Notice that this establishes that the coordinate surfaces
of any orthogonal coordinate system G in the space meet along common
principal curves. A fact that is actually equivalent to the formulation in

remark 2.2.4 of this result due to Dupin.

Remark 2.2.8. By taking the ruled surfaces generated by the normal lines
to a surface M along principal lines, two families N1, based on minimal
principal lines (say, v =constant), and Nav, based on mazimal principal
ones (say u = constant), are produced. These families of surfaces, together
with the family M, given by parallel translation, are triply orthogonal. This
shows that at non umbilic points, any surface can be embedded in a family

of surfaces which is part of a triply orthogonal system.
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To prove that inversions 1(p) = p/|p|® preserve lines of curvature, use
the fact that these maps are conformal (i.e. preserve angles). Apply Dupin’s

Theorem to the image of the triply orthogonal system of surfaces just de-

fined.

Remark 2.2.9. A family of surfaces given by h(u,v,w) = ¢, may be
part of a triply orthogonal system if the function h satisfies the differential

equation

(0 Vh
div (%rot(n)) =0, n= VAl See [176].

Theorem 2.2.10 (Darboux). Suppose that two families of orthogo-
nal surfaces intercept along lines of curvature. Then there exists a

third family of surfaces orthogonal to the first two families.

Proof. Consider two distributions i.e. fields A; and Ay of tangent
planes to the two families of orthogonal surfaces. Define the distribu-
tion Az orthogonal to both Ay and A,. Take unit vector fields X, Y
such that X € A; N Az and Y € Ay N As.

By hypothesis, as the intersection between the two families are
curvature lines, it follows that VxY = fX and Vy X = gY. Here
V is the covariant derivative which is defined by the tangential com-
ponent of the directional derivative. So, the Lie bracket [X,Y] =
VxY —VyX = fX — gY € As. Therefore Ag is integrable and by
Frobenius theorem, see [25] and [164], the third family of surfaces

exists. O

Ellipsoid with three different axes

In this subsection will be described the principal configuration on

the ellipsoid, working directly on the differential equation of principal
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curvature lines.

This is the first non trivial example of a principal configuration
established by Monge [115], who directly integrated the differential
equations for the principal lines.

Consider the ellipsoid E = f71(0), where f(z,y,z2) = 2—2 + z—j +
21, a>b>c>0

The differential equation of principal lines in implicit form is given
by

[d(V[f),dp,V f]=0. (2.4)

In the chart (z,y) this differential equation is expressed by:
—a?P (b — Aaydy® + (a® — A)b P ryda®+
b2 (c? — a?)z? + ?a®(b? — a®)y? + a®b?c?(a® — b?)]dzdy = 0.

(2.5)
Rescaling the coordinates by © = Au,y = Bv, A > 0,B > 0, with

45— a?(b? — c2) B 1
©4b2ct(a? — c2)3’ © 2A3¢2b2(a? — c?)

the differential equation of principal curvature lines of the ellipsoid is

given by:
wvdv? + (u? — v? — \?)dudv — uwvdu® = 0, \ = a*b*c*(a® — b*)AB.

The coordinates axes u and v and the family of ellipses and hy-

perbolas
u(t) =R cost, v(t) = rsint, R? =% 4+ )2

u(t) =Rcosht, w(t)=rsinht, R+ 712 =\2
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are the solutions of the differential equation above.

The points (A,0) and (—A\,0) are singularities and the interval
(=X, A) x {0} can be considered as a degenerated ellipse. The in-
tervals (—oo, —A) x {0} and (X, 00) x {0} also can be considered as
degenerated hyperbolas. The integral curves of the differential equa-
tion above are illustrated in Fig. 2.1; they define a confocal family

os quadrics with foci at (—X,0) and (A, 0).

Figure 2.1: Confocal and orthogonal family of quadrics

Below the principal configuration on the ellipsoid E will be ob-
tained from Dupin’s Theorem 2.2.6. To this end notice that it is
part of the triply orthogonal family of quadrics: E(\), Hy (), Ha()),
defined by

Tt Ta =L a>b>c>0
See Fig. 2.2 for an illustration. Here, A ranges on (—oo,c?), for
E()\), on (c%,b?) for Hy()\) and on (b?,a?), for Ha()\).
In fact, for each triple (c1,cz,c3) in (—oo,c?) x (¢2,b?) x (b?,a?)

there is a unique point p = (z,y, 2) = G(c1, ¢2, ¢3) in the positive or-
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Figure 2.2: Triple orthogonal system of quadratic surfaces

thant which is in the intersection of the surfaces E(cy), H1(c2), Ha(c3).
The result follows observing that GG is an orthogonal coordinate sys-
tem (called ellipsoidal) in the positive orthant, which means that
the quadrics are defined by the levels of the coordinate functions of
G~! = (hy, ha, h3).

The explicit parametrization of the ellipsoid

2 2 2

X Yy z
]:Eaib7c - {(aj’y,z) : E + b_2 + 6_2 = ].}
is given by:
M(U,’U,a) M(U,U,b) M(u’fy’c)
=(* + + 2.
a(uav) ( \/W(a/7b,c) ) \/W(b,a,c) I W(c7a,b)) ( 6)
where,

M(ua v, U}) = U}Q(*u + w2)(7v + w2)7 W(aa b, C) = (a2 - b2)(a2 - CQ)’

u € (c?,b%) and v € (b2, a?).
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The first fundamental form of « is given by:

1(u—v)u 1(v—wuw
I = ds? = Edu? 2_ 23 24 2 g2
ds du® + Gdv 1w du +4 o) dv

The second fundamental form of « is given by:

be(u — v) abe(v — u)
IT = edu® + gdv® = & du?
eon” -+ gav 4y/uvh(u) v 4\/uvh(v)

dv?,

where h(z) = (x + a?)(x + b?)(x + ¢?). The four umbilic points
(Darbouxian of type D, see proposition 2.4.1) are: (+zg,0,+z0) =

(£ay/%=2,0,+c, /5= ).

aZ_c2 2_a2

In Fig. 2.3 it is shown in first octant of ellipsoid the principal
lines u = ug and v = vg. The complete configuration is obtained by

symmetry in relation to the coordinates planes.

(~bY~17)

Figure 2.3: Curvature lines of the ellipsoid in the first orthant

A global view of principal lines is given in the Fig. 2.4. All
principal lines are closed, except for four open arcs, the connections
between Darbouxian umbilics, called umbilic separatrices. See [115],

[161] and [163].
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Figure 2.4: Curvature lines of the ellipsoid with three different axes

Remark 2.2.11. In the parametrization of o in equation (2.6) is also usual
to take M (u,v,w) = w?(w? — u)(w? —v), W(a,b,c) = (a* — b*)(a® — %)
with u € (b*,a?) and v € (¢*,b). See Chapter 7.

2.3 Envelopes of Regular Surfaces

An one parameter family of regular surfaces in R? can be defined
by F(p,\) = 0 where F : R> x R — R is such that for each )\,
VFy # 0, where F)\(.) = F(., \).

The variation of this family with respect to the parameter can be

defined as F) = g—f The set defined by

= {0 FnN) = 2 )

is called the characteristic set of the family.
The projection 71 (C') = E is called the envelope of the family.
Here m : R?* x R — R3, 71 (p, \) = p.

Example 2.3.1. Consider the family the one parameter of spheres
defined by

F($7ya2a)\):(I—)\)2+y2+22—7“2=O
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Therefore, F\ = —2(x — A) = 0 and so the characteristic set is the

hyperplane {z = A} and the envelope is the cylinder y? + 22 = 2.

Example 2.3.2. Consider the one parameter family of spheres de-
fined by

F(Iay7z7)‘):(x_)‘)2+y2+22—7“2+)\

Therefore, F\ = —2(z — A) + 1 = 0 and so the characteristic set is
the hyperplane {x = 1/2 — A} and the envelope is the paraboloid
r=—(y*+2%) +r?2+1/4.

Example 2.3.3. Consider an one parameter family of spheres of
constant radius r with centers ranging along a curve ¢(s). So the fa-
mily can be represented by F(p,s) = ||p—c(s)||*> —r? = 0. Therefore
it follows that Fs = —2(p — ¢(s),(s)). The envelope of this family
is called a canal surface.

When ¢(s) = (Rcos s, Rsin s,0) the envelope is a torus of revolu-

tion that can be parametrized by
a(s,8) = c(s) + rcosf(cos s,sins, 0) + rsinb(0,0,1).

Intuitively the envelope E is tangent to the family of surface de-

fined F\(p) = 0. More precisely the following holds

Proposition 2.3.1. Suppose that E is a reqular surface and p €
E N Fy '(0). Then the tangent plane T,E coincides with the tangent
plane of the surface F(p,\) = 0.

Proof. We leave this to the reader. |

Proposition 2.3.2 (Vessiot). Consider the one parameter family of

spheres with center ¢(s) and variable radius r(s) > 0. Suppose that



[SEC. 2.3: ENVELOPES OF REGULAR SURFACES 55

the envelope of this family is a reqular surface. Then the envelope

can be parametrized by
a(s, ) = c(s) +rcosB(s)T(s) + r(s)sinb(s)[cos o N + sin pB],

where cosO(s) = —1'(s) and {T, N, B} is the Frenet frame of c. More-
over one family of lines of curvature are circles of radius r(s) sin (s)

and the other is defined by the Riccati differential equation

de _
ds

—7(s) — k(s) cotg 0(s) sin ¢.

Figure 2.5: Canal surface with variable radius

Proof. The family of spheres is defined by

F(s,p)=|p—c(s)]> —r(s)* =0.

Therefore, Fy = (c/(s),p — c(s)) — 2rr'.
So the system of equations F'(s,p) = Fs(s,p) = 0, for each s fixed,

defines the intersection of a sphere and a cone with vertex at c(s).
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Writing (¢/, p — ¢(s)) = |/||[p—c¢| cos(s) = |[p—c(s)| cosO(s) it follows
from F' = F; = 0 that cosf(s) = —r'.

Therefore by Joachimsthal theorem, 2.2.1, it follows that the circles
defined by the one parameter family Cs = {p : F(s,p) = Fs(s,p) = 0}
is a curvature line of the envelope E. In order to obtain the other
family we observe that in the chart (s, ) the family of circles is de-

fined by $ = 0. So the orthogonal family is defined by
$=G(s,v), ¢ =—F(s,v), F={as,a,) and G = (ay,q,).
Direct calculation gives
F(s,v) = 7r?sin? 0 — k(s)r'r? sin 0 sin ¢
G(s,v) = r?sin®0 = r2(1 —1'%).
Performing the calculations obtain that

dy _

s —7(s) — k(s) cotg 6(s) sin .

Finally writing v = tan(y/2) it is obtained
. 1 2
0= 757(1 +v7) — kcotgb(s)v,

a familiar Riccati equation. O

Remark 2.3.4. The proof of the proposition above was adapted from [174].
For recent developments about principal curvature lines on canal surfaces

and hypersurfaces see [144] and [146].

Corollary 2.3.5. Consider the one parameter family of spheres with

c(s) a planar simple curve and r(s) > 0 variable with |r'(s)] < 1.
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Then the envelope, canal surface E, has two hyperbolic closed princi-

pal lines parametrized by ¢ =0 and ¢ = w provided
/

IS \/%k(s)ds £0.
-

Proof. Direct from the proposition 2.3.2.

2.4 Examples of Umbilic Points on Alge-

braic Surfaces

In this section two examples of principal configurations on alge-

braic surfaces will be considered.

Proposition 2.4.1. The ellipsoid f(x,y,z) = a2 + 4 b2 +4&Z-1=0,

a>b>c> 0, has four umbilics given by (+a a2 C2 ,0,+a,/ Zifz)
Moreover these umbilic points are all Darbouzian Dy. Qutside these
umbilic points, the principal configuration consists on closed principal

lines and four umbilic separatrices, connecting the umbilic points.

Proof. The differential equation of curvature lines of an implicit sur-
face defined by f = 0 is given by [Vf,d(Vf),dp] = 0, where dp =
(dz,dy,dz) and (Vf,dp) = 0. Direct calculation shows that the four

umbilic points are as stated.

Let (z9,0,29) be an umbilic point and consider the following
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change of coordinates:

(,y,2) = (20,0, 20) + uEy + vEy + wE3, where

2
20 Ty

T 23
El:(c_gaoafﬁ)/ C_4+E’ E2:(03170)a

2
x
E; = ( )/ = + —O-
In the coordinates (u,v,w) the ellipsoid has the following parametri-

zation (u, v, W(u,v)) where,

W (u,v) = — —= (42 + 256 20 a2 — 2o - Yu+ 0(4).

This follows from long, but straightforward, calculations. Therefore
by the theorem of classification of umbilic points, see chapter 3, page
74, the result follows. O

Proposition 2.4.2. The convex surface f(x,y,z) = z* +y* + 2% =
1, which has the symmetry of the cube, has 14 umbilic points, § of
the Darbouzian type D3 and 6 of index 1 (center). The principal

configuration is as shown in the Fig. 2.6.

Proof. Direct calculation gives that the umbilic points are given by:
(£1,0,0), (0,£1,0) (0,0,%1), (£a,+a, +a), a = (1/3)"/*

Notice that the planes of symmetry of the cube intercept the surface
orthogonally, and these intersections consist on umbilic points and
principal lines. By symmetry arguments it follows that (1,0,0) and

all the other umbilic points contained in the coordinate planes are of
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Figure 2.6: Lines of curvature on a convex surface with symmetry of
the cube

center type (index 1), surrounded by closed principal lines, for one
principal foliation, and it is of nodal type (index 1) for the other
principal foliation.

Now near the umbilic point (a, a, a) consider the change of coor-

dinates

w

—(1,-1,0) 73

V2

(1,1,-2)+

NG (1,1,1).

('r’ y? Z) = (a7 a” a) J’»
So the surface f = 1 has the following parametrization (u, v, h(u,v)),
where

2 V2.1, 1,
v ) — ?(EU — §’U/U ) +O(4)
So by the classification of umbilic points, see chapter 3, page 74, it
follows that this point is of type D3. By the symmetry all umbilic
points (fa, +a, £a) are of type D3. The principal configuration is as
shown in the Fig. 2.6. In this planar representation one umbilic is

located at infinity. O
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Remark 2.4.1. A study of umbilics and the behavior at singular points
and at infinity of principal configurations on algebraic surfaces has been

carried out by R. Garcia and J. Sotomayor, see [54], [55] and [61].

2.5 Exercises and Problems
2.5.1. Consider the embedded tube defined by
a(s,v) = c(s) + rcosvn(s) + rsinvb(s), r >0, small.

Here c is a closed curve with curvature k£ > 0 and torsion 7.

i) Characterize the curves ¢ such that the tube defined above has no
umbilic points.

ii) Give an example of a curve ¢ such that all leaves of one principal

foliation of « are dense.

2.5.2. Let o : M"! — R"™ be an immersion of smooth and oriented
manifold M" 1.

i) Define lines of curvature for immersed hypersurfaces in R, n > 4 and
write the differential equation in the case n = 4.

ii) Show that the family of quadrics defined by

E(\) = Ho oy Ty gca<o<a
TaZ- ) az — X\ ! "

is an n—orthogonal system of hypersurfaces in R".
iii) In the higher dimensional situation formulate and provide proofs of

suitable extensions of the theorems 2.2.1, 2.2.6 and 2.2.10.

2.5.3. Let J =11, %,O, —%, n € N}. Give examples of umbilic points of

topological index j € J. See [119], [120], [156] and [182].

2.5.4. Show that the system of surfaces
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x2+y2+22:um, m2+y2+z2:vy, m2+y2+22:wz,

is triply orthogonal.

2.5.5. Let S be a regular, compact and oriented surface of R® with unit
normal N. Show that the parallel surface S, = S 4+ rN is regular for
small 7 > 0 and that there is a diffeomorphism ¢ : S — S, preserving the

principal curvature lines.

2.5.6. Let ¢ be a closed principal curvature line of an oriented surface S
and let ¢ : R® — R3 be a conformal diffeomorphism, that is one which
preserves angles. Let k1 and ko the principal curvatures of S and k1 and

k2 the principal curvatures of ¢(S) = X.

Define the integrals 7 = | kgdf2k1 , 0= f,y %

that v is a closed principal curvature line of 3 and that r = +p. The sign

, v = ¢(c). Show

of r = +0 depends on the orientation of the surfaces S and .

2.5.7. A surface is called a Weingarten surface when there is a functional
relation between the principal curvatures k1 and k2 such as F'(ki,k2) = 0.
i) Give various examples of Weingarten surfaces.

ii) Show that there are Weingarten surfaces, oriented and compact, of any

given genus g. See [85].

2.5.8. Show that a curve c(s) is a principal curvature line of an oriented
surface M if and only if the surface 8(s,v) = ¢(s) + vN(s) is developable
(ruled surface with zero Gauss curvature). Here N is the unit normal
vector to S along c. Conclude that ¢ is the union of principal curvature

lines of the ruled surface .

2.5.9. Show that the set of closed principal curvature lines on an oriented

developable surface is an open cylinder or an annulus.
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2.5.10. Show that a family of quadrics

where a, b and ¢ are smooth functions, belongs to a triply orthogonal
system of surfaces if and only if the following differential equation holds
a(b—c)a’ +blc—a)b' + c(a — b)c' =0. (%)

Find special solutions of the differential equation above.

Suggestion: Show that the solutions of the system aa’ = ah + g,
bb' = bh + g, ¢ = ch + g, where h = h(u) and g = g(u) are arbitrary

smooth functions, are solutions of (*). See [48].

2.5.11. Show that the system given by
Py 42 = um, 2= vy, (@ 4y 20 =y + 2

defines a triply orthogonal system of surfaces. Visualize the shapes of these

surfaces.

2.5.12. Show that a triply orthogonal system is given by:
a) the hyperbolic paraboloids yz = uz,

b) the closed sheets of the surface (y? — 2%)? — 2a(22* +y° + 2%) +a* = 0,

¢) the open sheets of the same surface.

2.5.13. Consider the surface S parametrized by (u, v, h(u,v)) where,

h(u,v) == (au® 4+ bv®) + é(Au3 + 3Bu*v + 3Cuv® + Dv®)

N | =

(%)
S

o (au® + 4Buv + 67u*v” + deuv® 4+ 60*) + - -

+

Let ¢ = ¢(s) be a principal curvature line of S passing through 0 and

tangent to the u axis. Let k and 7 be, respectively, the curvature and the
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(3a —b)AB —3aBC  af
(a —b)2 a—>b

analogous relation for the other principal curvature line and also determine

torsion of ¢ at 0. Show that k%7 = Find the

the geodesic curvatures of both principal lines at 0.

2.5.14. Let S be the surface parametrized by equation (**) above. Write
the Taylor series of the principal curvatures k1 = ki (u, v) and k2 = ka(u,v)

at 0 up to order two and analyze the level sets of both functions near 0,

imposing generic conditions on the coefficients (a,b, ..., ¢,0).
22 2 22
2.5.15. Consider the ellipsoid E(z,y,z) = = + = + == 1.

Let [dp,d(VE),VE] = 0, p = (z,y,2), the differential equation of
principal curvature lines.
i) Consider the differential equation above complexified and analyze the
singular foliations in the complex quadric E¢ obtained by complexification
of the real ellipsoid.
ii) Investigate the singularities and the complex separatrices of the asso-
ciated Lie-Cartan vector field defined in a complex analytic surface. For
an introduction to complex differential equations, see [26], [89] and [105].

This open problem is based in a question raised by E. Ghys.

2.5.16. Let v be a closed line of curvature of an oriented surface M C R?
and let 7 the torsion of v as a curve of R®. Assume that -y is parametrized
by arc length.

i) Show that the total torsion fw T =2mm, m € Z.

ii) Show that if M is convex then fﬂ{ 7 = 0. See exercise 1.9.24, page 39.

2.5.17. Consider the canal surface given in Proposition 2.3.2.
i) Compute the principal curvatures of the canal surface.
ii) Study the umbilic set of a canal surface.

iii) Give explicit examples of canal surfaces having conical singularities.
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2.5.18. Give various examples of surfaces in R? such that:

i) One family of principal lines consists on plane or spherical curves.

ii) Both principal foliations consist on plane curves.

iii) One family of principal lines is formed by plane curves and the other

by non planar spherical curves.

2.5.19. Show that the quadratic ellipsoid with three different axes is foli-

ated by parallel circles with two singularities localized at umbilic points.

2.5.20. Let v, : R — R3, n € N, the curve parametrized by

1 t 1 t
W(t) = t) cos — — int, t)sin — ).
Yn(t) = ((——5= + cost) cos sin (sing—’“ + cos )smn)

. b
sin =& n  sin 2&
n

i) Show that v, (t + 27n) = vy (t).
ii) Show that v, — v as n — oo, where + is the circular helix parametrized
by y(t) = (cost,sint, 5=).

iii) Show that the torsion of 7, is negative for large values of n.
iv) Compute the total torsion T, = fw 7, of 7, and analyze the arith-
metic properties of the sequence of values (T, )nen. See [16].

v) The curve v, can be a principal line of a surface? See exercise 2.5.16,

page 63.

2.5.21. Let v be a regular arc of R® parametrized by arc length s.
Define the osculating sphere of v as follows. Take four distinct points
{po = (), p1 = (s +51), p2 = v(s + s2), p3 = 7(s + s3)} and consider
the unique sphere ¥; = X(s1, s2, s3) passing through these points. The
limit (when defined) lim,, | X(s1, 82, $3) = 35 is the osculating sphere

of v at the point (s).

i) Show that the curve c(s) = v(s) + r(s)n(s) + :/((;;b(s), r(s) = k(15>

and {¢, n, b} the Frenet frame of 7 is the center of the osculating sphere.
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ii) Show that the osculating circle O, of v is contained in the osculating
sphere ¥ (5). The osculating circle is contained in the osculating plane and
has radius equal to 7(s).

iii) Investigate the geometry (geodesics, principal lines, asymptotic lines

and singularities) of the osculating tube
a(s,0) =y(s) + r(s)cosOn(s) + r(s)sinfb(s).

2.5.22. Let h(u,v) = fcsech’ (%(u — cv)).

i) Compute the first and second fundamental form of the graph surface
(w0, h(u, v)).

ii) Show that h is a solution of the KdV equation 6, + 600, + 0yuu = 0.
iii) Show that the umbilic set of graph surface is parametrized by u =
cv + %arcosh(@), z = z(c). Describe the principal configuration of the
graph of h.

iv) Analyze the structure of the umbilic and parabolic set of the surface

defined by the graph of h(u,v) + e(cu + v)*.
2.5.23. Let n; = —bju + 4bjv and A = [(by — b2)/(b1 + b2)]?. Define
h(u,v) = In(1 + €*™ 4+ €™ + A" T2712) and H(u,v) = 2huy.

i) Visualize the graph of H. Use the software of A. Montesinos, [116].

ii) Show that H is a solution (2-soliton) of the KdV equation 0, + 666., +
Ouuu = 0. See [121].

iii) Show that the graph H has umbilic points and that the Gaussian

curvature change signs and lim,| .. K(p) = 0.

2.5.24. Show that the torus of revolution is foliated by four families of

circles: parallels, meridians and Villarceau circles.
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2.5.25. Show that any Mébius developable surface has at least one umbilic

point.

2.5.26. Show that the theory of principal curvature lines on surfaces in R?
and that of the unit sphere S* C R* are equivalent. More precisely, consider
the stereographic projection TI : §* \ {N} — R>. Write the expression of
IT in coordinates and show that II is a conformal map. Conclude that II
is a conjugation between the principal configuration of the surface S C R?
and that of S = II7'(S) C S%, i. e., IT is a equivalence between principal

configurations. See [101] for a geometric proof.

2.5.27. Let M be a compact surface of class C" of non negative Gaussian
curvature and of constant width L, i.e., the orthogonal projection of M
onto every line of R? is an interval of constant length L and so the distance
between parallel tangent planes is constant. The pair of points p and ¢
such N(p) = —N(q) are called opposite. See [109].

i) Show that the principal directions at opposite points are parallel.

ii) Give various examples of curves and surfaces of constant width.

iii) Show that ¢(t) = (rcost + 2cos2t — cos4t,rsint — 2sin 2t — sin 4t),
r > 8,0 <t <2, isaconvex curve of constant width 2r and the revolution
of this curve around the x axis is a convex surface (algebraic) of constant

width.

iv) A surface M is said to have constant brightness b if and only if the
orthogonal projection of M onto every plane is a region of area b. Show

that a surface of constant width and brightness is a sphere. See [87].

2.5.28. Let h : R® — R be a polynomial of degree n. Develop the theory of
Darboux integrability, well established for polynomial differential equations
on the plane, to the principal configuration of the algebraic surface A~ (0).

See [36], [103] and [89].



Chapter 3

Principal curvature

configuration stability

3.1 Introduction

In this chapter we formulate and discuss a principal curvature
configuration stability result for principal configurations of curvature
lines due to C. Gutierrez and J. Sotomayor, [71], [72] and [75].

For a sketch of the history of the theory of qualitative theory of
principal lines see [161, 163]. A recent survey on this subject can be

found in [63].

3.2 Lines of curvature near Darbouxian

umbilics

In this section will be reviewed the behavior of curvature lines

near Darbouxian umbilics.

67
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Preliminaries concerning umbilic points

Denote by PM? the projective tangent bundle over M2, with pro-
jection II. For any chart (u,v) on an open set U of M? there are
defined two charts (u,v;p = dv/du) and (u,v;q = du/dv) which
cover II71(U).

The differential equation (1.6) of principal lines, being quadratic,
is well defined in the projective bundle. Thus, for every « in Z" =
I (M, R?),

Lo = {790 =0,}

defines a variety on PM?, which is regular and of class C"~2 over
M2\ U,. It doubly covers M2 \ U, and contains a projective line
II-1(p) over each point p € U,.

Recall that the geodesic torsion is given by:

(Fg — Gf)dv? + (Eg — Ge)dudv + (Ef — Fe)du?
(EG — F2)3 (Edu? 4 2F dudv + Gdv?) '

g =

Definition 3.2.1. A point p € U, is Darbouxian if the following two

conditions hold:

T : The variety Ly, is reqular also over II=1(p). In other words, the
derivative of T4, does not vanish on the points of projective line
II-1(p). This means that the derivative in directions transversal

to II=1(p) must not vanish.

D : The principal line fields L; o, 1 = 1,2 lift to a single line field

Lo of class CT™3, tangent to Ly, which extends to a unique
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one along I1=Y(p), and there it has only hyperbolic singularities,
which must be either
D1 : a unique saddle
D5 : a unique node between two saddles, or
Ds : three saddles.
For calculations will be helpful to express the Darbouxian condi-
tions in a Monge local chart (u,v): (M?,p) — (R?,0) on M? | p € U,,

as follows.
Take an isometry I' of R? with I'(a(p)) = 0 such that T'(a(u,v)) =

(u, v, h(u,v)), with

h(u,v) :g(u2 +0%) + (a/6)u + (b/2)uv? + (b /2)uv
+(e/6)v° + (A/24)u* + (B/6)uv + (C/4yuPp®>  (3.1)

+(D/6)uv® + (E/24)v* + O((u? + v?)°/?).

To obtain simpler expressions assume that the coefficient b’ va-

nishes.

This is achieved by means of a suitable rotation in the (u, v)-plane.

In the affine chart (u,v; p = dv/du) on P(M?) around I~ !(p), the

variety L, is given by the following equation.

T (u,v,p) = L(u,v)p? + M (u,v)p+ N(u,v) =0, p = dv/du. (3.2)

The functions L, M and N are obtained from equation (1.6) and
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(3.1) as follows:

L = hyhyhyy — (14 h2)hyy
M = (1+h2)hey — (1 + h2)hyy

N = (1 +h2)huy — huhyhy.

Calculation, taking into account the coefficients in equation (3.1) with

b =0, gives:

L(u,v) = — bv — (B/2)u? — (C — k*)uv — (D/2)v? + M} (u,v)
M (u,v) =(b—a)u+cv+[(C — A)/2 + k*Ju?® + (D — B)uv
+[(E - 0)/2 — E*Jv* + M3 (u,v)

N (u,v) =bv + (B/2)u?® + (C — k*)uv + (D/2)v* + M3 (u,v),
(3.3)
with M3 (u,v) = O((u? +v?)3/2),i =1, 2, 3.
These expressions are obtained from the calculation of the coeffi-
cients of the first and second fundamental forms in the chart (u,v).
See also [37, 71, 75]. With longer calculations, Darboux [37] pro-

vided the full expressions for any value of v'.

Remark 3.2.2. The regularity condition T in definition 3.2.1 is equivalent
to impose that b(b — a) # 0. In fact, this inequality also implies regqularity
at p = oco. This can be seen in the chart (u,v; ¢ = du/dv), at ¢ = 0.

Also this condition is equivalent to the transversality of the curves M =

0, N=0
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The line field £, is expressed in the chart (u,v; p) as the one
generated by the vector field X = X, called the Lie-Cartan vector
field of equation (1.6), which is tangent to L, and is given by:

=0T /Op
0 =pdT /Op (3.4)
p=— (07 /Ou+ pdT /Ov)

Similar expressions hold for the chart (u,v; ¢ = du/dv) and the per-
tinent vector field Y =Y.

The function 7 is a first integral of X = X,. The projections
of the integral curves of X, by II(u,v,p) = (u,v) are the lines of
curvature. The singularities of X, are given by (0,0, p;) where p; is
a root of the equation p(bp? — cp + a — 2b) = 0.

Assume that b # 0, which occurs under the regularity condition
T, then the singularities of X, on the surface L, are located on the

p-axis at the points with coordinates pg, p1, p2

po =0, p1=c¢/2b— \/(C/Qb)2 — (a/b) + 2,

P2 =¢/2b+ \/(c/20)2 — (a/b) + 2

(3.5)

Remark 3.2.3. Assume the notation established in equation (8.1). Sup-
pose that the transversality condition T : b(b — a) # 0 of definition 3.2.1
and remark 3.2.2 holds. Let A = —[(c/2b)? — (a/b) +2]. Calculation of the
hyperbolicity conditions at the singularities (3.5) of the vector field (3.4)

—see [71]- leads to following equivalences:

D)= A>0, Dy)= A<O0and 1<%7e2, Ds) = %<1.
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See Figs. 3.2 and 3.1 for an illustration of the three possible types
of Darbouxian umbilics. The distinction between them is expressed
in terms of the coefficients of the 3-jet of equation (3.1), as well as in
the lifting of singularities to the surface L,. See remarks 3.2.2 and
3.2.3.

The subscript ¢ = 1, 2, 3 of D; denotes the number of umbilic
separatrices of p. These are principal lines which tend to the umbilic
point p and separate regions of different patterns of approach to it.
For Darbouxian points, the umbilic separatrices are the projection
into M2 of the saddle separatrices transversal to the projective line
over the umbilic point.

It can be proved that the only umbilic points for which o € Z7 is
locally C®-structurally stable, r > s > 3, are the Darbouxian ones.

See [20, 75].

Figure 3.1: Darbouxian Umbilic Points, corresponding L, surface
and lifted line fields.

The implicit surface 7 (u, v, p) = 0 is regular in a neighborhood of
the projective line if and only if b(b — a) # 0. Near the singular point
po = (0,0,0) of X, it follows that 7, (py) = b # 0 and therefore, by
the Implicit Function Theorem, there exists a function v = v(u,p)

such that 7 (u,v(u,p),p) = 0. Differentiation gives the following
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Taylor expansion

B 5, a-b
v(u,p)——%u + 5

up + O(3).

For future reference we record the expression the vector field X, in

the chart (u,p).

4 =Ty (u, v(u,p),p)

1[b(C — A+2k°) — cB] w4 c(a —b)

=(b—a)u+ 3 - —up +0(3)
p=—(Tu+pTy)(u,v(u,p),p) = (3.6)
—Bu+ (a—2b)p — cp® + % [B(C — ka) —anb] >
(PACo) vall O] o

b

where ay4; is %, evaluated at (0,0). However, a4y will have no

influence in the qualitative analysis that follows.

Theorem 3.2.4. [Gutierrez, Sotomayor, 1982] Let p an umbilic

point of an immersion « of class C", r > 4, given in a Monge chart
(u,v) by:

k(u2 +0?) + B+ éuQv T o(4))

afu,v) = (u,v, B c 5 :

Suppose the following conditions hold:
T) bb—a)#0

D) ($)?—-%+2<0

Dy) (5)+2>%>1, a#2b
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D3) <L

Then the behaviors of principal curvature lines near the umbilic point
p, in the cases Dy, Do and Ds, are as in Fig. 3.2. These umbilic
points are called Darbouzxian Umbilics.

An immersion a € I", r > 4, is C3— principally structurally stable

at a point p € Uy, if only if p is a Darbouzian umbilic point.

Dl D2 D3

Figure 3.2: Lines of Curvature near Darbouxian Umbilic Points

Remark 3.2.5. The structure of the curvature lines near umbilic points of
analytic surfaces was established by G. Darbouz, [37]. He used the methods
for singularities of ordinary differential equations developed by H. Poincaré.
For C",r > 4, surfaces this analysis was carried out by Gutierrez and

Sotomayor [71] and also by Bruce and Fidal [20].

3.3 Hyperbolic Principal Cycles

A closed line of principal curvature is called a principal cycle.
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A principal cycle is called hyperbolic if the first derivative of the
Poincaré return P — also called holonomy — map associated to it is

different from one.

Lemma 3.3.1. Let o : M — R? be an immersion of class C”, and
c:[0,1]] — M? be a minimal principal cycle parametrized by arc

length u and length l. Then the expression:

k 1
a(u,v) = (aoc)(u)+v(NAt)(u)—l—[évQ—l—gA(u)v?’—&—v?’B(s,U)]N(c(u))
(3.7)
where B(u,0) = 0 and ks is the principal curvature of «,defines a
local chart (u,v) of class C™=% in a neighborhood of c. Moreover

A(u) = (k2)y(u,0). See Fig.3.3 for an illustration.

“e0 = (0,0,0)

Figure 3.3: Parametrized immersed surface a(u,v) near a principal
cycle c.

Proof. The curve c is of class C"~1 and the map a(u,v,w) = (ao
e)(u)+v(NAT)(u)+wN (us) is of class C"~2 and is a local diffeomor-
phism in a neighborhood of the axis u. In fact [ou,, o, @] (su,0,0) =
1. Therefore there is a function W (u,v) of class C"~2 such that

au,v, W(u,v)) is a parametrization of a tubular neighborhood of
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aoc. Now for each u, W(u,v) is just a parametrization of the curve
of intersection between (M) and the normal plane generated by
{(NAT)(u), N(u)}. This curve of intersection is tangent to (NAT)(u)
at v = 0 and notice that k,(N AT)(u) = kz(u). Therefore,

a(u, v, W(u,v)) =(aoc)(u) +v(N AT)(u)
+[%k2(u)v2 + %A(u)Gv?’ + 08 B(u, )N (w),

where A is of class C" 7 and B(u,0) = 0.

In the chart (u,v) constructed above it is obtained:
E(u,v) =1 — 2ky(u)v + h.ot, F(u,v) =04 0.v+ h.o.t,
G(u,v) =14+ 0.0+ h.o.t
e(u,v) =ki(u) — 2kgHv + h.ot, f(u,v) = ky(u)v + h.ot
g(u,v) =ko(u) + A(u)v + h.o.t

where in the expressions above, E = (o, ), F = (ay, ), G =
(aw, ), € = (auNaw/lau N, auu), f = (auNaw /o Aawl, auw),
and g = (ay A oy /|, A ayl, ).

The functions ‘H and K are given by

b4k 1
pfitre 1

5 ) (k1 — k2)kg + A(u)]v+ h.ot
1
K :]{31]{32 + 5[(]{311172 - k%)kg - klA(’ll,)]U + h.o.t.

Therefore the principal curvatures ky = H — vH?2 — K and ky =
H + vVH? — K are given by

ki(u,v) = k1 +kg(k1 —k2)v+h.ot, ko(u,v) = kao(u)+ A(uw)v+h.o.t.
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This ends the proof. O

Remark 3.3.1. The following relations holds

(k1)w kR = ks

b=k M T TR

(k2)’0(u7 O) = A(”)?
where k;‘ is the geodesic curvature of the mazimal principal line passing
through the point c(u) positively oriented.

Proposition 3.3.1. Let ¢ : [0,]] — M? be a minimal principal
cycle parametrized by arc length u and of length l. Then the derivative

of the Poincaré map P, associated to it is given by:

mPﬂ»:/k;%h /¢ﬁr—— (3.8)

where H = ’“LQIW and K = ki1ko are respectively the Mean Curvature

and the Gaussian Curvature.

Proof. The Darboux equations for the positive frame {t, N A ¢, N}

{ () = kg (u)(N A 8)(u) + k1 N ()

(3.9)
(N At (u) = —kg(u)t(u), N'(u)=—ki(u)t(u)
Direct calculations gives that:
e(u,0) =k, f(u,0)=0, g(u,0)=ko,
(3.10)

fo(u,0) =kb,  F,(u,0) =0, G(u,0)=E(u,0)=

The differential equation of the curvature lines in the neighborhood

of the line {v = 0} is given by:

Ef —Fe+ (Eg— Ge)——l—( Gf)( ):O (3.11)
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Denote by v(u,r) the solution of the (3.11) with initial condition
v(0,7) = r. Therefore the return map P is clearly given by P(r) =
v(l,r).

Differentiating equation (3.11) with respect to r, and evaluating

at v = 0, it results that:
[Eg — Ge](u, 0)vy,(u,0) + [Ef — Fely(u,0)v.(u,0) =0  (3.12)

Therefore, using the expressions for [Ef — Fel,(u,0) calculated in
equation (3.10), integration of equation (3.12) along an arc [ug, u1] of

a minimal curvature line it follows that:

dv “ —kb
dv, S T—] 3.13
d’l"| 0 exp[/u[J k'Q(U) _ kl (U) U] ( )

Therefore,
oy [ h Rk K
InP’'(0 :/ du:/ {— du — du}
© 0 ko — k1 0 kg — k1 ko — kq

! / kll ! 7k,1
= —(n(ky — k1) du — du| = du.
[ [Fimte = wra - ] = [

l / / l /
k1 +k H
So, 2InP’(0) = / —A 2= | ———du.
( ) 0 k2 - kl 0 \/7‘[2 — K
This ends the proof. |

Remark 3.3.2. At this point we show how to extend the expression for
the derivative of the hyperbolicity of principal curvature cycle established
for class C° to class C°.

The expression (3.13) is the derivative of the transition map for a prin-

cipal curvature foliation (which at this point is only of class C*), along an
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arc of a principal curvature line. In fact, this follows by approximating
the C® immersion by one of class C°. The corresponding transition map
(now of class C*) whose derivative is given by expression (3.8) converges

to the original one (in class C*) whose expression must given by the same
integral, since the functions involved there are the uniform limits of the

corresponding ones for the approximating immersion.

Proposition 3.3.2. Let c: [0,1] — M? be a principal cycle parame-
trized by arc length u and length 1. Suppose that dki|c # 0. Consider

the deformation

/

k
ae(u,v) = au,v) + €?1U2(S(U)N(C(u)) (3.14)
where ¢ is a smooth function with small support and §|Vy = 1. Then
for all € £ 0 small ¢ is a hyperbolic principal cycle of a.

Proof. Direct calculation shows that ¢ is a principal cycle and that

l k/ d'P’(O) 1 (k/ )2
/ _ _ 1 € = 1 .
Pe(0) = eXp/O el T le=0 exp/O U —k1)? kl)Qdu #0

This ends the proof. |

Proposition 3.3.3. Let ¢ be a hyperbolic principal cycle of length [.
Then there exists a principal chart (u,v), l—periodic in w such that

differential equation of curvature lines in a neighborhood of ¢ is given

by du(dv — Adu) =0, X = exp (fc 7kjfzkl) ’

Proof. See [52] and [53]. O

An immersion « € Z"° is C*— Principally Structurally Stable at a

principal cycle ¢ if for every neighborhood V. of ¢ in M there must
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be a neighborhood V,, of o in Z%* such that for every map 3 € V,
there must be a principal cycle cg in V, and a local homeomorphism
hg on the domain such that hg : W, — W, between neighborhoods
of ¢ and ¢, which maps ¢ to ¢ and maps Pi o|W, and P o|We
respectively onto Py /W, and P 5|We,.

From the discussion above we have the following.

Proposition 3.3.4 (Gutierrez, Sotomayor, 1982). An immersion
a € I, r > 4, is C3— principally structurally stable at a princi-
pal cycle ¢ provided one of the following equivalent conditions, Hy or
H,, is satisfied:

Hl) fc kgdflkl = fc kjfzkl ?é 0

Hy) The cycle is a hyperbolic principal cycle of the principal foliation

which it belongs. That is, the Poincaré return map P associated to a

transversal section to ¢ at a point q is such that P'(q) # 1.

Remark 3.3.3. The expressions for the higher derivatives of the Poincaré

map P near principal cycles have been established in [73] and [52].

3.4 A Theorem on Principal Structural
Stability
Next we will define the set §"(M) C Z” such that:
i) All the umbilic points, U,, of a are Darbouxian,
i) All principal cycles of v are hyperbolic,

iii) The limit set of every principal line of « is the union of umbilic

points and principal cycles,
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iv) There is no umbilic or singular separatrix of o which is separa-
trix of two umbilic or twice a separatrix of the same umbilic or

singular point (i.e. homoclinic umbilic loops are not allowed).

An immersion o € I"° is said to be C®—Principally Structurally
Stable if there is a neighborhood V,, of a in M such that for every

immersion B € V, there exist a homeomorphism hg on the domain
such that hg(Us) = Uz and hg maps lines of P 4, (resp. Paq) on
those of P1 g (resp. P2 g).

Theorem 3.4.1 (Gutierrez, Sotomayor, 1982). Let r > 4 and M be
a compact oriented two manifold. Then

a) The set S"(M) is open in I™3 and every a € S"(M) is C3-
principally structurally stable.

b) The set 8" (M) is dense in I"2.
W Q

&

Figure 3.4: Pictorial types of principal configurations

©)
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A self sufficient presentation of this theorem was given in [75].

An open problem concerning the theorem 3.4.1 above is to prove
(or disprove) that the set 8" (M) is dense in Z™3. The main point here
is also related to the Closing-Lemma for Principal Curvature Lines.
This is a problem that goes back to the works of Peixoto [130] and
Pugh [139].

3.5 Remarks

The origin of the study of qualitative properties of principal lines on
surfaces goes back to Monge, [113], [114], [166, page 95], who developed the
theory of principal curvature lines motivated by the so called Transport
Problem, see [175].

In the beginning of last century A. Gullstrand [70], ophthalmologist,
developed and applied the theory of principal lines, focal sets and geo-
metric optics to the study of the aberrations of human vision. By this
achievements in this field he was awarded with the Nobel Prize (1911).

Also the fundamentals of principal curvature lines appears in the study
of deformations of shells [134], computational and industrial geometry [168]

and geometric theory of conservation laws [154].

3.6 Exercises and Problems

3.6.1. Consider the singular cubic surface defined by
@y 2
flz,y,2) = 2 + o +rzyz=0, (a—>b)r#0.
i) Perform an analysis of the qualitative behavior of the principal foliations

near the singular point (0,0, 0). See [54, 55].

ii) Perform an analysis of the principal foliations near the ends of f~*(0).
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3.6.2. Give an explicit example of an algebraic surface having a hyperbolic

principal cycle for each principal foliation. See [55].

3.6.3. Consider the cubic surface

2

2
x
flz,y,2) = e + 72—2 + 22 4 reyz—1=0, (a—1)(b—1)(a—Db)r#0.
i) For r # 0 small study the umbilic points of S = f~'(0).

ii) Perform simulations of the possible global behaviors of principal folia-

tions of S for small r.

iii) With the basis of ii) formulate a conjecture about the possibility of
dense principal lines on algebraic surfaces of spherical type. See [72, T5]

for smooth such surfaces.

3.6.4. Consider the algebraic surface
f@,y,2) = 2" —[(z = 20)° +¢* — &’|[(¢ +20)” +y* — ’|I* —2” —¢°] = 0,

where r > 4a.

i) Determine the umbilic set of S = f~'(0).

ii) Determine all planar principal lines of S.

iii) Using the symmetry of S obtain the principal configuration of S.

iv) Visualize the shape of S.

3.6.5. Consider the space of quadrics Q in R® with the topology of coef-
ficients. Define the concept of structural principal stability in this space.
i) Determine the dimension of Q.

ii) Characterize the quadrics which are principally stable.

iii) Show that the set of quadrics structurally stable Sp is open and dense
in Q.

iv) Characterize the connected components of So.
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3.6.6. In the space of quadrics Q define the concept of first order structural
principal stability. See [160, 158] for the case of vector fields on surfaces.
i) Characterize the quadrics which are first order principally stable.

ii) Characterize the connect components of So.

iii) Characterize the set Q\ (SoUS1). Here S; is the set of quadrics which

are first order principally stable.

3.6.7. Consider the implicit differential equation
(g — HG)dv® + 2(f — HF)dudv + (e — HE)du® = 0.

Here H = (k1+k2)/2 is the arithmetic mean curvature. The integral curves
of the equation above are called arithmetic curvature lines.

i) Study the arithmetic curvature lines on the quadrics of R?.

ii) Determine the patterns of the arithmetic curvature lines near umbilic

points and near closed arithmetic curvature lines. See [58, 59].

3.6.8. Given a biregular closed curve ¢ : [0,1] — R® parametrized by arc
length s. Let k and 7 the curvature and the torsion of c.

i) Show that there exists a surface containing ¢ as a principal cycle if and
only if fol 7(s)ds = 2km for some k € Z and c is non circular.

ii) Show that fol 7(s)ds = 0 for any biregular spherical curve.

3.6.9. Show that the conditions T and D; that characterize Darbouxian

umbilics are independent of coordinates. More precisely, consider two local

charts (u,v, h(u,v)) and (u1,v1, h1(u1,v1)) such that
h(u,v) = g(u2 +0%) + %(au?’ + 3buv® 4 3b'u v + +ev®) + h.ot
k 1
hi(ui,v1) = §(u% + vf) + g(alui’ + 3b1u1v% + 3b'1u§v1 + +Clv:1)’) + h.o.t

with b = b7 = 0 and (u1,v1) = (cos Ou + sin fv, — sin Ou + cos Hv).
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i) Explicit the relations between the coefficients (a1, b1, c1,a,b, ¢, 0).

ii) Show that condition T is independent of coordinates, i.e., b(b—a) # 0
if, and only if, b1(b1 — a1) # 0.

iii) Analogously, show that conditions D;,(i=1,2,3) are independent of

coordinates.

iv) Show that in the case D; the angle 6 is 0 or 7.

3.6.10. Let z = h(x,y) be a graph of a special Weingarten surface of class
C*° such 0 is an isolated umbilic point.

i) Show that if 0 is a Darbouxian umbilic then it is of type Ds.

ii) Show that if the special Weingarten surface is given by z = ha(z,y) +
-+, where h4 is a homogenous polynomial of degree 4 and 0 is an isolated
umbilic then each principal foliation near 0 is equivalent to a topological
saddle of index —1.

iii) Show that the index of an isolated umbilic point of a special Wein-
garten surface is negative.

iv) Show that a special Weingarten surface of genus 0 is the sphere S2.
Remark: A smooth surface is called a special Weingarten when there is
a functional relation F(H,K) = 0 such that F' is of class C* on the region
H? > K and when H* = K it holds that 2 Fy + HFx # 0. See [85].



Chapter 4

Bifurcations of Umbilic
Points and Principal

Curvature Lines

4.1 Introduction

The local study of principal configurations around an umbilic
point received considerable attention in the classical works of Monge
[114], Cayley [27], Darboux [37] and Gullstrand [70], among others.

The study of the global features of principal configurations P,
which remain topologically undisturbed under small perturbations
of the immersion a —principal structural stability— was initiated by
Gutierrez and Sotomayor in [71, 72, 75].

Two generic patterns of bifurcations of umbilic points appear in

codimension one. The first one occurs due to the failure of the Dar-

bouxian condition D, while T is preserved, leading to the pattern

86
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called D}. See chapter 3

The second one occurs when condition T is violated, leading to
the pattern denominated D%d

This chapter is based in [142] and focuses only on the simplest
bifurcations of umbilic points, referred to also as codimension one
umbilics, since they appear in generic one-parameter families of im-

mersed surfaces. Codimension two umbilics have been studied in [62].

4.2 Umbilic Points of Codimension One

The D} Umbilic Bifurcation Pattern

Here will be studied the qualitative changes - bifurcations - of
the principal configurations around non Darbouxian umbilic points
at which the regularity (or transversality) condition T': b(a — b) # 0,
which implies their isolatedness, is preserved and only the condition

D is violated in the mildest possible way.

Definition 4.2.1. A point p € U, is said to be of type D} if the
following holds:

T : The variety L, is reqular along the projective line 111 (p). In
other words, the derivative of 74, does not vanish on the points
of projective line I1=(p). This means that the derivative in

directions transversal to II=1(p) do not vanish.

D} : The principal line fields L; o, i = 1,2 lift to a single line field
Lo of class CT™3, tangent to Ly, which extends to a unique

one along II"1(p), and there it has a hyperbolic saddle singu-
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larity and a saddle-node whose central line is located along the

projective line over p.

In coordinates (u,v), as in the notation above, this means that
T :b(a—0b) >0 and either
1) a/b=(c/2b)*+2, or 2) a/b=2.

We point out that due to the particular representation of the 3-
jets taken here, with b = 0, the space a,b,c in the case 2) is not
transversal, but tangent, to the manifold of jets of type Di umbilics.

These separatrices bound the parabolic sector of lines of curva-
ture approaching the point; they also constitute the boundary of the
hyperbolic sector of the umbilic point.

The bifurcation illustrated in Fig. 4.1 shows that the non-isolated
separatrix disappears when the point D1 changes to D; and that it
turns into an isolated D5 separatrix when it changes into Dy . It can
be said that D2 represents the simplest transition between D and Dy
Darbouxian umbilic points, which occurs through the annihilation of
an umbilic separatrix — the non-isolated one —.

The coefficients of the differential equation of principal curvature

lines (1.6) are given by:

L(u,v) = — bv — (B/2)u? — (C — k*)uv — (D/2)v? + M} (u,v)
M (u,v) =(b—a)u+cv+ [(C — A)/2 + k*Ju? + (D — B)uv
+[(E - 0)/2 — E*v* + M3 (u,v)

N (u,v) =bv + (B/2)u® + (C — k*)uv + (D/2)v* + M3 (u,v),
(4.1)
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with M3 (u,v) = O((u® 4 v?)2).

Condition D} is equivalent to the existence of a non zero double
root for bp?—cp+a—2b = 0, which amounts to b # 0 and p; = pa # po.

Assuming b(b — a) # 0, the curves L = 0 and M = 0 meet
transversally at (0,0) if and only if b # a. It was shown in [71] that
D, is satisfied if and only if the roots of bp? — c¢p+a — 2b = 0 are non
vanishing and purely imaginary.

Also, Dy is satisfied if and only if bt?> — ¢t + a — 2b = 0 has two
distinct non zero real roots, p1, po which verify pyps > —1.

This means that the rays tangent to the separatrices are pairwise
distinct and contained in an open right angular sector.

The local configuration of D3 is established now.

Proposition 4.2.1. Suppose that o € ", r > 5, satisfies condition
D3 at an umbilic point p. Then the local principal configuration of o

around p is that of Fig. 4.1 center.

Proof. Consider the Lie-Cartan lifting X,, as in equation (3.4), which
is of class C"=3. If a = 2b # 0 and ¢ # 0, it follows that pg = (0,0,0)
is an isolated singular point of quadratic saddle-node type with its
center separatrix contained in the projective line —the p axis—. In
fact, the eigenvalues of DX, (0) are Ay = —b # 0 and A2 = 0 and the
p axis is invariant; there X, according to equation (3.6) is given by
p = —cp® + o(2).

The other singular point of X, is given by p; = (0,0, §). It follows
that

)
S
]
~—~
=
(=
i~
=
S—
I
o

\
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oo ©
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where,
A b2c(A — k* —2C) + bc2(2B — D) + 3(C — k3) — 63D
1= 0
4 b%c(B — 2D) + bc?(2C + k* — E) + b3(k3 — C) + Dc?
2 = B
The non zero eigenvalues of DX (0,0, p1) are A\; = %, Ao = —#.

In fact, p; is a hyperbolic saddle point of X, having eigenvalues given
by A1 and \s.

Similar analysis can be done when (£)? — % 4+ 1 = 0. In this case
Xo and p; = (0,0, 7) is a quadratic saddle node, with a local center
manifold contained in the projective line. The point py = (0,0, 0) is
a hyperbolic saddle of X,. This case is equivalent to the previous
one, after a rotation in (u,v) that sends de saddle-node to p = 0.

O

Remark 4.2.2. The following structure on the structure of principal cur-
vature lines has been achieved.

The D} wmbilic point has two separatrices.

The isolated one is characterized by the fact that no other principal line
which approaches the umbilic point is tangent to it.

The other separatriz, called non-isolated, has the property that every
principal line distinct from the isolated one, that approaches the point does

so tangent to it.

Proposition 4.2.2. Suppose that o € I",r > 5, satisfies condition
D} at an umbilic point p. Then there is a function B of class C"~3
on a neighborhood V of a and a neighborhood V' of p such that every
B €V has a unique umbilic point pg in V.
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1) dB(a) # 0,
it) B(B) > 0 if and only if ps is Darbouzian of type D1,

iii) B(B) < 0 if and only if pg is Darbouzian of type Da,

iv) B(B) =0 if and only if pg is of type D3.

The principal configurations of 3 around p is that of Fig. 4.1, left,

right and center, respectively.

Figure 4.1: Umbilic Point D} and bifurcation

Proof. Since p is a transversal umbilic point of «, the existence of the

neighborhoods V and V' of pg follow from the Implicit Function Theo-
rem. So we assume that after an isometry I's of R3, with T'33(0) = 0,
in the neighborhood V' are defined coordinates (u,v), also depending

on (3, on which it is represented as:

k b
ha(u,v) = g(qu +0?) + %ju?’ + Eﬁwﬂ + %ﬁv?’ + O(B; (u* + v*)4).

Define the function

B(B) = [%}P = ﬁ Lo,
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whose zeros define locally the manifold of immersions with a D3 point.

The derivative of this function in the direction of the coordinate

a is clearly non-zero. O

The D;, Umbilic Bifurcation Pattern

The second case of non-Darbouxian umbilic point studied here,

called D%,3, happens when the regularity condition T is violated.

Definition 4.2.3. An umbilic point is said of type D%73 if the trans-

versality condition T fails at two points over the umbilic point, at

which Ly is non-degenerate of Morse type.

Proposition 4.2.3. Suppose that « € I, r > 5, and p be an umbilic
point. Assume the notation in equation (3.1) with b’ =0, b=a # 0
and x =b(C — A+ 2k3) — cB # 0.

Then p is of type D%’3 and the local principal configuration of «
around p is that of Fig. 4.2, bottom.

Proof. Consider the Lie-Cartan lifting X,, as in equation (3.4), which
is of class C"~3. Imposing a = b # 0, by equations (3.5) and (3.6),
the singular points of X, are pg, p1 and ps, roots of the equation
p(bp? — cp —b) = 0.

In fact, if @ = b # 0, it follows that pg is a quadratic saddle node
with center manifold transversal to the projective line.

From equation (3.6), the eigenvalues are Ay = 0 and A2 = —b and
all the center manifolds W€ are tangent to the line p = —%u. By
invariant manifold theory it follows that X |W¢ is locally topologically

equivalent to
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. 1(C—A+2k%) —cB] , X o
=g 2 u®+o0(2) == T +o0(2). (4.2
It follows that
0 —2bp; + ¢ 0
DX,(0,0,p;) = | 0 —p;(2bp; —¢) 0
Bl BQ pr? - 2sz —b

where,

By =(C — k*p? + (2B — D)p? + (A —2C — K*)p; — B

By =Dp? + (2C + k* — E)p? + (B — 2D)p; + k* — C.

The nonzero eigenvalues of DX, (0,0, p;) are:

A1 = —2bp? + ep; = —b(p? + 1) and Ny = 3bp? — 2cp; — b = b(p? + 1).

By invariant manifold theory, at (0,0, p;) has two hyperbolic sec-
tors for X, restricted to the conic variety. The phase portrait of X,
near these singularities are as shown in Fig. 4.2.

The two critical points p; and ps are of conic type on the variety
L., over the umbilic point.

These points are non-degenerate or of Morse type, according to
the analysis below. At the points (0,0, p;) the variety 7 (u,v,p) = 0
is not regular. In fact:

V7T (0,0,p) = [(b—a)p, —bp®+ cp+b, 0]. Therefore, for a = b # 0,
at the two roots of the equation —bp? + cp + b = 0 it follows that
V7(0,0,p;) =(0,0,0),i=1,2.



94 [CAP. 4: BIFURCATIONS OF UMBILICS

L Projective line

Saddle node

Figure 4.2: Lie-Cartan suspension Dj g

The Hessian of 7 at p; = (0,0, p;) is

pi(=cB+b(C+2k°—4))  pi(e(k°=C)+b(D=B)) 0
P b b P
Hess(T)(p;) = qu(C(k3*Cb)+b(D*B) 7Pi(CD+b(C;)*E+2k3>> ¢ — 2bp;
0 c— 2bp; 0

Direct calculation, using the notation defined in equation (4.2), gives

i(—2bp; 2 i
det(Hess(T)(0,0,p;)) = p(+“)x = %(4b2 +c?)x #0.

Therefore, (0,0, p;) is a non degenerate critical point of 7 of Morse

type and index 1 or 2 —a cone—, since 7 ~1(0) contains the projective
line. |

Remark 4.2.4. Our analysis has shown the equivalence between the con-
ditions a) and b) that follow:
a) The non-vanishing on the Hessian of T on the critical points p1 and

p2 over the umbilic.
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b) The presence of a saddle-node at po on the regular portion of the
variety Lo, with central separatriz transversal to the projective line over

the umbilic.

Further direct calculation with equation (4.1) gives that these two con-
ditions are equivalent to
¢) The quadratic contact at the umbilic between the curves M =0 and

N =0.

In fact, from equation (4.1) it follows that M (u,v(u)) = 0 for
v = —(B/2b)u® 4 0(2) of class C"~2. Therefore n(u) = N (u,v(u)) is
of class C"~2 and n(u) = —(x/2b)u? + o(2).

Notice also that, unlike the other umbilic points discussed here,
the two principal foliations around D%’3 are topologically distinct.

One of them, located on the parallel sheet, has two umbilic sepa-
ratrices and two hyperbolic sectors

The other, located on the saddle-node sheet, has three umbilic
separatrices, one parabolic and two hyperbolic sectors.

The separatrix which is the common boundary of the hyperbolic
sectors will be called hyperbolic separatriz. See Figs. 3.1, 4.1 and Fig.
4.2 for illustrations.

The bifurcation analysis describes the elimination of two umbilic
points Do and D3 which, under a deformation of the immersion,
collapse into a single umbilic point D%73 , and then, after a further
suitable arbitrarily small perturbation, the umbilic point is annihi-
lated.

Proposition 4.2.4. Suppose that o € I7,r > 5, satisfies condition
D%’3 at an wmbilic point p. Then there is a function B of class C"~3

on a neighborhood V of a and a neighborhood V' of p such that
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i) dB(a) # 0,
ii) B(B) > 0 if and only if 5 has no umbilic points in V,

ii1) B(B) < 0 if and only if 8 has two Darbouxian umbilic points of
types Do and D3,

iv) B(B) =0 if and only if B has only one umbilic point in V', which
s of type D%s

The principal configurations of 8 around p are illustrated in Fig.

4.3, right, left and center, respectively.

Proof. Similar to that given in [158, page 15],for the saddle-node of
vector fields, using the equivalence ¢) of remark 4.2.4. We define B as
follows. An immersion 3 in a neighborhood V of o and a neighbor-
hood V of p can be written in a Monge chart as a graph of a function

hg(u,v). The umbilic points of 3 are defined by the equation

Mg = (1+ ((hg)u)?) (hg)ww — (1 + ((hp))*) (hp)uu = 0
(4.3)

Ng =1+ ((hg)w)®)(hg)uw — (hg)u(hs)v(hg)uu = 0.

For § in a neighborhood of « it follows that Mg(u, vg(u)) = 0.
Define B(8) = ng(ug), where ug is the only critical point of

ng(u) = Ng(u, vg(w)).
Taking hg(u,v) = h(u,v) + Auv, where h is as in equation (3.1)

it follows by direct calculation that dlz(/\ﬁ ) [x=o0 # 0. O
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The bifurcation of the point D%,?) can be regarded as the simplest

transition between umbilics Dy and D3 and non umbilic points. See
the illustration in Fig. 4.3, where the maximal and minimal foliations

have been drawn separately.

MNE 2=

“€ & «

Figure 4.3: Umbilic Point Dj 5 and bifurcation.

W

4.3 Remarks

For immersions o : M® — R* there are three principal foliations F;(a)
which are mutually orthogonal. Here two kind of singularities of the prin-
cipal line fields £;(c) (¢ = 1,2, 3) can appear. Define the sets, U(a) = {p €
M® : ki (p) = k2(p) = ks(p)}, Pra() = {p € M” : k1 (p) = ka(p) # ks(p)},
Pas(a) = {p € M* : k1(p) # ka(p) = ks(p)} and P(a) = Pr2(a) U Pas(a).

The sets U(a), P(a) are called, respectively,umbilic set and partially

umbilic set of the immersion a.

Generically, for an open and dense set of immersions U(«) = () and
P(c) is either, a submanifold of codimension two or the empty set.

A connected component of S(«) is called a partially umbilic curve.



98 [CAP. 4: BIFURCATIONS OF UMBILICS

The study of the principal foliations near S(«) were carried out in [49,
50], where the local model of the asymptotic behavior of lines of principal
curvature was analyzed in the generic case.

Fig. 4.4 shows the qualitative behavior of principal foliations near

typical singularities, the partially umbilic lines.

Figure 4.4: Behavior of a principal foliation in the neighborhood of
a partially umbilic line and near transition points

4.4 Exercises and Problems

4.4.1. Provide suitable deformations of the surface f(x,y,2) = «* +y* +

z* —1 = 0 such that the surface obtained has exactly 20 Darbouxian

umbilics, 8 of type D3 and 12 of type D;.

4.4.2. Consider the cubic surface defined by
flay2) =2 +y* + 22 +rayz —1=0, r#£0.

i) Write the equation for the umbilic points of f~*(0).
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ii) Determine the Darbouxian umbilics of f~(0).

4.4.3. Study the principal curvature lines near non hyperbolic principal
cycles and give an example of a surface having a semihyperbolic principal

cycle. See [73] and [52].

4.4.4. Give examples of smooth surfaces having separatrix connections
(homoclinic and heteroclinic) between Darbouxian umbilic points. For
example in the ellipsoid we have connections between separatrices of Dar-

bouxian umbilics of type D;. See [74].

4.4.5. Give examples of smooth surfaces with the umbilic set containing
regular curves. Analyze the behavior of principal lines near these curves of

umbilic points. This study goes back to Caratheodory; see [51] and [60].

4.4.6. Give an example of a surface, homeomorphic to S?, having exactly
one singular point and no umbilic points.

zy

Suggestion: Consider the surface z(z,y) =2 + and its inversion
’ /22 +y2

with respect to a sphere. See [13].

4.4.7. Give an example of a canal surface, homeomorphic to the torus,
having no umbilic points, one principal foliation having all principal lines

closed and other principal foliation having all principal lines dense.

4.4.8. Consider the surfaces

Suppose that f~*(0) N g~*(0) is the union of principal curvature lines

on both surfaces.

i) Analyze the behavior of the principal foliations of the surface defined
by he(z,y,z) = f(z,y,2)9(z,y,z) —e =0 for € # 0 small.
ii) Visualize the shape of hZ*(0). Make simulations using the free software

developed by A. Montesinos (Univ. of Valencia, Spain), [116].
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4.4.9. Consider the surface oy (u,v) = (u,v,sin?(u? + Mv?)), A € R.

i ) Compute the umbilic points of o and analyze the local behavior of
the principal configuration for various values of .

ii) Analyze the global behavior of the principal configuration of ay for

various values of .

4.4.10. Let a(u,v) = (u,v, £(u® +v*) + 2 (cv® + Bu’v)), cB # 0.

i) Show that 0 is an isolated umbilic point of « and compute all umbilic
points of a.

ii ) Describe the principal configuration of o near 0. See [62].

iii ) Provide suitable deformations of & to obtain umbilic points of types

D1, D2, D3, D33 and Dj .



Chapter 5

Lines of Principal

Curvature around
Whitney Umbrellas

5.1 Introduction

In this chapter are studied the configurations of lines of curvature
near a Stable Singularity for maps of surfaces into the space (Whitney
Umbrella). The pattern of such configurations is established and
characterized in terms of the 3-jet of the map.

The bending or curvature pattern of a smooth mapping o : M? —
R3, where M? is a compact oriented two dimensional manifold, will
be represented here by the singular points, S,, at which the mapping
has rank less than 2 and the bending can be regarded to be infinite;
the umbilic points U, at which the bending is finite but equal in all

directions and by the family of lines of principal curvature P; , and

101
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P3o defined on M\ (U, U S,) which represent the directions along
which the bending, or more precisely, the normal curvature, is ex-
tremal: minimal along P; , and maximal along Pz 4.

These four objects will be assembled into the principal configura-
tion of the mapping denoted by Py, = (Sa, Un; P1,as P2,o). The points
of S, and U, are regarded as the singularities of the foliations P o

and Pz 4.

5.2 Preliminaries

Call by Z" = I"(M?,R?) the space of C" mappings of M into
R3. When endowed with the C* topology s < r, this space will be
denoted by Z™%.

Denote by S, the set of singular points of a; that is, where Doy,
has rank < 1. Call U,, the set of umbilic points of «, i.e., where the
second fundamental form I1,(p) = — < DN4(p), Da(p) > is propor-
tional to the first fundamental form I,(p) = — < Da(p), Da(p) >.
Here <,> is the Euclidean metric on R? and N, : M\S, — S? is
the normal map of « defined by: Ny (p) = au A ay/||ow, A a ||, where
(u,v) : M — R? is a positive local chart of M around p, A denotes
the exterior product of vectors in R3, determined by a once for all
fixed orientation of R3, v, = dar/Ou, vy = Oa/Ov and || || =<, >1/?
is the Euclidean norm of R3.

Finally, Pj q, ( respectively Pz o) denotes the foliation on M\ (U, U
Ss) by the family of curves of minimal (respectively maximal princi-
pal curvature of ). This means that at each point p € M\ (U, U S,)

any vector v # 0 which spans the line £; . ( respectively L3 ) tan-
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gent to Pi 4, ( respectively Pa ) provides the minimum k; o ( re-
spec. maximum ks o, ) of the normal curvature k,, at p, ky(p,u) =

I1,(p)(u,uw)/Io(p)(u, u), among all possible directions v € T, M\ {0}.

The function k; o (respec. ka,q) on M\S, is called the minimal

(
(respectively maximal) principal curvature of a. It is of class C" 2

on M\ (U, US,,).
In a local chart (u,v), [164], [166] the principal line fields £ 4

and L o, for maps are expressed implicitly, by the following quadratic

differential equation:

(Fg — Gf)dv? + (Eg — Ge)dudv + (Ef — Fe)du® =0

where I, = Edu® + 2Fdudv + Gdv? and I1, = edu® + 2 fdudv + gdv?

are respectively the first and the second fundamental forms of a.

A smooth map « : (R%,0) — (R3,0) sending the origin to the
origin is said to be regular if jla has rank 2; otherwise it is called
singular.

The mapping « is said to have a Whitney Umbrella at 0 provided
it has rank 1 and its first jet extension jla is transversal to the
codimension 2 submanifold S*(2,3) of 1-jets of rank 1 in J*(2,3).
See exercise 5.7.13. In coordinates this means that there exist a local
chart (u,v) such that o, (0) # 0, a,(0) =0 and [ow, Quw, Qyy] # 0.
Here [.,.,.] means the determinant of the three vectors.

The structure of a smooth map near such point is illustrated in
Fig. 5.1
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Figure 5.1: Whitney Umbrella Singularity (Hyperbolic and Elliptic)

5.3 Curvature Lines near Whitney Um-

brella Singularities

In this section the behavior of the principal curvature lines near a
Whitney umbrella singular point will be obtained. Denote by J"(2, 3)
the space of r-jets of smooth mappings of R? to R3, sending the origin
to the origin. On this space consider the action of the group G"
generated by r- jets of smooth diffeomorphisms in the domain and

positive isometries and homoteties in the target.

Proposition 5.3.1. Let o : (R%,0) — (R3,0) be a C", r > 5, map
with a Whitney umbrella at 0. Then by the action of the groups G"
generated by r- jets of smooth diffeomorphisms in the domain and

rotations and homoteties of R3, the map o can be written in the
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following form.:

z(u,v) =u

y(u,v) = uv + %v?’

1
—&—ﬂ[amu‘l + daz1uPv + 6asu’v? + dajzuv® + a04v4] +0(5)

b A, B c D .
z(u,v) = §u2 + cuv + 02 + Eu“ + §u2v—|— EUUQ + Evs

1 .
+ﬂ[b4ou4 + 4bs1udv + 6boguv? + 4bysuv® + b04v4] + 0(5)

(5.1)

where o(5) means terms of order greater than or equal to five.

Proof. By the rank 1 condition imposed at 0, we can find a rotation
R: (R30) — (R30) and a diffeomorphism h : (R%,0) — (R2,0) such
that oy (u,v) = (Roaoh)(u,v) = (u,s(u,v),t(u,v)) with Ds(0) =
Dt(0) = 0. Now using the condition [ay, Gy, e|(0) # 0 we can
eliminate the term v? of s. More precisely there exists a rotation R,

of R? fixing the x axis such that the following holds.

042(uv U) :(Rx © 041)(“, U)
=(u, ayuv + agu® + s3(u,v), byu? + bouv + bv? + ts(u,v)),
where s3 and t3 are of order three or more.

Now define an affine change of coordinates in the domain of the

form H(u,v) = (u,azu + a1v) to obtain
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asz(u,v) = (g 0 H)(u,v) =
= (u,uv + c1u® + couv + cauv?® + cqv® + Sa(u,v),
diu? + dyuv + dsv® + Ts(u, v))

where [agy,, @344, @34,] = 2d3 # 0 and Sy and T3 are terms of order
4 and 3 respectively.
By a local diffeomorphism (u,v) — (u,v + lyu? + lauv + l3v?) we

can reduce ag to:
ag(u,v) = (u,uv + Av® + Sy(u,v), dyu® + douv + dzv? + Ts(u,v).

Finally, rescaling the target by the homotety r(x,y, z) = e(x,y, 2)
and the domain by the affine map p(u,v) = (du,v), with e = 1 we

obtain:
as(u, v) =(r o ag 0 p)(u,v)
a s b o 2
:(u,qurgv +y4(u,v),§u + cuv + v° + z3(u,v)).

This ends the proof. |

Remark 5.3.1. In J. West [177] a more elaborate and precise normal
form is obtained concerning the structure of the fourth order terms. In

fact in equation (5.1) it is possible to obtain aso = az1 = asz = a1z = 0.

Remark 5.3.2. The change of coordinates in proposition 5.3.1 above does
not modify the geometry of the principal configuration of the map « at the
singular point.

An elementary, interesting, application of this proposition follows. See also

exercise 5.7.14.
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Proposition 5.3.2. Let o : (R%,0) — (R3,0) be a C", v > 5, map
with a Whitney umbrella at 0 given by equation (5.1). Then the curve

of double points of o in the domain is given by

1
u= 7%1)2 + %a(ac — D)v® 4 o(4).

Proof. Let a(u,v) = a(U,V). Then u = U. Using the equation (5.1)
with

1
y(u,v) = uwv+ %vs + 2 [a4ou4 +6as1u’v+4assuv +6a13uv® +a04v4] +o(5)

it follows that
4az1u® + 6as2 (v + V)u® + darz(v® + 0V 4 V)u + 24u
taoa(v? +0°V 40V + V) 4 4a(v® + 0V + V?) + 0(4) = 0.

By the Implicit Function Theorem it follows that

w= _%(UQ FoV 4 V) - %( S0V +0V2+ V) 4 o(4). (5.2)

From z(u,v) = z(U,V) = z(u, V) of equation (5.1) and equation

above it follows that
—6(v+ V) + (ac — D)(v* + vV +V?) +0(3) = 0.
Therefore by Implicit Function Theorem it follows that

1 1
v=-V+ E(GC —D)V?+0(3), or V=—v+ E(ac— D)v? + o(3).

Substituting in equation (5.2) the result follows. O
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An interesting calculation of the curvature and torsion of the im-
age of the double curve is proposed in exercise 5.7.14.

The differential equation of the lines of curvature of the map «
around a Whitney Umbrella Singular point (0,0), as in proposition

5.3.1, is given by:

H(u,v,du,dv) =
= [2bcu® 4 12cuv® + (4 + 4b + 4¢%)uv + 80° + 14 (u, v)]dv®
+ [2u 4 Cu® + (D — ac)uv — av® + (b3 — caiz — %(IB)U,QU

1 1 1
+ (2b2 —b— 2b02 + §a31 — 50(122 + §b22)u3

ao4 3

+-(4-8v+ 4c® — aC + bos — cags — 2a13)uv2 — QTU + ma(u,v)]dudv

N —

B, 1 2 1 1 25,3
+[—2v+ 5 U +2(ac D)v +(3a31 3cb31 b c)u

— (b4 4b" 4 bc® + %agg — b3 — %Cbgg)ug’l) + %(aB — 12bc — 4bgo)uv®

+(%a0 — 202 — 2 — b1z — éam + %cbo4)113 =+ n4(u, U)]du2 =0

(5.3)

Proposition 5.3.3. The implicit surface H=1(0) given by equation
(5.3) defines in a punctured neighborhood of (0,0) the principal line
fields L1.o and Lo . These line fields extend uniquely to the projective
line P = (0,0, [du : dv]) so that:

a) The extension is reqular of class C™=2 in P\(0,0,[0: 1]) and it
is singular at the point (0,0,[0 : 1]).
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b) The singular point (0,0,[0 : 1]) of H1(0) is of corank 1 and
codimension 1. At this point H is locally C™—> equivalent to

uq + 4v® = 0, where ¢ = du/dv. Therefore the topological

structure of H=1(0) near this singular point is as shown in Fig.
5.2.

Figure 5.2: Surface H~1(0) near the singular point of corank 1

Proof. In the chart (u,v,p), Z—Z it follows that %(0,0,p) = —2.
Therefore by the Implicit Function Theorem the surface is regular.

In the chart (u,v,q), g = du/dv, it follows that grad H(0,0,0) =
(0,0,0).

Direct calculations shows that rank(HessH) = 2, ker(HessH)(0) =
(0,1,0) and j°H | {ker(Hess ) (0)} 7 0. So, by the Parametrized Morse

Lemma, [39], H is C" 3 equivalent to ugq + 4v3. O

Proposition 5.3.4. Let a : (R?,0) — (R3,0) be a mapping with a
Whitney umbrella as presented in expression (5.1).
Then outside any sector given by Q = {(u,v) : (ev)? —u? > 0}

the principal foliations Pi.o and P2 are as shown in Fig. 5.3.
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Figure 5.3: Principal foliations: a) Pi 4 b) Paa

)

Proof. Consider the implicit differential equation of lines of curvature

H(u,v,p) = [2bcu® 4+ 12cuv? + (4 + 4b + 4c?)uv + 803 + Iy (u, v)|p?

+ [2u + Cu® + (D — ac)uv — av® + m3(u,v)]p

B 1
+[—2v+ §u2 + §(ac — D)v? 4+ n3z(u,v)] =0

in the projective chart (u,v,p), where p = dv/du.

By the Implicit Function Theorem the surface is regular at all

points (0,0, p).

The Lie-Cartan vector field Z = (H,,pH,, —(H, + pH,)), see
equation (1.7), is given by:
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u' = [2bcu® + 12cuv? + (4 + 4b + 4c*)uv + 8v® + I3(u, v)]2p
+ [2u + Cu? + (D — ac)uv — av® 4+ mz(u, v)]

v = p{[2bcu® + 12cuv? + (4 + 4b + 4c*)uv + 8v® + I3(u, v)]2p
+ [2u + Cu? + (D — ac)uv — av® + ms(u, v)]}

P = —{[Bu + 01(2)) + pl2Cu + 05(2)]

+p*[(D — ac)u + 03(2)] + p*[0a(2)]}

In this case the projective line (0,0, p) is normally hyperbolic for
the vector field Z.

Next consider the blowing-up v = s, v = st. So, du = ds
and dv = sdt + tds. Therefore the differential equation (5.3) in the

variables (s, t) is given by:

[(2bc+ o(1))s®]dt* + [2 4 s(C + o(1))]dsdt + [g +0(1)]ds* =0 (5.4)

where o(1) means functions of order 1.

In a neighborhood of s = 0 the differential equation (5.3) defines
two regular foliations, one having the axis t as an integral curve and
other foliation is transversal to this axis. So, outside any angular
sector Q = {(u,v) : (ev)?2—u? > 0} containing the v axis the principal
foliations are as shown in Fig. (5.3). This picture assumes that the
domain and target in expression (5.1) have the positive orientation.
An inversion in either of these orientations will produce an exchange

in the principal foliations in the picture. |
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The analysis of the differential equation (5.3) in a sector contain-

ing the v axis is carried out in what follows.

Proposition 5.3.5. Let a : (R?,0) — (R3,0) be a mapping with
a Whitney umbrella as presented in expression (5.1). Consider the
blowing-up ¢(t,r) = (r?sint,rcost). Then in the coordinates (t,r)

the differential equation (5.3) is given by:

[Lo(t)+o(r)]dr? +7[Mo(t) +o(r))drdt+r2[No(t) +o(r)]dt* = 0 (5.5)

where

Lo(t) = —2cost[—4cos*t — 2cos®t + acos® tsint + 2]
Mo (t) = a(2cos?t — 3costt) —2cos? tsint — 16 cos? t sint — 4 sint
No(t) = cost[—8cos*t + cos? t — 2 + acos? tsint].

The pull-back, ¢*(P1,a), of the principal foliation Py o has three
hyperbolic singularities in the interval [0,7], two saddles and one

node. The same conclusion holds for ¢* (P2 o) in the interval [m, 27].

Proof. Performing the blowing-up u = r?sint, v = rcost, in the

equation (5.3), it is obtained:

[Lo+7Li+o0(r?)|dr® +r[Moy+rM +o(r?)]drdt+1>[No +rNi+o(r®)]dt* = 0

where, after dividing by 3,
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Lo = —2cost[—4cos*t — 2cos’ t 4+ acos® tsint + 2]

L1 =12ccos* tsint
My =2acos®t — 2 cos’tsint — 16 cos* tsint
—3acos*t —4 sint
My = — cost[—24ccos*t — Dcos’tsint (5.6)
+24ccos’t 4+ accos®tsint +2 D sint — 2 acsint]

No = cost[—8 cos® t +8cos®t + acos® tsint — 2]
L 2 24 2
N, = —5 08 t[24 ccos” tsint + accos”t

—Dcos*t —2ac — 24 csint + 2D]

The following vector fields, X, = T'(¢, r)% + R.(t, T)%, €= +1,
are adapted to the equation (5.5), where:

T(t,r) = 2[Lo + rLy + o(r?)]

R(t,r) = = (Mo + rM)r+

+ ery/ (Mg — 4LoNo) + r(2MoM; — 4LoNy — 4Ly No) + o(r?)

Outside their singularities, the vector fields X,, e = £1, span the
line fields ¢.(L1,4) and v« (L2.q)-
The singular points of the equation above are given by {r = 0}

and the roots of
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—2cost[—4cos*t —2cos’ t +acos?tsint +2] =0

Let z = sint, and define lo(z) = —42* + 102% — 4 + az(1 — 2?) so

the equation above writes as:
+ V1 — 2[4z +102% — 4 + az(1 — 2?)] =0 (5.7)
The polynomial [y has the following factorization:

a—+va?+ 32

a++2+32)x — 2][22% + (#)x — 2]

—[22% + (

For every a, the equation (5.7) above has the roots = +1 and

one root

T = %[fa —VaZ +32 + \/2(12 +2ava? + 32 + 288] in the interval
(0,1) and the other

2y = fe[—a+ Va2 + 32 — \/2a2 — 2a\/a® + 32 + 288] in the interval
(—1,0).

Therefore the differential equation (5.5) has six singularities in the

interval [0,27]. So each principal line field, ¢*(£1,,) and ¢*(L2.4),
has three singular points.

For € = —1 the singularities of X, are 1 € (0, 5), 02 € (3, m) and
03 = %, where sin(6,) = sin(f2) = t; .

For € = 1 the singularities are 4 € (—%,0), 05 € (=7, —%) and
06 = —%, where sin(04) = sin(05) = to.

At x = %1, that is, for t = £7/2, we have My(x7/2) = F4
and Lgy(£7/2) = £4. Therefore the two singular points (£%,0) are

nodes.
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The singular points 01, and 6> are hyperbolic saddles of the line
field X_; and the phase portrait is as shown in figure 5.4 below.
Analogous description holds for the line field X;.

Figure 5.4: Phase portraits of X_; and X,

In fact we have,

2L4(t) *

DX (t,0) = < 0 oM, (t)> , detDX(t,0) = —4Ly(t)Mo(t)

(5.8)

where, Mj is given in equation 5.6 and
Li(t) = 4sint+6asin® t cos® t —2a cos* t—40 cos* t sint —12 cos? t sin t.

Performing the change of variables x = sint it follows that

Ly(z) = —482 4 922 — 402° + a(102% — 82* — 2)
lo(z) = —4a* + 102 — 4 + ax(1 — 2?)

My(z) = —22x + 3423 — 162° + a(—32* +42% — 1)
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The resultant of the two polynomials lg and M is given by
resultant(lo (), Mo(z), z) = 256(a” + 81)(a® + 36)>.

This calculation is confirmed by Computer Algebra. Therefore Lg

and My have no common roots.

In Fig. 5.5 below are shown the zero level sets of My and Lg in the
plane (t,a). It follows that the functions My and L{, have the same
negative sign at the singular points 6; and 6. While for the singular
points 64 and 65 the signs of My and Lj, are positive. Therefore, from

equation (5.8) it follows that the points are hyperbolic saddles. [

ISIE]
13
o

/) [

Figure 5.5: Level sets of My and Ly

Remark 5.3.3. A more direct proof of the proposition above, using a

directional blowing-up, was given in [141].

Theorem 5.3.4. Let p be a Whitney Umbrella Singularity of a map
a:M? — R3 of class C", r > 4. Then the principal configuration
near p has the following structure: Each principal foliation P; . of
a has a parabolic and a hyperbolic sector at p and the separatrices

of these sectors are tangent to the kernel of Da(p). The Fig. 5.6
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illustrates the behavior of curvature lines in the domain of a map «

with a Whitney Umbrella Singularity.

Figure 5.6: Lines of curvature near a Whitney Umbrella Singularity

Proposition 5.3.6. Consider the differential equation (5.3). Then
there are two separatrices, one for each principal foliation, given by

(ur(v),v) and (u.(v),v), where:

1 2 aps —9c :
wlo) == (o + V£ 82)[g0* + g T +old)
(5.9)

1 2 —
Uy (v) =(—a + /a? 4 32)[ 22 4 Zd0a — ¢

3
2979 31 o4
R s ]

Proof. Direct calculations with equation (5.3). O
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5.4 Principal Stability at Whitney um-

brellas

The concept of C*— Principal Structural Stability at a point p € M
can be formulated as follows: For every neighborhood V), of p in M
there must be a neighborhood V,, of @ in Z™* such that for every map
B € V, there must be a point gz in V}, and a local homeomorphism
hg on the domain such that hg : W, — W, between neighborhoods
of p and ¢g, which maps p to ¢z and maps P o|W, and Ps |W,
respectively onto Py 5|W,, and P2 5|W,, and such that o = 3o hg.

A mapping « is said to be Principal Structurally Stable at a sin-
gular point p if for any mapping 8 which is C? close to a there is a
singular point pg of 3 and a homeomorphism of a neighborhood of
p into one of pg sending the foliations P; o and P2, onto P 3 and
P 5.

The theorem below shows that stability of principal configuration
at a singular point, in the sense described above, is equivalent to
the Whitney Umbrella Singularity condition. A well known result
in Singularity Theory establishes that this is the condition which
characterizes the stability of singularities of maps of two dimensional

into three dimensional manifolds,[66].

Theorem 5.4.1. A mapping of class O™, r > 4, is C®*— Principally
Structurally Stable at a singular point if and only if it has at this
point a Whitney Umbrella.

Proof. Let p a Whitney Umbrella singular point of a. By the intrinsic
transversality characterization of Whitney umbrellas, any map 3, C2-

close to o has a unique Whitney umbrella singular point pg near p.
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The C*-principal structural stability of a at p follows by using
the method of canonical regions of differential equations, see [71] and

[75). O

5.5 Poincaré-Hopf Theorem and Whitney
Umbrellas

In this section the following theorem will be proved.

Theorem 5.5.1. Let o : M — R? be a mapping of class C", r >
4, of a compact and oriented two dimensional manifold M into R3.
Suppose that all the umbilic points of a are Darbouzian and the all
the singular points of a are Whitney Umbrellas. Then the following

expression for the Euler-Poincaré Characteristic of M holds:

X(M) = STH(Dy) +4(Da) + #(7) - #(Dy)]

where #(D;) i =1,2,3 is the number of Darbouxian umbilic points

of type D; and #(W) is the number of Whitney umbrellas.

Proof. Recall that the index of a line field at a singularity is the
total number of turns it accomplishes after running once along the
boundary of a disk, positively oriented, containing the singularity in
its interior.

For line fields defined by principal directions around a Darbouxian

umbilic D3 the index is —% while for the points Dy and D5 the index

is 1. By Poincaré-Hopf Theorem, see [164] and [85], x(M) is equal

to the sum of the indices of the singularities of the principal line field
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L1,o. The theorem follows by noticing that at a Whitney umbrella

the index is % O

5.6 Remarks about curvature lines and

singularities

In [54] is established the stable patterns of lines of curvature near a
conic singularity of an implicit surface. This situation corresponds to map-
pings of zero rank, which are degenerate of codimension 6 in the space of
mappings. In the space of surfaces (i.e. varieties) defined implicitly the
conic singularities (null gradient and hessian with index 2 or 1) have codi-
mension one.

In [55] the stable patterns of lines of curvature at generic ends of alge-
braic surfaces was determined by the same authors. This amounts to the
consideration of singular points at the origin, obtained after the inversion,
I(p) = p/|p|?, of the ends of the algebraic surface. The possible generic
bifurcations of these patterns has been studied in [61].

The study of principal curvature lines near more degenerate singular
points of implicit surfaces in R® or of maps o : R? — R? is of special

interest in Bifurcation Theory.

It follows from the work of Whitney, [178], that umbrella points are
isolated singularities and in fact have the following normal form under dif-

feomorphic changes of coordinates in the source and target (A-equivalence):

r=u, Yy=uv, z=0".
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5.7 Exercises and Problems

5.7.1. Study the behavior of the principal curvature lines near the singular
point (0,0, 0) of the implicit cubic surface f~'(0), where f(z,y,2) = z(z*+

y?) — 2 +y°. Ts the z—axis a principal line?

5.7.2. Consider the local map a(u,v) = (u,u?,v?).
i) Write the differential equation of principal lines of .
ii) Study the behavior of principal curvature lines near the singular point

of . Suggestion: Explore the symmetry of « with respect to the u—axis.

5.7.3. Consider the ruled surface a(u,v) = c(u) + vt(u), where ¢ is a
regular curve and t(u) = ¢/(u) is the unit tangent to c.

i) Write the differential equation of principal lines of .

ii) Determine the singularities and the umbilic points of a.

iii) Analyze the behavior of principal curvature lines near the singularities
and umbilic points of the surface.

iv) Give various examples illustrating the generic cases and the bifurca-

tions.
5.7.4. Consider the parametric (singular) surfaces defined by:
a(uyv) = (u, 0%, 0 +0° = 1)), Bu,v) = (u,0*, v(0” — u)).

i) Plot the intersection of a(R?) and B(R?) with a sphere of radius r > 0
centered at the origin and analyze the geometry of these curves of inter-
section.

ii) Determine the singularities of  and 3 and its double points.

5.7.5. Consider the parametric (singular) surface defined by:

alu,v) = (u,v® —v,uv +0° —v%).
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i) Plot the intersection of a(R?) with a sphere of radius r > 0 centered
at the origin. Determine the double and triple points of this curve of

intersection.

ii) Determine the singularities of a and its double and triple points.

5.7.6. Consider the parametric (singular) surface defined by:
ae(u,v) = (u, uv +0°, uwv® + cv?).

i) Determine the singularities of o and its double points.
ii) Plot the intersection of (R?) with a sphere of radius r > 0 centered

at the origin and analyze the geometry of this curve of intersection, in

particular for ¢ = 0.4, ¢ = 0.9 and ¢ = 1.1.

5.7.7. Let f: M — R? be a smooth immersion of a compact and oriented
surface.with normal crossings except at a finite set of singularities.of cross-
cap type. Let C(f) the number of Whitney umbrellas, also denominated
cross-caps and T'(f) the number of triple points.

i) Show that x(f(M)) = x(M) + C(f) + T(f)/2. Here x(X) means the
Euler-Poincaré characteristic of a triangulated topological space X. Sug-

gestion: Try a relation of the type
a1x(f(M)) + azx(M) + asC(f) +aaT(f) =0

and work out four or more examples to obtain a linear system in the vari-
ables a; and solve it. Afterwards, obtain the correct formula and prove it.

See [91].

5.7.8. Consider the map a(u,v) = (u,v® — v, uv +v° — v*).

i) Show that « is a parametrization of a singular surface with two Whitney
umbrellas (cross caps) and one triple point. See [108].

ii) Find the implicit equation of «, i.e., obtain an algebraic function f :
R® — R such that f(a(u,v)) = 0.

iii) Calculate the Gaussian curvature and the parabolic points of a.
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5.7.9. Consider the one parameter family of maps o (u,v) = (u,v?, v(a+
v —u?)).

i) Determine the singularities of ayq.

ii) Determine the stable singularities of a,, and analyze the principal con-
figuration of a, for a small.

iii) Plot the image of a, for various values of a.

5.7.10. Let the following functions

Type Function f
Ap (E>1)  aF Tt 4?2 £ 22
Dp(k>4) xy" ' £a2?+ 2>

Fg 23+ y4 + 22
Er 3+ myg + 22
FEg 3+ y5 + 22

i) Describe the curvature lines of each implicit surface f~*(0) in the list
above.
ii) Plot the intersection of f~'(0) with a sphere of radius » > 0 centered

at the origin and analyze the geometry of this curve of intersection.

5.7.11. Consider the one parameter families of local maps a+ : R x R —
R? defined by o (u, v, \) = (u, v*, uv £ 0* — Av).

i) Show that for A > 0 the map a4 has two Whitney umbrellas which are
located in the u—axis.

ii) Show that for A < 0 the map a4 is an immersion and has two Dar-
bouxian umbilic points of type D; located in the v—axis.

iii) Show that for A > 0 the map a_ has two Whitney umbrellas which
are located in the u—axis and two Darbouxian umbilic points of type Dgs
located in the v—axis.

iv) Show that for A < 0 the map «_ is an immersion and has no umbilic

points.
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v) Show that in the (u,v, \)—space the set of double points of a4 is an
elliptic paraboloid. Similarly for a— show that the locus of double points is
hyperbolic paraboloid. Due to this fact these cases are called respectively
the elliptic and hyperbolic Whitney umbrella bifurcations.

vi) Determine the principal configuration of the maps ay and a— for

A =0 and X # 0, near the point (u = 0,v = 0).

5.7.12. Let a : M — R® be a smooth immersion with principal curvatures
k1 < ko and unit normal N,,.

Consider the maps a1 = a + (1/k1)Na, az = a+ (1/k2)No and as =
o+ %(1/k1 + 1/k2)Nq. i) Determine the singularities of a1, az and as.
ii) Determine the principal configuration of a1 and s near its singularities
and umbilic points.

iii) Let v be a hyperbolic principal cycle of a. Describe the principal

configuration of a; a in a neighborhood of v; = a1 (7).

5.7.13. Prove that in the 6—dimensional space of 3 x 2 matrices, identified
with J*(2, 3) those of rank 1, identified with S*(2, 3), is regular submanifold
of codimension 2. To this end, show that the map that maps (p,0,r) €
S? x S' x RL to the matrix whose columns are 7 cos()p and rsin(9)p is a

regular § periodic parametrization of S*(2,3).

5.7.14. Use proposition 5.3.2 to compute the curvature and torsion of the

image of the double curve of a Whitney umbrella at the target.

5.7.15. Let a be any smooth map of R?> — R®. Prove that for almost
all A in the space of linear mappings of R* — R?, identified with J'(2,3),
the map a4 = o + A is transversal to S'(2,3) and its image is disjoint
of the null matrix S°(2,3). Use Sard’s Theorem. On this basis it can
be said that any smooth map has generically only Whitney umbrellas at

non-regular points.



Chapter 6

Structural Stability of
Asymptotic Lines

6.1 Introduction

In this chapter will be considered the simplest qualitative proper-
ties of the nets defined by the asymptotic lines of a surface immersed
in a Euclidean space.

Asymptotic lines are defined only in the hyperbolic part of the
surface, where there are two real asymptotic directions. In the elliptic
region the asymptotic directions are complex. At a parabolic point,
if not planar we have only one asymptotic direction with multiplicity
two. By planar is meant that there K =0, H = 0.

Conditions for local structural stability of asymptotic lines around
parabolic points and closed asymptotic lines are established. This
chapter is based mainly in [53] and [140], where the global theory of

structural stability of the nets of asymptotic lines was developed.

125
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The study of asymptotic lines goes back to Gaspard Monge (1746-
1818), Charles Dupin (1784 - 1873), E. Beltrami (1835-1900), Sophus
Lie (1842-1899), G. Darboux (1842-1917) among others. Classical
references for this subject are [37], [44], [48], [115], [164], [166] and
[167].

6.2 Asymptotic Foliations near Parabolic

points

In this section will be established the behavior of the asymptotic
nets near parabolic points, to this end conditions expressed in terms
of the geometric invariants of the immersion « will be imposed.

Let ¢ : [0, L] — M? be a regular arc of parabolic points, parametri-
zed positively by arc length u; that is [¢/(u), VI (c(u)), N (c(u))] > 0.
Suppose, without lost of generality, that ks | ¢ = 0 and k1 | ¢ < 0,
where kjand ko are the principal curvatures of the immersion «. Let
©(u) be the oriented angle between ¢/(u) = ¢(u) and the principal
direction L3 , corresponding to ko, at the point ¢(u). We assume that
L1, is positively oriented toward the exterior of hyperbolic region
H, and that Ls , is oriented so that {£4 o, L2} defines the positive
orientation on the surface. See Fig. 6.1. Denote by k,(u) the geodesic

curvature of ¢ at the point c(u).

The following lemma will be useful in what follows.

Lemma 6.2.1. Let c¢:[0,L] — M?  be a reqular arc of parabolic

points, which is locally defined by the equation K = 0, parametrized
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Figure 6.1: Parabolic curve ¢ and angle ¢ with the principal direction
£2,a

by arc length u. Assume here that diC|c # 0.

2

afu,v) = (aoc)(u) +v(N At)(u) + [ki‘(u)% + 02 A(u, v)|N(c(u)).

(6.1)

where, A(u,0) =0 and k;-(u) = ky(c(u), (N At)(u), defines a local

chart of class C*° around c.

Proof. The map «(u,v,w) = (aoc)(u)+v(N At)(u) +wN(u) is a

local diffeomorphism. Therefore, solving the implicit equation
(a(u, v, w(u,v)) — (aoc)(u), N(u)) = w
and using the Hadamard lemma it follows the result asserted. Similar

construction was done in Lemma 3.3.1, page 75, in connection with

principal configurations. |
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Computation of the Second Fundamental Form

In what follows will be calculated the coefficients and the deriva-
tives of the second fundamental form of « in the chart introduced in
6.2.1.

Calculations in the chart (u,v)

The Darboux equations for the positive frame {t, N A ¢, N} are:

(N A1) (u) = —kg(u)t(u) + 74 (u) N (u) (6.2)

Using Euler’s formula, [166], [40], it follows that, k;- = k; cos? ¢,
kn =k sin2cp , k- + k, = 2H and Tg = k1 sin¢cos p.

For the sake of simplicity in the expressions that follow, write
A= Au,v), N=(Noc)(u), ky =ky(u), kg = kg(u).

Moreover the following notation will be used:

E = (o, o), F = (o, o), G = {ay, ay)

€= <04u A avaauu>a f= <au A avaauv>a g = <au A avaavv>

Here E,F,G and ¢/ | ay AN, |,  f/ | auha, | and g/ | a,Aa, |
are respectively the coefficients of the first and second fundamental

forms of «, expressed in the chart (u,v).
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Differentiating equation (6.1) and using equation (6.2), obtain:

+v?A)N At

=M —kyv—k klf ZA)t — kLﬁ
au—[ gV "(n2+v )]t Tg(n2

2
v

3 +U2Au]N, a,=NAt+ (kf;v +2vA+v2Av)N

+[rgv + (kr)

2
o A oy = —[(1 = kgv — kn(kﬁ% + 02 A))(kifv + 204 + 02 A4,)]N At
2
— [y + (k5% + 02 A, + Tg(ki”% + 0P A) (kv + 204 + 07 ALt
J_U2 2
+[1—kgv — kn(k;, 7 + v AN

(6.3)

Further differentiation and scalar multiplication give the functions

e(u,v), f(u,v) and g(u,v), whose essential properties follow.

e(u,0) = ky(u) = kisin® @, f(u,0) = T7,(u) = k; sin p cos p,
9(u,0) = ky (u) = k1 cos? o,

ev(u,0) = —ky(2kn + k) + Téa

fU(U,O) = (k'#),v g1,(u,0) = _k'gkrjf + 64,

Ey(u,0) = —2ky, F,(u,0)=0, Gy(u,0)=0.

(6.4)

From the relation, 2H(EG — F2)3 = ¢G —2fF + gFE and equation
(6.4), it follows that

64y (u,0) = 2H, — 6kgH + kg(2kn, + 4k;y) — 7). (6.5)

Also, from K(EG — F?)? = eg — f, and equations (6.4) and (6.5),
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it is obtained that,
Ko (u,0) = ko[kT cos 2 — 277] + ka7l — 274 (k;y)' — 2Hykn # 0,

which expresses the condition of regularity of the parabolic set in

Section 6.2.
The main result of this section is formulated by the following

proposition.

Proposition 6.2.1. Let ¢ be a curve of parabolic points as above.
Then the following holds:

i) If o(u) # 0 the asymptotic net, near c¢(u), is as shown in Fig. 6.2
(cuspidal type).

ii ) If p(up) =0 and ¢'(ug) # 0 there are three cases:

kg (uo)
¢’ (o)

kg (uo)
¢’ (uo)

<1, b 1<

<9 and ¢) 9<

In cases a), b) and ¢) above the asymptotic net is as shown in the
figure 6.2 and correspond respectively to the folded saddle, focus and

node types parabolic points.

Proof. i) The cuspidal case: transversal crossing
Suppose that the principal foliation Ps(«) is transversal to the
parabolic line at the point ug, this means that ¢(ug) # 0.
From equation (6.4) and using Hadamard lemma, write:
e(u,v) = kn(u) + v[—kg(2kn + Ky ) + 7] + vA1 (u, ),
Fu,v) = 79(u) + vk ) +v* Az (u, v),
g(u,v) = k- (u) + v[2H, — 6kyH + ko (2K, + 3k;5) — Tl + v2 Asz(u,v),
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= @

(@)%

()

Figure 6.2: Asymptotic lines near parabolic points (folded saddle (a),
focus (b) and node (c), separating arcs of parabolic points of cuspidal

type).

with, k, (u) = ki sin® p, k-

o (u) =k cos? @, Tg(w) = k1 sin ¢ cos .

The differential equation of the asymptotic lines are given by:

edu? + 2 fdudv + gdv? = 0.

_ 2 _ 3
Then, du/dv = M.
e

Let v = w?. So, it follows that,

d 2w W 2
{ B od 2 WD) 0 — g

where W (u,0) = [K,(u,0)]2 > 0 by transversality conditions.
Solving the Cauchy problem above it results that:

u(uo, v) = g — cotge(uo)v & W ug, 0)v? + ...

Therefore near a cuspidal parabolic point the net of asymptotic lines

is as shown in Fig.6.2, arcs of parabolic points.
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Remark 6.2.1. It follows from [4] that there exist a system of coordinates
(U, V) near a cuspidal parabolic point such that the differential equation of
the asymptotic lines is given by (dV/dU)* = U.

ii) The singular case: point of quadratic tangency.

Now suppose that 74(up) = 0, wug = 0. This means that the
parabolic line is tangent to the principal foliation Ps o at ug. In fact,
at a parabolic point the principal direction corresponding to the zero
principal curvature is an asymptotic direction. Suppose also that at
the point of tangency wuo the contact above is quadratic, which is

expressed by the conditions 7,(0) = 0 and 7,(0) # 0.
Consider the implicit differential equation,
dv

F(u,v,p)=e+2fp+gp*=0, p= o

and the line field given locally by the vector field:
X = (Fp,pF,, —(F, + pFy)).
The projections of the integral curves of X by II(u,v,p) = (u,v)
are the asymptotic lines of a.
The singularities of X in F~1(0) are given by: (ug,0,0), where
T4(uo) = 0. Suppose ug = 0.

It results that the Jacobian matrix of DX (0) is given by:

2fu 2f, 29
DX(0)=| o 0 0 (6.6)
—Cuu —Cuw 7(2fu + ev)

Using equations (6.4) and (6.6) it results that the eigenvalues of
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DX (0) are given by:

kg

kug! kg
¢

Mo Ao = (@ - D £ [(a-1D@—9)F}, a=

The eigenspace associated to A; is given by:

/
B = (1,0.7)) = (1,0, Z[(a = 5) £ /{a = ){a = 9))).
The tangent line to the suspension of the parabolic curve at the point
(u0,0,0) on the surface F~1(0) is generated by A = (1,0, —¢').

In fact, A is a non zero multiple of
(VF/\VFP)(uov 0, 0) = 2(90/71179)]{%(1’ 0, *90/) = 250/117%(170’)(1’ 0, *QDI)'

Therefore F; is transversal to the singular set 1171 (P, ) N {F = 0}.

In the case of the saddle point (A A2 < 0, which amounts to
a < 1), the eigenspaces E; have inclinations of opposite sign with
respect to A, that is, (¢’ +71)(¢" +r2) = 2(¢)?*(a — 1). The vector
A is interior to the acute angle formed by F; and Es. This implies
that the net of asymptotic lines near a folded saddle parabolic point
is as shown in Fig. 6.2 a).

In the case of a focus singularity (A; = o, Re(\1) # 0, which
amounts 1 < a < 9) the net of asymptotic lines is as shown in Fig.
6.2 b).

In the case of a nodal singularity (A A2 > 0, which amounts 9 < a)
the two eigenspaces have inclinations of the same sign with respect
to A. Here A is interior to the obtuse angle formed by E; and FEs.
Also Es bisects the angle formed by A and E; (the tangent space to
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the strong separatrix). Therefore near a folded node parabolic point

the net of asymptotic lines is as shown in Fig. 6.2 ¢). O

An immersion « in Z, is said to be C"-local asymptotic structurally
stable, at p if it has a neighborhood N in the space Z” such that for
each 8 in N there is a smooth diffeomorphism kg of {M,NE,} to
{M, NE } such that Sokg is local asymptotic topologically equivalent
to a at kg(p).

Theorem 6.2.2. For an open and dense set W of immersions in
I",r > b5, the asymptotic nets near a parabolic point as described in

proposition 6.2.1 are locally asymptotic stable.

Proof. Follows from proposition 6.2.1 and by the main results of
Bleeker and Wilson [18] and Feldman [45]. The construction of the
topological equivalence, using the method of canonical regions, can

be carried out in the same way as in [140]. O

6.3 Stability of Closed Asymptotic Lines

In this section will be established an integral expression for the
derivative of the first return map of a regular closed asymptotic line

in terms of curvature functions of the immersion «.

Also, will be shown how to deform the immersion in order to

hyperbolize a regular or a folded closed asymptotic line.

Regular closed asymptotic lines

Recall that a regular closed asymptotic line is a closed asymptotic

line which is disjoint from the parabolic points.
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Lemma 6.3.1. Let ¢ : [0,L] — M2 be a closed asymptotic line

parametrized by arc length u and length L. Then the expression:

a(u,v) = (@oe)(u)+v(NA) (u)+ [H(u)v? + A(u, v)v?*]N(c(u)) (6.7)

where A(u,0) =0 and H is the Mean Curvature of o, defines a local

chart of class C*° around c.

Proof. Similar to lemma 6.2.1, where the coefficient of v? is given by
kiL/2.

Using that k,(u) = k,(c(u),t(u)) = 0 for an asymptotic line and
applying Euler’s formula follows that, k;- + k,, = 2H. O

Proposition 6.3.1. Let ¢ : [0,L] — M?  be a regular closed
asymptotic line of length L, parametrized by arc length uw. Then the

derivative of the Poincaré map 11, associated to it is given by:

o) — e | [ T 20
IT'(0) = exp [/0 27, (1) d

where kg is the geodesic curvature of c and 74 = (—IC)% is the geodesic
torsion of c.

Proof. The Darboux equations for the positive frame {t, N At, N}
are:
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The same procedure of calculation used in the lemma 6.2.1 gives that:

e(u,0) =0, ev(u,0) = 7, — 2H(u)ky(u)
(6.9)
f(u,0) = 74(u) 9(u,0) = 2H(u)

The differential equation of the asymptotic lines in the neighborhood
of the line {v = 0} is given by:

dv dv
e+2f%+g(%)2 =0 (6.10)

Denote by v(u,r) the solution of the (6.10) with initial condition
v(0,7) = r. Therefore the return map II is clearly given by II(r) =

v(L,T).
Differentiating equation (6.10) with respect to r, it results that:
grvr(dv/du)?® 4 (2gvur + 2fovr)(dv/du) + eyv, = 0.
Evaluating at v = 0, it follows that:

2f(u, 0)vyr(u, 0) + ey (u, 0)v,.(u,0) = 0 (6.11)

Therefore, using the expressions for f an e, found in equation

(6.9), integration of equation (6.11) it is obtained:

L /
-7, + 2Hk
1nH'(o)=/ T T gy,
0 27y

This ends the proof. |
Remark 6.3.1. From [164, vol. III, page 282] it follows that

Ty — 2kg(u)H(u)

w =
274
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is a 1-form evaluated along an asymptotic line.

Proposition 6.3.2. Let ¢ : [0, L] — M? be a regular closed asymp-

totic line of length L for the immersion «, parametrized by arc length
u.

Consider the following one parameter deformation of c:
ae(u,v) = a(u,v) + ew(u)d(v)v? N (u)

where 0 | ¢ = 1 and has small support. Then c¢ is a regular closed
asymptotic line of ae for all € small and the derivative of the Poincaré

map I, , associated to it is given by:

1, - 0t |

7q(u)

Moreover, taking w(u) = ky(u) holds that:

d / _ L kg(U)Q
= (I, (0)) |6:0_/O o) du #0

In particular c is a hyperbolic closed asymptotic line for a.,e # 0.

Proof. Performing the calculation as in Lemma 6.3.1 it follows that:
e(€,u,0) =0, f(e,u,0)=1g4(u), g(e,u,0)=2(H(u)+ ew(u)),
ev(€,u,0) = — 2[H(u) + ew(u)lkg(u) + 7, (u).

Therefore {v = 0} is a closed asymptotic line for a.e. Applying Propo-
sition 6.3.1 to a. and differentiating under the integration sign gives

the result stated. O
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Remark 6.3.2. In order to see that kg | ¢ is not identically zero for
a closed asymptotic line, we observe that for an asymptotic line c, the

geodesic curvature coincides with the ordinary curvature, considered as a
curve in E*. Therefore, if ky | ¢ = 0, it follows that ¢ must be a straight

line.

Folded closed asymptotic lines

Here will be established an integral expression for the derivative
of the first return map of a folded closed asymptotic line in terms of
the curvature functions of the immersion a.

A folded closed asymptotic line is a closed asymptotic curve c :
[0, L] — M regular by parts, that is, there exist a finite sequence of
numbers a;,0 = ag < a1 < ... < a; = L, such that ¢; = ¢ | (a;,a:41) :
(a;ya;41) — IntH is an asymptotic line of o and p; = ¢(a;) € P, for
1=1,...,1—1. In other words, a folded closed asymptotic line is the
projection of a closed integral curve of the single line field £, defined
on A, which intersects P,.

Let ¢ be a folded closed asymptotic line. Near each point p;,
consider two transversal sections to ¢, ; and X9 ;, and the Poincaré
map o; @ X1, — 2,;. Denote by u{ = ¢(aj,ai41) NEj,,7 = 1,2.
Denote by 741, @ X2, — 21,41 the Poincaré map associated to c¢;.
It follows that the Poincaré map associated to ¢, II:3X;; — i

is given by: Il =m_1100;-1...0Tj11,;0...0T2100].

Proposition 6.3.3. Let ¢ : [0, L] — M? be a folded closed asymptotic
line of length L parametrized by arc length w. Assume the notation

above. Then the derivative of the Poincaré map m;1,; associated to
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Figure 6.3: Folded closed asymptotic lines

c; 18 gen by:

Uit —7(u ko (u U
Tit+1,(0) = exp [/2 o );_Tj(j)( JH(u) i

where kg is the geodesic curvature of ¢; and 7, = (fIC)% is the

geodesic torsion of ¢;. Moreover the functions o; are differentiable.

Proof. Near the point p; take a system of coordinates (U, V') such that
the asymptotic lines are given by the differential equation (dU/dV)? =
U. See [4], [9] and Remark 6.2.1.

In this system of coordinates o; : {V =€} — {V =€} is clearly a
translation o;(u, €) = (u + ¢, €). Therefore o; is differentiable.

The expression for the derivative of m; ;1 ; can be obtained in the

same way as in the Proposition 6.3.1. O

Proposition 6.3.4. Let c: [0, L] — M? be a folded closed asymptotic

line of length L, parametrized by arc length u. Assume the notation
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above and consider the following one parameter deformation of im-
mersions
ae(u,v) = a(u,v) + ew(u)d(v)vN (u)

where 6 | ¢ =1 and has small support and supp (6) N c(a;, air1) # 0.
Then c is a folded asymptotic line of a. for all € small and the

derivative of the Poincaré map ma, iv1,i associated to it is given by:

U

, l / () + 2k () [H(w) + ew(w)]

Hag,i-i-l,i = exrp , QTg(u)

Moreover, taking w(u) = ky(u) holds that:

d uitr o (u)?
T (Tae,i+1,i(0)) [e=0= / Ldu #£0

u12 Tg(u)
In particular ¢ is a hyperbolic closed asymptotic folded line for a.,
e # 0.
Proof. Similar to the proof of proposition 6.3.2. Here one must take
an arc which is not a straight line. O

From the considerations above we have the following.

Theorem 6.3.3. Given a reqular or folded asymptotic closed line c
of the immersion «, then there exist a smooth one parameter family of
immersions oy such that for t > 0 small, ¢ is a hyperbolic asymptotic

line of ay.

6.4 Asymptotic Structural Stability

The following conditions (inspired in [71, 75]) are essential for the

definition of the class of immersions which are asymptotic structurally
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stable.

Here will be used the notation introduced in section 1.7 of chapter
1.
a) Condition on parabolic points: Denote by X, the class of
immersions « for which the singularities of the line field £,, which
occur when £, is tangent to P,, are hyperbolic (non-vanishing real

part of eigenvalues). See Proposition 6.2.1 page 130.

b) Condition on hyperbolic closed asymptotic lines: Denote
by 3, the class of immersions for which all the regular and folded
asymptotic closed lines, i.e. the closed integral curves of L, are hy-
perbolic (i.e. the derivative of the return map is different from one).

See Proposition 6.3.1, page 135 and Proposition 6.3.3, page 138.

¢) Condition on separatrix connections: Denote by X. the
class of immersions such that there are no connection between sepa-
ratrices of singular points of the foliation A, and consequently of the

asymptotic foliations A, 1 and A, 2. See page 28.

d) Condition on limit sets: Denote by ¥, the class of immersions

such that for every leaf of A, the limit set is a singular point or a

closed asymptotic line.

Define the set X5 =3, N3, N X, N X4

asy

An immersion « € Z" is said to be C*®—asymptotic structurally
stable if there is a neighborhood V, of a in M such that for every
immersion 3 € V, there exist a homeomorphism hg on the domain
such that hg(P,) = Pg and hg maps lines of A; ,, (resp. Az o) on
those of A; g ( resp. As g). In this notion of stability the homeomor-

phism of the topological equivalence must preserve the parabolic set,
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i.e. the boundary of the hyperbolic region.

This concept of stability has its roots in the theory of stability
of differential equations on surfaces, formulated by Pontrjagin, A.
Andronov and M. Peixoto, see [1], [130] and [128]. Also A. Davy-
dov considered a similar notion of stability in the theory of control

systems, [38]. In [140] it was proved the following theorem.

Theorem 6.4.1. Let o : M — R3 be an immersion of class C", r >

5, of a compact and oriented surface M of class C". Then:

i) The set 335, is open in I™(M,R3), s > 5.

asy

i) If a € Yoy then ais C*— asymptotic structurally stable.

6.5 Examples of Closed Asymptotic Lines

In this section will be given geometric constructions of regular

surfaces having closed asymptotic lines.

A hyperbolic closed asymptotic line

In this subsection will be given an example of a surface having
a hyperbolic asymptotic line contained in interior of the region of

negative Gaussian curvature.

Proposition 6.5.1. Let ¢ : [0,L] — R? be a closed biregular curve,
parametrized by arc length, such that the curvature k(s) and the tor-

sion 7(s) of ¢ are different from zero for all s € [0, L]. Consider the

surface a(s,v) = c(s) +vN(s) + T(S)%B(S)

Here {T, N, B} is the Frenet orthonormal frame associated to c.
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Then c is a reqular hyperbolic closed asymptotic line.

Proof. Direct calculation gives that
e(s,0) =0, f(s5,0)=7(s), ey(s,0)=7"(s)—k(s)7(s), g(s,0) =7(s).

The Poincaré map given by m(vg) = v(L,vg), where v(u,vg) is the

solution of the differential equation
eds® + 2fdsdv + gdv® =0

with v(0,v9) = vo, has the first derivative at 0 given by:

L Ly,
7'(0) = exp/0 f;—;(s,())ds = exp/0 %ds # 1.

This ends the proof. O

Remark 6.5.1. Curves with the above propertied are, for example, the
toroidal helices, [33]. For appropriate parameters (m,n) € N x N, the

closed curve cm,n defined by
Cm,n(t) = ((R + rcosnt) cosmt, (R + r cosnt) sin mt, r sin nt)

has non zero torsion.

A semi hyperbolic closed asymptotic line

In this section will be considered a ruled surface having a non
hyperbolic asymptotic line contained in interior of the region of neg-
ative Gaussian curvature. Under an integral condition will be proved
that the second derivative of the return is different from zero. That

is, the closed asymptotic line is semi hyperbolic.
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Proposition 6.5.2. Let ¢ : [0, L] — R? be a closed biregular curve,
parametrized by arc length, such that the curvature k(s) and the tor-
sion 7(s) of ¢ are different from zero for all s € [0, L]. Consider the

ruled surface

a(s,v) = c(s) + vN(s).

Then c is a reqular semi hyperbolic closed asymptotic line provided

/T_I/Qdk £ 0.

c

Proof. Direct calculation gives that

as Aoy, =—1vT + (1 —vk)B
gs = —k'vT + [k — (K* + 7*)v]N +17'B
Qsp = —kT + 7B, @y, =0

Therefore e = [ags, s, Ay, [ = [Qsp, s, @] and g = [y, as, @] are

given by.

k
6(5, ’U) = T’(S)’U + (;),(5)7_27)27 f(S,U) = T(S), g(s, ’U) = 0.
Therefore one family of asymptotic lines is given by the straight lines
s = cte and c¢ is an asymptotic line of the other foliation. The

Poincaré map associated to ¢ is defined by m(vy) = v(L,vp), where

v =v(s,vp) is the solution of the differential equation

E = — o 5 ’U(O,’Uo) = 0.

{du 7 (s)0 + (B) ()70
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Direct integration of the first variation equation

ddv, T dv
ds d’U() - 2T d’U()

7(0) _ V7o

evaluated at v = 0 gives, 2% (s) = Y0zt = Y=,
Bves, ww )= e T Vr
0
Therefore, 7'(0) = —U(O,L) =1.
v

Also, the integration of the second variation equation,

d  d*v T d?v dv o k
) = - S
ds " dvg 27 dug dvy” T
leads to
d?v Lm k., Lk
-— = - ~—=(- ds = — —)'d
= [ Ry v [ vryas
= f\/T—O/kd(fl/Q) = \/T—O/Tfl/%zk
This ends the proof. O

6.6 On a class of dense asymptotic lines

The goal of this section is to present examples of folded recurrent

asymptotic lines.

Proposition 6.6.1. Let T? be the torus of revolution, obtained by
the rotation of the circle (x — R)? + 22 = r2,r < R, around the

z axis. Then the qualitative behavior of the asymptotic lines is as
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shown in Fig. 6.4. Moreover the return map II : S(R) — S(R),
where S(R) = {(x,y,2) : 2% + y?> = R%, 2z = —r}, is a rotation by an
angle equal to 4RT(r/R), where

T(L)_ZQT;L!”(T)”, :1><3><...><(2n—1)1“( )I‘(2n+i).

VIR

Figure 6.4: Asymptotic lines on the torus

Proof. Consider the following parametrization of the torus of revo-
lution: (u,v) — (cosv(R + rcosu),sinv(R + rcosu),rsinu). The

second fundamental form is given by
e(u,v) = R*,  f(u,v) =0, g(u,v) = R(R+ rcosu) cosu.

Therefore the differential equation of the asymptotic lines is:
F(u,v,du/dv) = R(du/dv)? + cosu(R + rcosu) = 0.
Writing ¢ = du/dv, consider the vector field X defined by the

differential equation

(ulavlvp,) = (qu7Fq’ _(un + Fv))
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After multiplying X by 1/q it results that:
(u';v',q¢") = (2Rq, 2R, Rsinu + rsin 2u).

Consider also the projected vector field, Y (u,p) = (2Rp, Rsinu +
rsin2u). Notice that the orbit of ¥ through (5,0) reaches (3%,0).
In fact, from the first integral of Y,

G(u,p) = Rp* + Rcosu + g cos 2u,

it follows that (%,0) and (28,0) are in the same connected component
of G™H(F).

The time spent by an orbit that starts at (%, 0) to reach the point
(2£,0) can be calculated as follows:

From G(u,p) = —% it results that:

[—7(1 + cos2u) — 2R cos u]

q=A 3R }e.

As 2—7; = 2Rq, it follows that:

3m

N

T=R

/2 du 72/5 du
z  [—cosu(rcosu+ R)|2 0o [sinu(l-— %Sinu)]%'

2

It follows from [67, pages 369 and 950], that the analytic function

T'(%) has the following expansion in series

= 2a
ZT

Ix3x...x(2n-1)T(G)T2n+ )
2n r(2n+3)

an =

:UI‘g

Therefore, from dv/dt = 2R, it follows that an arc of the asymptotic
line that starts at the point (§,vo) ends at the point (3, v1), where
vy is given by v1 = 2RT + vg.



148 [CAP. 6: STABILITY OF ASYMPTOTIC LINES

So the return map IT: {u = =5} — {u = —3} is given by
(vo) = vo + 4RT (%)
As T is clearly non constant, it is possible to select » and R such
that the rotation number of II is irrational. For properties of rotation

number see [112] and [128]. O

6.7 Further developments on asymptotic

lines

The geometric approach presented in this Chapter was taken from [56]
and [140].

The local analysis of asymptotic lines near parabolic points was also
studied in [167], [12] and [93].

The dynamical aspects of asymptotic lines is a source of many difficult
problems.

One is the “Closing Lemma”, i.e. the elimination of recurrent asymp-
totic lines disjoint from the parabolic set and of folded recurrent asymptotic

lines.

The first kind of recurrences was studied by R. Garcia and J. Sotomayor
[64] in embedded torus of S* with suitable deformations of the Clifford
torus. Examples of the second kind of recurrence in the torus of revolution
have been given in [140].

Another problem is about the existence of isolated reqular closed asymp-
totic lines in tubes and also a continuum of closed asymptotic lines. This
kind of question is important in the open problem of rigidity of compact
surfaces of genus different from zero and also in the study of complete
surfaces with negative Gaussian curvature.

Another kind of question is about the structure of the parabolic set of

a surface which is the graph (z,y,p(z,y)) of a polynomial p € R[z,y]. See
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[6, 8] and [123].
A concrete question is the following: Given a function K provide local
conditions to have I as the Gaussian curvature of a surface. This question

was considered by V. Arnold,[7].

6.8 Exercises and Problems

6.8.1. Consider the embedded tube defined by
a(s,v) = c(s) + rcosvn(s) + rsinvb(s), r > 0.

Here c is a closed Frenet curve with k£ > 0 and torsion 7.

i) Show that the hyperbolic region of « is diffeomorphic to a cylinder and
the parabolic set is union of two regular curves.

ii) Characterize the parabolic points (regular, folded saddle, etc.) in terms
of (k,7) and their derivatives.

iii) Examine the possible global behavior of asymptotic foliations in the
tube.

iv) Let ¢ be a connected component of f~1(0)Ng~*(0), where f(x,y,2) =

2?2 +y? + 22 —1and g(z,y,2) = zé— + ly)—z — 1. Classify the parabolic points

of the tube with center c.

6.8.2. Consider the surface S defined by the graph of the polynomial
p(e,y) = 5(@* +y°) +a® — 3zy”.

i) Determine the parabolic set of S.

ii) Classify the parabolic points of S according to the local behavior of
the asymptotic foliations.

iii) Examine the global behavior of asymptotic foliations on S, including

the behavior near the infinity.

6.8.3. Give examples of surfaces (try algebraic) such that:
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i) The parabolic set is the union of two regular curves and the hyperbolic
region is diffeomorphic to a cylinder.

ii) The parabolic set is the union of three regular curves and the hyper-
bolic region is diffeomorphic to an oriented boundary surface S with Euler
characteristic equal to 9(S) = —1.

iii) The parabolic set is a regular curve and the hyperbolic region is dif-

feomorphic to a disk.

6.8.4. Show that the quartic algebraic surface defined by
p(x,y,2) = 32" +2(1 + 4xy)2® — 2(2® +y°)> + 8xy — 1 = 0,

determines a smooth negatively curved surface S C R*® homeomorphic to
the doubly punctured torus, which has Euler characteristic equal to —2.
i) Perform a qualitative analysis of the asymptotic foliations near the ends
of p~*(0).

ii) Visualize the shape of p~*(0). See [31].

6.8.5. Analyze the behavior of asymptotic lines near the Whitney singu-

larities of an immersion of a surface in R3. See [171].

6.8.6. Let N : S — S? be the normal map associated to a surface S C R3.
Classify the parabolic points of S in terms of the singularities (folds and
cusps) of N. See [167] and [12].

6.8.7. Let a : M — S® be a smooth immersion of a surface M. Define

the first and second fundamental forms of o with respect to the metric

of S* induced by the canonical metric of R* and to the normal N, =

(au AN aw Aa)/|au A ay A al.

A curve ¢ : I — M is called an asymptotic line if 174 (c(s))(c'(s),c'(s)) = 0.
1

i) Let a:S' x S' — §% defined by a(u,v) = E(cosu, sin u, cos v, sin v).

The surface a(S' x S') is the Clifford torus..
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ii) Write the differential equation of asymptotic lines of a.
iii) Show that the asymptotic lines of the Clifford torus are defined globally

and are circles. Compute explicit parametrizations of the these circles.

6.8.8. Let a : S — R* be a smooth immersion of a compact two dimen-
sional surface S and suppose that there exists a unit normal vector field
N, along a.

Define the second fundamental form of « relative to N, by the equation
11 (u,v)(du, dv) = <D2a(u, v)(du, dv)?, Na)
=edu® + 2fdudv + gdv®.
Study the asymptotic lines of « relative to Ng.

6.8.9. Give an example of a connected ruled surface in R® having two

hyperbolic asymptotic lines.
6.8.10. Consider the parametric surface defined by

€

[0+ w)? + (0 +0)°]

2, 0) =510+ w)° + (o + )7, y(uv) =

2(u,v) :%[(a + 0)3 + (a+ C)S]

Obtain the differential equation of asymptotic lines and show that the

solutions are given by u + v = c.

6.8.11. Consider the parametric surface defined by
z(u,v) =A(u—a)" (v —a)™, y(u,v) = Blu—0b)"(v—>b)"
z(u,v) =Cu —c)"(v—0¢)", meN.

Obtain the differential equation of the asymptotic lines and find the

solutions.
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6.8.12. Show that there is no triple system of surfaces cutting mutually

in the asymptotic lines of these surfaces. See [43].
6.8.13. Consider the tube defined by
a(s,v) = c(s) + rcosvit(s) + rsinon(s), r > 0.

Here c is a Frenet curve with £ > 0 and torsion 7 and {¢, n, b} is the Frenet

frame.

i) Characterize the curves c such that the tube defined above is a regular

surface.

ii) Analyze the geometry of the tube, classifying the elliptic, parabolic
and hyperbolic points and also the singular points.

iii) Analyze the principal and asymptotic lines of the tube.

6.8.14. Develop a study of extrinsic geometry of surfaces of codimension

two in R*. In particular analyze the asymptotic lines, mean directionally

curved lines and axial curvature lines. See [24], [57], [110], [145] and [143].

6.8.15. Consider the surface S parametrized by (u,v, h(u,v)) where,

h(u,v) == (au® + bv?) + é(Au?’ + 3Bu*v + 3Cuv® + Dv®)

N =

(+)

1

o (CMU4 +48ucv + 6yutv® + dewv® + 51}4) + .

Jr

Let ¢ = ¢(s) be an asymptotic line of S passing through 0 and tangent
to the u axis. Let k and 7 be, respectively, the curvature and the torsion

of ¢ at 0. Find the values of k£ and 7.

Determine the value of the curvature of the branch of the plane curve

h(u,v) = 0 at 0 which is tangent to the u axis.

6.8.16. Consider the surface defined parametrically by

afu,v) = (2" (sinu — ucosu), 2e” (cosu + usinu), u” + 3v)



[SEC. 6.8: EXERCISES AND PROBLEMS 153

i) Calculate the second fundamental form of a.

ii) Analyze the asymptotic configuration of a.

6.8.17. Consider a differential equation on the plane R? defined by dy/dz =
f(z,y) and suppose that

2 2 2
%0 +2f889689y +f2§—y§ =0, 0 = arctan f.

Ox?

i) Show that there is a graph surface (z,y, h(z,y)) such that one family
of asymptotic lines is defined by the differential equation y' = dy/dz =
[z, y).

ii) Analyze various explicit examples of differential equations 3y’ = f ve-

rifying the partial differential equation above.

6.8.18. Consider a compact oriented surface M of R®. Let M, = {p € M :
K(p) > 0}, M_ = {p € M : K(p) < 0} and suppose that

A) fM+ KdS = 4,
B) for every point p € dM_ we have that dK(p) # 0.

i) Show that the set {p € M : K(p) = 0} is a finite union of regular curves
vi (parabolic curves).

ii) Let N : M — S? the normal Gauss map. Show that Condition A
implies that N|My is a double covering map.

iii) Show that conditions A e B imply that the parabolic curves ~; are
convex planar curves.

iv) Show that each connected component of M_ is diffeomorphic to a
cylinder.

v) (Open problem:) Is there a closed asymptotic line contained in the

interior of M_? See [122] and [98].
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6.8.19. Consider the real ellipsoid E(z,y,z) = zé— - 'Z—j - g— —1=0.
i) Write the differential equation of asymptotic lines of the ellipsoid.

ii) Consider the differential equation above complexified and analyze the
singular foliations in the complex quadric E¢ obtained by complexification

of the real ellipsoid.

6.8.20. Let P(z,y) be a polynomial of degree n > 2 and consider the
polynomial surface M defined by the graph z = P(xz,y). Let H(p) =
DaaDyy — piy the Hessian of p..

1 acx+ rr —
i) Show that H(p):(p 2p?/?/)2_(p 2pyy)2_piy.

ii) Show that the Hessian curve {(z,y) : H(p) = 0} is an algebraic curve
of degree | < 2(n —2).

iii) Show that a compact hessian curve has at most (2n — 5)(n — 3) + 1
ovals and a non- compact hessian curve has at most (2n — 5)(n — 3) ovals
and 2(n — 2) unbounded components. See Harnack’s Theorem in [14].

iv) Let p(z,y) = 1227 + 2zy — 29% + 105> + 3zy® — 102%y — 132° — 11y* +
6zy® + 92y — 223y — x* . Show that the Hessian curve of p is compact,
regular and has 4 ovals. See [123].

v) Analyze items i), ii) and iii) above for an implicit polynomial surface

defined by f(z,y,2) = 0.

6.8.21. Let a(u,v) = (u,v, h(u,v)) be a local parametrization of a surface
M and let A : R® — R? be an invertible linear map and consider the surface
B(u,v) = (Ao a)(u,v).

i) Show that the asymptotic lines of 8 and « are the same. More precisely,

show that the differential equation of asymptotic lines of 3 is given by:

det A[huudu® + 2huydudv + hy,dv®] = 0.
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ii) Generalize the item i) when A : R® — R is a projective transformation

and show that the asymptotic lines of 3 and « are the same.

6.8.22. Give an explicit example of a closed Frenet curve ¢ with positive
curvature k£ > 0 and torsion 7 > 0 such that fc dk/\/T # 0. Suggestion:
Try to find torodail helices.

6.8.23. Consider the Mobius band defined by
LUy .U u
a(u,v) = ((R —vsin 5) sinu, (R — vsin 5) COS U, U COS 5) ,

where u € [0,27] and v € [—r,7], > 0 small and R > 2r0.

i) Compute the Gauss curvature of a.

ii) Describe the asymptotic configuration of a.

iii) Consider the family of spheres X, ,(¢) of radius € > 0 with center
a(u,v). Show that the envelope of 3, .)(€) is a regular and oriented
surface M of class C'! diffeormorphic to the torus.

iv) Analyze the asymptotic and principal configurations of M. As the
surface is only C! take in account the new singularities of asymptotic and

principal lines.

6.8.24. Let h be a local equivalence of both principal and asymptotic
configurations of a surface immersed in R, i.e., h is a local homeomorphism
which is a equivalence of the 4-web defined by the principal and asymptotic

foliations.

i) Investigate the properties of h.
ii) Is h be an isometry of the ambient space?
iii) Investigate the punctual holonomy associated to the 4-web in minimal

surfaces of R® or S®. This open problem is based on a question raised by

R. Roussarie.



Chapter 7

(Geodesics on Surfaces
of R’

7.1 Introduction

Geometric and dynamical aspects of geodesics on surfaces is a
classical subject in Differential Geometry. See for example, [3], [5],
[16], [37], [92], [95], [15], [126], [136], [169], [170].

In this chapter classical results are reviewed and the derivative of
the Poincaré map associated to a closed geodesic line will be obtained
in an elementary way. Also will be discussed the geodesics on the

ellipsoid, surfaces of revolution, convex surfaces and quadrics in R".

7.2 General Results

Given a regular surface M of class C" the tangent bundle of M,

TM = {(p,v) : p € M and v € T,M} is a differentiable manifold of

156
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dimension 4 and of class C"~!. The map 7 : RM — M, 7(p,v) = p is

a fibration of class C"~ 1.

Proposition 7.2.1. Let o : M — R? be an immersion of class C".
Then there exists a canonical immersion of the tangent bundle TM
in RO,

Proof. Let x=' : U C M be a local parametrization of M. Then
aox~!

be denoted by a.
Now define 3 : U xR? — R3xR3 by B(u,v,2,y) = (a(u,v), vt +

is a local parametrization of a(M). By simplicity ccox™! will

Yy).
Let v(t) = B((u(t),v(t), z(t),y(t)). Then " = Dp(u',v' 2", y").
It follows that

/

v = (W + v o, @ o + 2 awu + (20" + yu o + ¥ o + +yv’ aw).

As {ay, @y} is linearly independent, 4’ = 0 implies that v’ =v" =0
and ' = ¢y = 0. This shows that DS is injective. This ends the
proof. O

Let a : M — R3 be an immersion of class C”, r > 3. The geodesic
lines of o are defined by the condition that k; = 0 in the Darboux
frame, see equation (6.2), page 128, of a regular immersed curve ~.

As shown in Chapter 1 the geodesics are defined by a second
order differential equation which is homogenous in the derivatives.
See equations (1.8), (1.9) and (1.10) in Section 1.8.

This property implies that the geodesics are independent of para-
metrization and so they are geometric entities.

The lifting of a geodesic v to the tangent bundle TM is given by

A(s) = (v(8),7'(5))-
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There exists a Hamiltonian vector field Xz defined in TM such
that 4 is an integral curve of Xpg. For more details see [5], [41], [11],
[150]. In a local chart (u,v,x,y) the vector field Xy is defined by:

/ !
u =r, v =Y,

o' = — [2°T], + 2xyT', + y°Ta,), (7.1)
y' = —[2°TT, + 22y, + y°T3,],

where I‘fj are given by equation (1.3), page 19.

The flow of Xz is called the geodesic flow. It is called complete
when the domain of every integral curve is R.

An important aspect of Xy is that it is non singular and its
integral curves are transversal (orthogonal with respect to natural

metrics) to the fibers 771(p), p € M of the fibration 7.

Remark 7.2.1. A natural metric in the tangent bundle is the one induced

from RS by the immersion 3 given in the proof of Proposition 7.2.1. Other
natural intrinsic metrics in TM are the metrics of Sasaki and Cheeger -

Gromoll. See [28], [68] and [95].

In what follows (M, g) will be M endowed with the induced Rie-
mannian metric g, = I, = Edu? + 2Fdudv + Gdv? associated to an

immersion o : M — R3.

A useful concept in the study of geodesics, introduced in Chapter
1, is of the exponential map defined by exp : U C TM — M x M
defined by:

exp(p,v) = (p,exp,(v)), where exp,(v) = v(1,p,v) = (|v], p, ﬁ),
where v is the geodesic through p with 4/(0) = v and U is an open

set.
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Theorem 7.2.2 (Hopf-Rinow). Let (M, g) be a Riemannian ma-
nifold, complete as a metric (length) space (M,d). Then given any
two points p, q € M there is a geodesic vy : R — M such that (0, p) =
p and Y(lp 4, p) = q, where 1, = d(p,q). Moreover, when o is an

embedding the minimizing geodesic ~y is a simple curve in a(M).

Proof. There are several presentations of the proof in this theorem.
For instance, see [40] and [165].

The basic fact is that (M, d) where d is the distance induced by
the metric ¢ is a metric space and the exponential map is globally
defined in TM. In fact, (M, d) is a length space. Recall that a metric
space is called length space when it has the middle point property.
See [35].

Here will be shown that a minimizing geodesic is a simple curve.

By contradiction, suppose that v has a transversal intersection
point r given by y(s1) = v(s2) = r with 0 < s1 < s2 < I, and
~'(s1) # ' (s2). See Fig. 7.1.

q1
b1

Figure 7.1: Geodesic between the points p and ¢ with self intersection
at the point 7.

Let p1 = v(5), 3 < s1, and q1 = ¥(5), § > s be the points near r
in the boundary of a convex ball B(r,€). The radius € can be defined
such that the arc 7|[s1, s2] is not contained in B.(r). Let v1 = 7|0, 3]
and 2 = v|[8,1,,4]. It follows that d(p1,¢1) < d(p1,7) + d(r,q1). Let
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Yp1,¢: D€ the unique geodesic connecting p; to g;. By construction
d(p1, q1) < by).4(9)-

Now consider the geometric curve (connected sum) y = y1 %Yy, 4, *
72, that connect the points p and ¢, formed by juxtaposition of three
arcs of geodesics.

It is clear that I(¥) < I, and so a minimizing geodesic can not

have self intersection. O

7.3 Closed Geodesics on Immersed Sur-

faces of R?

Let o : M — R? be an immersion of class C”, r > 3.

Recall that a geodesic of M is a regular curve v : R — M such
that k, = 0, or equivalently, when 5 : R — TM, 4 = (v,7) is an
integral curve of the differential equation (1.9) given in page 28.

A geodesic 7 is closed when 7 is a periodic orbit of the geodesic

flow.

Lemma 7.3.1. Lety : I — M? be a geodesic line parametrized by arc
length s and of length . Suppose that v is disjoint from the umbilic

set of a. Then the Darboux frame is given by:

T' =k,N, (NAT) =1,N

;o B (7.2)
N' = —k,T—1,NAT

Moreover, 7y = (ko — k1) sinf cos 0 and k, = ki cos® 0 + ko sin’ 0,
where k1 and ko are the principal curvatures and 6 is the angle be-
tween ~'(u) = T'(u) and the principal direction corresponding to the

principal curvature k.
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Proof. From the Euler equation k, = ki cos?6 + ko sin 6. Also the

geodesic torsion is given by 7, = (kg — k1) sin 6 cos 6. O

Lemma 7.3.2. Let o : M — R? be an immersion of class C™, r > 6,
and v be a closed geodesic curve of a, parametrized by arc length u

and of length . Then the expression,
1 1 .
a(u,v) =aoy(u) +v(N AT)(u) + [511:# (u)v? + EA(U’ 0)v3]N (u),

defines a local chart (u,v) of class C"=° in a neighborhood of .

Proof. The curve 1 is of class C"~1 and the map a(u, v, w) = vy(u) +
v(N A T)(u) + wN(u) is of class C"=2 and it is a local diffeomor-
phism in a neighborhood of the u axis. In fact [a,, ), a](u,0,0) =
1. Therefore there is a function W (u,v) of class C"~2 such that
a(u,v, W(u,v)) is a parametrization of a tubular neighborhood of
aor.

Now for each u, a(u,v, W(u,v)) is just a parametrization of the
curve of intersection of a(M) and the normal plane generated by
{(NAT)(u), N(u)}. This curve of intersection is tangent to (NAT")(u)
at v = 0 and notice that k- = k,(N AT)(u). Therefore,

a(u, v, W (1, ) = () + 0(N AT)(w) + (502 + Au, 0) 5N (),

where A is of class C"™~°. This ends the proof. O

Remark 7.3.1. The coordinates (u,v) in the Lemma 7.3.2 are not the

usual normal coordinates along v. The curves u = uo are not, in general,

geodesics, but kgl(u, v) =0 atv=0.
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In the chart (u,v) constructed above, holds:

=1+ (17 — knky )v* + hoot =1 — Kv? + O(v®)

u,v)

u,v) = Lkymv? 4+ 0(?), G(u,v) =1+ (ky)*v® + O(v?) (73)
u,v) = kn+O(v), f(u,v)=7y(u)+O(v)

4,v)

=kt +O0(v)

where in the expressions above, E = (ay, ay), F = (ay, ), G =
(p, )y, € = {ay ANy, )y, [ = (QuNQy, ) and g =
(O N iy Q).

Therefore from equation (1.3), page 19, the Christoffel symbols

are given by:

F%l = O(U2)7 F%Q = U(TgQ - knkf{) + O(UQ)v F%Q = kf{"'gv + O(UQ)
I'h, = O0®W?), T =vlknky —75) +O0(v?), T3 = (kiy)’v+O0?).

(7.4)

From equation (1.9), page 28, the differential equations for geode-

sic lines is given in the coordinates above by:

oy,
55 _ 3 2,,2 2 €L 2 (7.5)
o= [knTgw® — kiw? + (Tg — knky)]v+ O(v?)

On the unit tangent bundle T1M the geodesics are the integral
curves of a vector field and so the Poincaré transition map 7 : ¥y —
Y1 is well defined between two transversal sections Yo and ¥; of a
regular orbit .

In the local chart (u,v,w),w = dv/du, the differential equation
(7.5) have the line {v = 0,w = 0} as a regular solution. The transi-

tion map between the sections ¥g = {u = 0} and ¥y = {u = u1} is



[SEC. 7.3: CLOSED GEODESICS 163

defined by
7T(’U(), U}()) - (U(t(vo, ’lU()), Vo, ’lU()), U}(t(vo, ’lU()), Vo, w())) .

Here t(vg, wp) is the first time of the intersection of the orbit through
(0, vg, wp) with the section 3.

When the differential equation (7.5) is periodic in w, i.e., the
geodesic parametrized by {v = 0,w = 0} is closed the transition
map between the sections 3¢ = {u = 0} and X1 = {u = [} is the well

known Poincaré return map. See [128] and [159].

Proposition 7.3.1. Let o : M — R3 be an immersion of class C",
r >4, and v be a closed geodesic curve of a, parametrized by arc
length and of length l. Then the derivative of the Poincaré return map
7 (vo, wo) = (v(l, vo,wo), w(l, vy, wp)) at (v, wo) = (0,0) associated to

equation (7.5) satisfies the following linear system:

0 v 0 v
Ou\ze  us —K(w) 0) \& 7us

Moreover, det(w’(0)) = 1.

Proof. From equation (7.3) it follows that K = k,k;; —72. Therefore
differentiating equation (7.5) the result follows. The assertion that

det(n'(0)) = 1 follows from Liouville’s formula for systems of linear

ODE’s. See [159). O

Write the linear differential equation (7.6) as X’ = A(u)X, A(u +
1) =A(u), X(0)=1.

The fundamental matrix is given by X ({). The geodesic 7 is called
hyperbolic when the eigenvalues (Floquet multipliers) Ay, Ay of X (1)
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are real and satisfy 0 < [A] < 1 < |A2]. The geodesic v is called
elliptic when the eigenvalues A\;, Ay = A; of X () are complex and
satisfy [A1] = [A2] = 1.

The geodesic 7 is called parabolic when A1, Az are real and |A\| =
A2 = 1.

A closed geodesic v is called stable (Liapunov stable) when there
is a CY-tubular neighborhood Uy C TM such that all integral curves
©(t) of the geodesic flow X with ¢(0) € U5 is contained in U5 for
every t € R.

Proposition 7.3.2. Let o : M — R3 be an immersion of class C",
r >4, and v be a closed geodesic curve of a, parametrized by arc

length and of length l. Suppose that K|, = ko. Then detn’(0) = 1
and the eigenvalues of 7' (0) are given by A1 = exp(l\/—ko) and Ay =
exp(—kv/—ko). Therefore, if ko < O the geodesic ~y is hyperbolic. If
ko > 0 and I\/ky # nm, n € N, the geodesic v is elliptic and stable.

Hyperbolic geodesic Elliptic geodesic

Figure 7.2: Behavior of geodesics near a closed geodesic line

Proof. The result follows from direct integration of a linear system
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with constant coefficients (7.6) and classification of them. See [128]

and [159] for a detailed exposition on linear systems. O

Let v: R — M be a geodesic parametrized by arc length s with
~7(0) = p. A Jacobi equation along ~y is the second order differential
equation (f) vy” + K(v(s))y = 0. By the theorem of existence and
uniqueness a solution of the Jacobi equation is determined by the
initial conditions: y(0) =0, 3(0) = v. The point ¢ = y(s1) is called
a conjugate point of p along + if there is a non zero solution of (})
such that y(0) = 0 and y(s1) = 0. A related concept is that of Jacobi
fields. The conjugate points are characterized by the singularities of

the exponential map. See [41] and [94].

Proposition 7.3.3. Let v be a closed geodesic curve and suppose
that K|y < 0. Then ~y is hyperbolic and there are no conjugate points
along ~y.

Proof. Let v of length [ parametrized by arc length s. The periodic
linear differential equation (7.6) is equivalent to a second order linear
equation (%) y” + K(s)y = 0.

Let 1 and ys two linearly independent solutions of (x) with initial
conditions y1(0) =1, y1(0) = 0 and y2(0) = 0, y5(0) = 1.

As K(s) < 0 it follows that y; and yo are strictly convex functions
and positive in the interval (0,00). Also y; are increasing functions.
So there are no conjugate points along +. In particular y; () > 1 and
y5(l) > 1. Define o = y1(I) + y4(1). The eigenvalues of the return

map of Poincaré are the eigenvalues of the Floquet matrix

7 yi(l) ()
X(”<y1a> yga))'
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By Liouville formula it follows that det(X(1)) = 1 and so the
eigenvalues are defined by the equation \> —oA+1=0. As ¢ > 2 it
follows that the eigenvalues are positive and different from one. So it

follows that + is hyperbolic. O

Remark 7.3.2. In TM near a hyperbolic geodesic 4 of the geodesic flow
there are two invariant surfaces W?(3) (stable manifold) and W™ (%) (un-
stable manifold) of class C"~2 such that W*(%) and W™ (3) are transversal
along 4. See Fig. 7.7, page 180. This proposition has a natural generaliza-
tion to Riemannian manifolds with hypothesis on the sectional curvatures.

See [95, page 276].

Remark 7.3.3. For an analysis of the geodesic flow near closed geodesics
on Riemannian manifolds see [95] and [96]. The hyperbolic systems are
part of a rich theory of Dynamical Systems and Ergodic Theory, including
the so called Anosov and Morse-Smale systems. See [3], [22], [107], [128],
[129], [130], [147], [151] and [153]. For the study of structural stability and
ergodic stability of the geodesic flow and time-one maps on Riemannian

manifolds of negative curvature see [3], [104] and [180].

Proposition 7.3.4. Let v be a closed geodesic curve parametrized by

arc length s and of length l. Suppose that K|y > 0 and follC(s)ds <
4/1. Then =y is stable.

Proof. Let y # 0 be a solution of the second order differential equa-
tion y” 4+ K(s)y(s) = 0. If 7 is not stable then, by Floquet theorem,
[81], it follows that y(s) = Y (s)e**, with Y I—periodic and 0 # X € R.
Therefore y(s +1) = My(s), A1 # 1 for every s € R.
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If y(s) # 0 it follows that fé %ds + fé K(s)ds = 0. Integration

1

l ’ [ [
by parts gives, / Y_ds = y—|6 +/ (y—)2d5 =0 —I—/ (y—)st > 0.
oY Y o Y oY

So in this case is established a contradiction.

Next suppose that y has two adjacent zeros y(a) = y(b) = 0 with
0<b—a<landy|(a,b) > 0.

Let Ymaz = max{y(s), s € [a,b]} > 0 and write Ymas = y(a+11) =
y(b—12),l1 +12 = b—a. Therefore for the convergent integral f; |%” |ds
it follows that

b, b " 1 /
a) — b

ym ax ym axr

Here it was used that y”|(a,b) < 0 and ¥|(a, b) is decreasing. It fol-
lows by Rolle’s Theorem that y'(s3) = Ymaz/l1 < ¥'(a) and y'(s4) =
—Ymaz/lz < —y'(b), with s3 € (a,a +11) and s4 € (b —l2,b). So it
follows that

b a4+l 7 b "
/ |y—|ds:/ |y—|ds+/ 1L |ds
a Yy a Yy b—Ilo Yy

1 1 I +1 4 4 4
St r=dtls = > -
ll lg lllQ ll -+ lg b—a l
Again a contradiction is obtained since fol K(s)ds < 4/1. O

Remark 7.3.4. This kind of result is part of a general theory of Hill’s
equations " + a(s)x = 0. See [19], [81] and [106].

Proposition 7.3.5. Let v be a closed geodesic curve and suppose
that 1/4 < K|y < 1 or, more general, suppose that maz(K|y) <
4dmin(KC|y). Then ~ is stable.
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Remark 7.3.5. This result also follows from the analysis of the Hill’s
equation y" + K(s)y = 0. The proof, on the higher dimensional case sub-
stituting K by sectional curvature, depends on the notion of index of a

geodesic. See[95] and [172].

7.4 Geodesics on the Ellipsoid

In this section an elementary approach, based on the analysis
of implicit differential equations, will be followed to describe the
geodesics of the ellipsoid of R? with three different axes.

For a more detailed exposition on this subject see for example [95,

pages 303-322]. See also [11], [17], [44], [84] and [117].

Proposition 7.4.1. Consider the ellipsoid 2—2 + "‘é—j + i—z =1 para-

metrized by ellipsoidal coordinates (u,v). Then the function

Eu? + uGu'?
w,v,u’,v") =vcos® Q+ usin® Q = pow Uy
I ) Fu? + Gv'?
(7.7)
v G(u,v)
tan @ =2
a u' | E(u,v)

is a first integral of equation the differential equation of geodesics of

the ellipsoid.

Remark 7.4.1. A function J : TM — R is a first integral for the geodesic
flow of a Riemannian metric g if it is constant on any orbit of the geodesic

flow. This means that if v : R — M is a geodesic then J(y(t),~'(t)) = cte.

Proof. The differential equation of geodesics when F' = 0 is given by:

2B = —Euu'2 — 2B, u'v + Guv/2, 2G" = Evu/2 —2G v — GUUIQ.



[SEC. 7.4: GEODESICS ON THE ELLIPSOID 169

Therefore it follows that

(Eu'Q), = vV (G — Byu), (GU’Q), = UV (=G + Eyu).

S 7 (G + (v — )G )V + (B + (u—v)E)u*v/

o, = )
Fu'? + Guv'?

In the ellipsoidal coordinates (u,v), see equation (2.6) and remark

2.2.11 in page 51, with u € (b?,a?) v € (c?,b?) the first fundamental

form is given by

— du?  vdv?
2 _ Bdu? o _u—v( u
ds du”® + Gdv 1 () + W) )

where h(z) = (z — a®)(z — b?)(z — ¢?). So it follows that J’ = 0 and
J is a first integral. O

Remark 7.4.2. This kind of first integral for geodesics is valid in any
Liowville surface, that is, surfaces with metrics of the form ds* = (A(u) +

B(v))(du® + dv?).

Proposition 7.4.2. The geodesic lines on the ellipsoid with a > b >

¢ > 0, in the ellipsoidal coordinates (u,v) where ¢? < v < b? < u <
a?, are the real integral curves of the implicit differential equation:

h(v)du® — h(uw)dv? )\_2
h(v)du? — vh(u)dv? — uw

ro o
G(u,v,u’, 0", \) =

(7.8)

h(z) =(z — a®)(x — b*)(x — %), & <\ <d’

The normal curvature in the directions D defined by equation (7.8)
18
abeA Ak Mky N

n ) 7D = = - - .
K ((u U) ) UVA/ UV v U v abe
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Here k1 = ¢/E, ko = g/G are the principal curvatures with ki < ko
and K = kiko is the Gaussian curvature. The differential equation

(7.8) is equivalent to

e(u,v)du® + g(u,v)dv?  N2[C3/*
E(u,v)du® + G(u,v)dv?  \/abe

Ep(u, v, [du : dv]) = (7.9)
Proof. The first part follows from algebraic simplification of the equa-
tion J(u,v,dv/du) = \? using the values of E and G in the ellipsoidal

coordinates.

For the second part, recall that in the ellipsoidal coordinates
(u,v), see equation (2.6) and remark 2.2.11 in page 51, the second

fundamental form is given by

(v—u)abe . 5 (u—v)abc

Il = 2 2 _
edu” + gdv Ah(u)\/uv “ 4h(v)y/uv v

where h(z) = (x — a®)(z — b?)(x — ¢?). Here the orientation of the
ellipsoid is such that &£y > 0 and ko > 0.
So the result follows evaluating k,, in the directions D which are

defined by equation (7.8). O

Remark 7.4.3. It is worth to noticing that the geodesics are the only
reqular solutions of the implicit differential equation (7.8). The singular

solutions (envelopes) of equation (7.8) are, in general, not geodesics.

Proposition 7.4.3. Consider the binary differential equation (7.8).
Then the following holds.

i) For A2 € (c?,b%) the real solutions are defined in the region R =
{(u,v) : b2 <u < a? c® <v < A%} and the behavior is as in Fig. 7.3

left.
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ii) For \? € (b% a®) the real solutions are defined in the region
R = {(u,v) : \? <u < a? ¢ < v < b} and the behavior is as in
Fig. 7.3 right.

iii) For X\ = b the real solutions are defined in the region R = {(u,v) :

b? <u < a?, ¢ < v <b%} and the behavior is as in Fig. 7.3 center.

b2 b2
)\‘)

v
v
c? 2

b2 )\Z U a2

Figure 7.3: Regular and singular solutions of equation (7.8): i, left;
ii, right; iii, center.

Proof. Let A2 € (b,a?). The implicit differential equation given by
equation (7.8) has the lines u = a?, u = A2, v = ¢? and v = b?
as singular solution of envelope type. At the points of intersection
(A2, ¢?), (M2,b?), (a?,c?), (a?,b?) there is an unique separatrix solu-
tion in the domain [A\?,a?] x [c2, b?].

In fact, consider the fold maps v = > —U? and v = V2—¢2. Then
the equation (7.8) in the new variables (U, V) € [0, a%?—\?]x [0, b*—c?]

is given by:
H=(a*>-U*(a® - -V =& - V)V =& = VaU?
(V24 (a® = = U)(a® = b = U)(a®> = N = U?dV? = 0.

It follows that H(0,[dU : dV]) = a*(a® — *)(b* — *)(\* — ¢*)dU? —
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2

A(a? —c*)(a? = b%)(a® — A?)dV?2. So this equation defines two non zero

real directions which are transversal to the lines U = 0 and V = 0.
In the variables (u,v) it follows that the lines u = a and v = ¢ are
singular solutions obtained by the singularities of the fold maps. See
Fig. 7.3 right.

Now let A = b > 0 and consider the fold maps v = U? + b? and
v =b? — V2. The differential equation (7.8) is simplified to

H(U,V,[dU : dV]) =(b> + UH)V*(V? + a* = b*) (> — & — V?)dU?

— (b = VU = - U*)(V* = &+ U%)dV? =0.

This binary equation in the region [0, a®—b?] x [0, b*—c?] is equivalent

to the following ordinary equations:

u' = sU\/(2—V2)(a2 — b2 —U2)(b2 — 2 + U?)
o= V/02+U2)(V2+a2—b2)(b2 — 2 —V?), s==+1

For the vector fields above the origin is a hyperbolic node in the
case s = 1 and a hyperbolic saddle when s = —1. In both cases the
lines U = 0 and V' = 0 are solutions. In the variables (u,v) it follows

that the lines u = b and v = b are singular solutions. See Fig. 7.3
center.

Consider also the fold maps u = U? + b% and v = ¢ + V2. The
differential equation (7.8) is simplified to

H(U,V,[dU : dV]) =(b* + U*)V?(a® = && = V) (b* — & — V?)?dU?

—(V2+ AU -0 - U*)(0* = & +U?)dV? = 0.

This binary equation in the region [0, a®—b?] x [0, b*—c?] is equivalent
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to the following ordinary equations:

u'= sUV(2+V2)(a2 =02 —U2)(? — 2+ U?)
= (®—c V)2 +U2) (a2 — 2 -V2), s==£L1.

The singular point (0,0) is regular for both ordinary equations and
the line U = 0 is a common solution. The analysis of the other cases

can be carried out without any more novelty. This ends the proof. O

For A\? € (b%,a?), consider the following convergent hyper elliptic

e [ o 1 [

p() =& — a®)(& — ) (& — ) (@ — X2).

integrals:

Also for A\? € (c?,b?), consider the following convergent hyper elliptic

Proposition 7.4.4. Let do; = —ﬁ du and doy = ,/—ﬁ dv.

integrals:

Suppose that X\ #b. Then the differential equation (7.8) is equivalent
to the product of two linear differential equations doy + dog = 0 and
do1 — doy = 0 with

i) (01,02) € [0,L1) x [0, Ly) when (u,v) € [A\?,a?) x [c2,b?).

ii) (01,02) € [0, L3) x [0, Ly) when (u,v) € [b2,a?) x [¢?, \2).



174 [CAP. 7:  GEODESICS ON SURFACES

Lo La

[op) g2

0 g1 L1 0 (o5} Lg

Figure 7.4: Solutions of the linear differential equations

Proof. The differential equation (7.8) can be written as

o000 (e Dh(w)

SO, deﬁning dO'l — /—m du and d0'2 = —W dv

the result follows taking in care the convergence of the hyperelliptic

integrals defining L;, (i=1,...,4). O

du® = 0.

Remark 7.4.4. In Section 8.7 of Chapter 8 a similar approach will be
developed to analyze the mean curvature lines on the ellipsoid. A general

class of binary differential equations was studied in [59].

Theorem 7.4.5. Consider the ellipsoid E, p . given by i—z+g—§+i—z =
1, a > b > ¢ > 0, parametrized by ellipsoidal coordinates (u,v). Then
the global behavior of the geodesics is as shown in Figs. 7.5 and 7.6.
i) For A% € (c2,b%) the geodesics oscillates as shown in Fig. 7.5 left.

The envelopes are curvature lines defined by the intersection of the

hyperboloid aff)\Q + bej)\Q + CZiZAQ =1 of one sheet with the ellipsoid.
When Ly/Ls is irrational all geodesics in the level \? are recurrent,

otherwise all are closed. The ellipse contained in the coordinate plane

x =0 is a stable geodesic.
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ii) For A2 € (b% a?) the geodesics oscillates as shown in Fig. 7.5

right. The envelopes are curvature lines defined by the intersection

of the hyperboloid a;iz)\z + bzyj)\z + szj)\z = 1 of two sheets with
the ellipsoid. When Lo/ Ly is irrational all geodesics in the level A2
are recurrent, otherwise all are closed. The ellipse contained in the
coordinate plane z = 0 is a stable geodesic.

iii) For A\ = b the geodesics through an umbilic py pass also through
the opposite umbilic —py. The behavior is as in Fig. 7.6. The ellipse
E,, contained in the coordinate plane y = 0, passing through the four
Darbouzian umbilics is hyperbolic (saddle). All the other geodesics in
this level set accumulate on E,. The opposite umbilics are conjugate

to each other and to no other point.

Foliateg torus Cylindrical region

Figure 7.5: Geodesics on the ellipsoid E, 3 . with three distinct axes
at level A\ # b and

Proof. In the ellipsoidal coordinates (u, v) the octants of the ellipsoid

Eq,c are parametrized by 8 local maps. The intersections of E, 4. .



176 [CAP. 7: GEODESICS ON SURFACES

Figure 7.6: Geodesics on the ellipsoid E, 3 . with three distinct axes
at level A\=10

with the coordinates planes are not covered.

In order to collect these maps in only one consider the change of
coordinates u = b2 cos? U + a?sin? V and v = ¢? cos? U + b2 sin? V
(U, V) € [0,7] x [0,7].

It follows that the map defined by 8(U, V') = (x(U, V), y(U, V), z(U,V))
with

9 9 oy M(u,v,a) M(u,v,b) M(u,v,c)
(x(u,v) y(u,v)°, 2(u, v) ) o (W(a,b, c)’ W(b,a,c)’ W(c,a,b)

) (7.10)

where, M (u, v, w) = w?(u — w?)(v — w?), W(a,b,c) = (a* —b?)(a®—

c?), u € (b*,a®) and v € (¢2,b?), is a covering of the ellipsoid by the

torus S! x S!, with four branch points over the 4 umbilics.
Therefore, it follows from Proposition 7.4.4 that for A\? € (b2, a?)

the geodesics at level A2 are integral curves of a linearized flow of the

torus ([0, L] x [0, Lo]) with rotation number equal to Ly/L;. So all
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the geodesics are recurrent if the rotation number is irrational. See
[92] and [112] for more properties of rotation numbers.

By construction, the integral curves of the implicit equation (7.8)
are projected in the ellipsoid as shown in Fig. 7.5. In this case the
geodesics oscillate between two closed principal lines parametrized
by u = A? which are symmetric in relation to the coordinate plane
z = 0. Therefore the ellipse E, = E, ; .N{z = 0} is a stable geodesic.
This ends the proof of item ii). The proof of item i) is similar.

For A\ = b, it follows that the differential equation (7.8) is equiva-

lent to the following ordinary equations:

u' = sU\/(02—V2)(a® — b2 —U?) (b2 — 2 + U?)
{v' = VR UO)(Vita ) (02— 2 —V?), s==£L
with (U, V) in the region [0, a? — b%] x [0,b? — ¢?]. The phase portrait
of these equations are as shown Fig. 7.6, left.

From this it follows that any geodesic through an umbilic point
po pass also through —pg. By the local structure of saddle near an
umbilic point of the phase portrait, see Fig. 7.6, it follows that the
ellipse E, = Eqp, N {y = 0} is not stable, none of the geodesics is
contained in a tubular neighborhood of E,. As FE, is not stable it
follows that it is hyperbolic, see [95]. See also Fig. 7.5. The prop-
erty of accumulation follows from the nodal structure of the phase
portrait, see Fig. 7.6, near an umbilic point. A geodesic v through
an umbilic point pg, making an angle 6y € (0, 7) with the ellipse E,
at pg pass through —py and return to pg making an angle 61 # 6y
with the ellipse E,. See Fig. 7.6. So it is well defined a return map
II: P! — P! In this coordinate II(fy) = 6;. The diffeomorphism IT
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has two hyperbolic fixed points 0 and 7. This ends the proof. O

Theorem 7.4.6. Let E =E, ;. be the ellipsoid with a > b > ¢ > 0.
Define Per(E) = {(p,v) € TAE : geodesic 4 through (p,v) is closed }.
Then Clos(Per(E)) = Th1M.

For the proof see [95, page 315].

7.5 Geodesics on Surfaces of Revolution

Let v: R — R3, ~(u) = (r(u),0,z(u)), r > 0, be a regular curve

parametrized by arc length and consider the surface of revolution
afu,v) = (r(u) cosv, r(u) sinv, z(u)).
The fundamental forms are:
I, = ds?® = du® + r(u)’dv?®, II, = —k(u)du® — r(u)2'(u)dv?,

where k(u) is the curvature of the plane curve 7.

The Gaussian curvature of « is K(u,v) = %i)(“)

The Christoffel symbols are given by:

rt,= 0, I'}, =0, I't,b =0, T3, =0

2 . Gy 7 1 _ /
I'fs = o = 7;—_, I3y = -Gy = —21"r.

(7.11)

Therefore the differential equation of the geodesic lines is given by:

d? dv\2 _ d? Gududv _
o —Gu(E) =0, @+ EE =0 (7.12)

ds® = du® +r(u)?dv?.
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From the second equation above it follows that:

2

383 G, du
Lds = ———ds
v G ds
ds

Therefore integrating the equation above it results that, G % =c.
Writing the unit tangent vector to the geodesic ¢(s) = (u(s), v(s))
in the form '(s) = (cos f(s),sin 3(s)), where g is the angle of the

geodesic v with the meridians it follows that:

dv )
GE = r(u(s))?sin B(s) = c.

This relation is called Clairaut formula and it provides a first integral

of the geodesic flow.

Substituting the Clairaut’s formula in the equation for ds? it re-

sults,

Adu® + G(? — G)dv? =0 (7.13)

The solutions of the binary equation above are the geodesics con-

tained in the level set of the first integral G % =c.

Proposition 7.5.1. Consider the differential equation (7.13). Then
the following holds:

i) If in a connected region R = {(u,v) : r(u) > c} the function
r has only one non - degenerate critical point (maximum) uy then
the Gaussian curvature is positive in R and then the behavior of the

solutions of the differential equation (7.13) is as shown in the Fig.

7.7, left. That is, when 2+/k(u1)z’(u1)r(u1) # n, n € N, the geodesic
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u = uy s elliptic and the geodesics oscillate between two principal
lines defined by u = r=(c). See 7.7, right.

ii) If in a connected region R = {(u,v) : r(u) > ¢} the function r has
only one non degenerate critical point (minimum) then the Gaussian
curvature is negative and the behavior of the solutions of the differ-
ential equation (7.13) is as shown in the Fig. 7.7, right. That is, the
geodesic u = uqg 1s hyperbolic and the geodesics oscillates to infinity.
iii) If in a connected region R = {(u,v) : r(u) > c} the function
r has only non degenerate critical points (at least two points) then
there are homoclinic or heteroclinic points for the return map. That
is, there is a hyperbolic geodesic u = ug with W5 (ug) N W"(ug) # 0
(homoclinic) or there are two hyperbolic geodesics uw = uy and u = uy
such that W (ug) N W¥(u1) # 0 and unstable W*(ug) N W*(uy) # 0

(heteroclinic).

Hyperbolic Elliptic

Figure 7.7: Geodesics on the surfaces of revolution

Proof. Consider the implicit surface F(v,u,p) = ¢*p? + r(u)?(c® —

rw?) =0, p=%.
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When r(u) = ¢ and v = ugp is a minimum, resp. maximum, of r
the Gauss curvature is negative, resp. positive and u = ug is geodesic.
So the description of the dynamic near u = ug item cases i) and ii)
follows directly from Proposition 7.3.2. Here we observe that in order
to obtain elliptical type, when the curvature is positive, is necessary
the condition of non ressonance given in Proposition 7.3.2.

Also the parallels u; such that G(u;) = ¢? are singular solutions
(envelope) of equation (7.13).

The existence of homoclinic or heteroclinic orbits is guaranteed
from the existence of a first integral for the geodesic flow (Clairaut
formula) and the local behavior of hyperbolic and elliptic (stable)

closed geodesic lines. O

7.6 Inverse Problems and Geodesics

An inverse problem for geodesics is the following one.

Let v be a closed curve in R® parametrized by arc length s. Is
there an immersed surface containing v and having it as a geodesic
curve? Is it possible to impose geometric restrictions on the surface

or on the geodesic flow near 7

Proposition 7.6.1. Let v be a closed curve in R parametrized by
arc length s, with positive curvature and associated Frenet frame

{T,N,B}. Consider as: R x St — R? defined by the equation

as(s,v) =y(s) + dr(l — cosv)N(s) + rsinvB(s), 6 = +1.

Then for small radius v > 0, a5 is an immersion and 7y is a closed

geodesic of as and K|y >0 for 6 =1 and K|y <0 for § = —1. For 3
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fized the parametrized circle vs(v) = a(s,v) is a geodesic of as if and

only if 7(3) = 0.
Proof. Let 6 =1 and write a; = a. Direct calculations show that

as(s,v) =[1 — k(s)r(1 — cosv)]T(s) — r7(s)sinvN(s) + (1 — cosv)7(s)B(s)
aw(s,v) =rsinvN(s) + rcosvB(s)
N(s,v) =as Ay = —[r?7(s)sinv]T(s) — rcosv[l — k(s)(1 — cos v)]N(s)

+rsinv[l — k(s)(1 — cosv)]B(s)
The coefficients of the first fundamental form are given by:

E(s,v) =r?k?cos®> v + 2r(k — r(k® + 7)) cosv + (1 — 7k)? 4 2r?72

F(s,v) = —r*7(1 —cosv), G(s,v)=r>

Also it follows that, E(s,0) =1, F(s,0) =0, G(s,0) =12 e(s,0) =
—@, f(s,0) = 7(s) and ¢(s,0) = —1. Therefore for r > 0 small
the map « is an embedding.

The Gauss curvature of « restricted to the curve « is given by
K(s,0) = @ —7(s)? and it is positive for small 7 > 0.

The curve v is a geodesic since T'(s) = k(s)N(s) + 0(N A T).

For § = —1 it follows that K|y = —k(s)/r + 7(s)? is negative for
small r > 0.

Also, as (auy, as) = —r27(s) sinv, it follows that s is a geodesic

if and only if 7(5) = 0. O
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7.7 Remarks on Geodesics on Compact

and Convex Surfaces

This section is devoted to give some comments about geodesics on

convex surfaces.

Lemma 7.7.1. Consider a conver surface M C R® enclosing a ball of
radius ro > 0 centered at the origin with unit normal of Gauss N oriented
outward. Then for every p € M it follows that (N(p),p) > 7o and the
equality holds if and p is contained in a sphere of radius ro centered at the
origin.

Proof. Let p € M and consider the tangent plane 7,M. The distance of
T,M to the origin is given by (N(p),p). As M is convex and enclose a ball

of radius r¢ it follows that (N(p),p) > ro. O

Theorem 7.7.1. Consider a convex surface M C R® enclosing a ball of
radius ro > 0 and let v C M be a closed non-trivial geodesic. Then L(vy) >
27try and the equality holds if and only if v is a great circle of a sphere of
radius To.
Proof. Consider « parametrized by arc length s and let k(s) = kn(s) its
curvature considered as a space curve. Then t' = —k(s)N(s), where N is
the unit normal oriented externally.

We have that £ (v,7) = (v,7) + (7",7) = (+/,7) — k(s)(N(s),7).

Therefore,
I - L 2, L) T ¢ , .
(v) = Iy ["ds = 27 =0 | ds
0 0

L(~) L(v)
:/0 k(s)(N(s),v(s))ds > ro/o k(s)ds > 27ro.

If the equality holds then M is tangent to a sphere of radius ro along ~y

and so 7y is a great circle of radius ro. O
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Let v be a closed geodesic, without double points, in a compact convex

surface M of R3.

Then M\ 7 is the union of two open connected regions M; and, in view
of Gauss Bonnet theorem, it follows that va KdS = 27 for both regions.

Consider the space Car of regular simple closed curves v on M such

that fM_ KdS = 2x for each connected component M;, i = 1,2, of M\ ~.

Let I(v) the length of ~.

Theorem 7.7.2 (H. Poincaré, C. Croke). A compact and convex surface

has at least one closed simple geodesic line.

Proof. (Idea of proof.) Let v be a closed simple curve of M. Suppose ~ be
parametrized by arc length s and of length [ > 0.
Consider the two integrals, length of v and the total curvature of the

region M.

l(fy):[yds, K(fy):/Mi Kds.

Consider a small deformation ~y. of v such that v. = a(s, ev(s))
v? v?
where a(s,v) =v(s) + v(N At)(s) + [ki(s)? + A(S)f + h.o.t.]N(s).

Then I'(0) = 4£(0) = — f(f ky(s)v(s)ds, K'(0)= fol K(s)v(s)ds.

Imposing the condition that e € Car it follows that K(y) = 27 and
K’(0) = 0. Also supposing /(y) be a minimum it follows that I'(0) = 0.
From {'(0) = 0 and K'(0) = 0 it follows that k,(s) = cK(s), c € R.

By the Gauss-Bonnet theorem we have that
l
/ kqg(s)ds =27 — KdS =27 — 27 = 0.
0 M;

Since M is convex, it follows that K(s) > 0 and so it follows that ¢ = 0 and
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kg(s) = 0, that is 7 is a geodesic. This approach suggested by Poincaré
(1905) was established by C. Croke (1982). See [136] and [34]. O

Remark 7.7.3. It is not known if there exists a smooth Riemannian sur-

face (S2,g) such that all closed geodesics are hyperbolic. See [32].

7.8 Remarks on Geodesics in Quadrics

Let M be the regular surface defined by the quadratic equation M =
{p € R" : (Ap,p) = 1} with A being a definite positive matrix. The
tangent bundle of M is TM = {(p,v) : p € M and (Ap,v) = 0}.
Define H : R™ \ {0} x R™ — R by

_ 1o (Avv) (1 B _(AU,’U>2
(o) = ylof + 80 (Stap) - 1) - Sk

Let X7 the Hamiltonian vector field associated to H.
Restricted to the tangent bundle TM it follows that X4 is defined by

(Av,v)A

xTr = - - 7
| Ap[?

The integral curves of X with initial conditions in TM define the geodesic
flow of TM. When A = Id we have M = S™™" and the geodesic flow is
defined by the second order differential equation p” = —|p|?p. Direct
analysis shows that all solutions of the above equation on the sphere S"~*

are closed.

Also we mention that after a reparametrization, see [97], the geodesics

of M are given by the Neumann system on the unit sphere

1"

¢'=—-A"'q+pg.q R, |q| = 1.

The dynamics of the geodesic flow in convex hypersurfaces close to the unit

sphere is extremely rich and it is an important area of research. See [118].
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7.9 Exercises and Problems

7.9.1. Consider the quadrics z—z + ly)—z + i—j —-1=0,0<c<b<a.

i) Show that the hyperboloid of one sheet has one hyperbolic closed planar
geodesic.

iii) Show that there are closed geodesics of arbitrary large length in the
ellipsoid (0 < ¢ < b < a). What is the situation in the other quadrics?

iv) Analyze the limit situation when ¢ — 0.

7.9.2. Show that in the torus of revolution there are closed geodesics of
arbitrary length. Discuss the type (elliptic, hyperbolic) of each closed

planar geodesic of the torus.

7.9.3. Consider the paraboloid (z,y, 2%/a®+%?/b?). Analyze the geodesics
when 0 # a # b and show that when a = b # 0 all geodesics passing through
0 goes to infinity.

7.9.4. Determine the geodesic curves of the Clifford torus parametrized by

a(u,v) = %(cos u,sinu, cos v,sinv) in S* with the induced metric ds® =

(Quy ) du® +2 (Qtuy o) dudv + {(w, ) dv?.

7.9.5. An oriented line £ in R? is defined by £(u,v) = {v + tu, |u| = 1,t €
R}. Here u is the direction of £ and is also the orientation of £. Let L3 the
space of oriented lines of R® and TS? = {(u,v) : |u| = 1, {u,v) = 0} the
tangent bundle of S2.

i) Show that the map L : TS* — Lz defined by L(u,v) = L(u,v) =
[v — (v,u) u] + tu is a bijection. Here v — (v,u) u is the point on the line
which is closest to the origin.

ii) Show that T, ,»TS* = {(z,y) : (z,u) =0, {(z,v) + (y,u) = 0}.

For a study of the geometric properties of L3 see [69] and [150].
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7.9.6. Let S? be the unit sphere and T'S? the associated tangent bundle.
i) Define the Sasaki metric (.,) ¢ (see [41, page 79]) in T'S” and determine
the geodesics of TS

ii) Show that T1S?, the unit tangent sphere bundle, is diffeomorphic to
the projective space P1R® and that the lifting of the geodesic flow of S?
to S* (universal covering of P1R?®) has all integral curves closed and of the

same period.

iii) Show that the orbits of the lifting above define a Seifert fibration of
the sphere S%. See [173].

7.9.7. Study the integrability of the geodesic flow on the ellipsoid of R",
n > 4. See [5] and [169].

7.9.8. Give an example of a ruled surface in R® having an isolated closed

geodesic line and analyze the associated Poincaré map.

7.9.9. Give examples of developable oriented surfaces in R® having closed

geodesic lines and analyze the associated Poincaré map.

7.9.10. Give examples of analytic, non oriented (Mobius band) developa-

ble surfaces in R® having closed geodesic lines.

7.9.11. Let M be a smooth surface of R®. Define a natural form of volume

in TM and show that the geodesic flow on TM preserves such form. See

[41).

7.9.12. Consider the semi-plane R3 = {(u,v) : v > 0} with the metrics
ds® = du® + v%dUQ and do® = v%(dug + dv?). Determine the geodesics of

R3 with respect to each of these metrics.

7.9.13. Give an example of a compact and convex surface enclosed by a

ball of radius 7o > 0 and having closed geodesic of arbitrary large length.
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7.9.14. Let M be a compact surface of genus g > 2. Show “heuristically”
that M has 3g — 3 simple closed geodesics which defines a partition of M

in g — 1 connected regions. Analyze the topology of these regions.

7.9.15. Consider a smooth surface parametrized by a graph:

1
a(u,v) = (u,v, §(k1u2 + kov?) + %u?’ + gu2v + %luv2 + gv?’ + 0(4)).

Consider the tangent plan at 0 with orthogonal coordinates (z,y).
i) Compute the second jet of the exponential map in the charts (z,y) and

(u,v).

ii) Interpret geometrically the second jet of the exponential map.

7.9.16. Let (M, g) be a complete Riemannian manifold of dimension n and
negative curvature (all sectional curvatures bounded above by x < 0).

i) Show that if (p1,p2) € M x M is a local maximum for the distance
function on M, d: M x M — R, then the points p1 and p2 are connected
by at least 2n + 1 distinct geodesic segments (i.e. length minimizing).

ii) Show that on the ellipsoid (positive curvature) in R?* with three distinct
axes the results of item i) does not holds. In fact, show that the points at

maximal distance are connected by two geodesic segments only. See [86].

7.9.17. Show that a compact surface can be triangulated choosing the
vertices to be an e—dense set, where every point has a geodesically convex
neighborhood of radius r4 > €, and choosing the edges of the triangulation
to be geodesic segments. For compact surfaces embedded in R® show that
the triangulation as above can be defined such that the edges are principal
and mean arithmetic curvature lines. See page 84. What can be said about

triangulation of immersed or singular surfaces?

7.9.18. Let M C R® be a surface of class C? with first fundamental form
I = Edu® + 2Fdudv + Gdv?. Show that every geodesic is uniquely deter-
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mined (locally) by its initial conditions. Suggestion: The Gauss Bonnet

Theorem holds on surfaces of class C2. See [80].

7.9.19. Let M be a compact, smooth manifold of dimension m, and let

R =R" be the space of C" Riemann structures on M, endowed with the

natural C" topology, 2 < r < co. Fix p € M. The k" focal component
with respect to g € R at p is

or ={v € T,M : Jexactly k vectors v = v1,...,v; € TpM with

|vi] =+ = |vg| and exp(v1) = - - = exp(v)}.

The focal decomposition is defined by T,M = |J, ok where 1 < k < oo.
See [132] and [88].
i) Analyze the sets o, when M is the unit sphere of R.

ii) Analyze the sets o when M is a surface of revolution in R?.

7.9.20. Establish a connection between the planar “billiard problem” and
the geodesics on convex surfaces. For example, analyze the geodesics in
the C" surface obtained from the envelope of a family of spheres of radius e
centered in the face, edges and vertexes of an equilateral triangle of length

1 >> €. See [5], [126] and references therein.

7.9.21. Let M C R® be a complete surface of class C",7 > 2. Let p € M
and let v : [0,00) — M be a geodesic parametrized by arc length s such
that v(0) = p. Denote by G the set of all normalized geodesics through p
as above. Let A, = {s € R: d(7(0),7(s)) = s} and s, = sup(4,).

This means that v is the curve of shortest distance between p and any
point on 7y between p and ¢ = v(sy), but it is not the curve of shortest

distance between p and any point on v after ¢. Let C(p) = qucp {7(s4)}

the cut locus or caustic of p. See [95, pages 126- 136].
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i) Show that A, = [0, s,] or [0,00). Show that in the arc ([0, sy)) there
are no conjugate point of p along .

ii) Let ¢ € C(p). Show that or ¢ is a conjugate point of p along a geodesic
v € G)p or there exists two distinct geodesics in G, with the same length,
passing through p and q.

iii) Let p € M and suppose M be compact and analytic. Show that generi-
cally C(p) is a curve with finite singularities of cuspidal type. What is the
structure of the set exp, ' (C(p))?

iv) Let po be an umbilic point of an ellipsoid of three distinct axis. Show
that C(po) = {—po}.

v) Let pp be a non umbilic point of an ellipsoid. Show that C(po) is a
curve with singularities. What is possible to say about the number of
singularities of C'(po)? See [152].

vi) Consider the paraboloid of revolution z = a(x® + y*), a # 0 and
po = (0,0,0). Show that C(po) = 0.

7.9.22. Carry out a study of various geometrical variational problems, see

[138]. For example, consider the following functional
F(e) = /k(s)st, s is the arc length

in the space of regular curves with positive curvature k

C={c:[a,b] = R? c(a) = ca, ¢(a) =ch,c(b) =, ¢ (b) =cp},
with end points fixed. Determine the critical points of F.
7.9.23. Consider an ellipsoid with three different axes a Z b Z ¢ = 1. Let
L be a given positive real number. Show that there are no closed geodesic
of length smaller than L other than multiples of the three principal ellipses.

See [117]. Analyze the case where a >> b Z ¢ > 0 and show that there are

non simple closed geodesics of moderated length.



Chapter 8

Lines of Axial curvature

on surfaces immersed in

R4

8.1 Introduction

The curvature theory of surfaces immersed in R? is among the
deepest and most beautiful achievements of Classical Differential Ge-
ometry. One of its best understood and accomplished chapters in-
volve the principal curvatures and their elementary symmetric func-
tions: the Mean and Gaussian Curvatures[166]. Intimately associated
to the principal curvatures are the principal direction fields, their in-
tegral foliations and umbilic singularities. However, the initial steps
towards the understanding of the global behavior of these geometric
objects have been given only recently. The surveys [76] and [63] dis-

cuss these initial steps and provide a list of pertinent references, from

191
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the very classical works, in the tradition of Euler, Monge and Dar-
boux [166] to more recent ones, motivated by the notions of structural
stability and genericity, originating from Differential Equations and
Dynamical Systems, [75], and Global Analysis, [156]. This chapter is

concerned with the extension of these ideas to surfaces immersed in
the Euclidean space R*.

Landmarks of the Curvature Theory of surfaces in R* are the
works of Wong [181] and Little [102], where a review of properties
of the Second Fundamental Form, the Ellipse of Curvature (defined
as the image of this form on the unit tangent circle) and related
geometric and singularity theoretic notions are presented. These au-
thors give a list of pertinent references to original sources previous to
1969, to which one must add that of Forsyth [48]. Further geometric
properties of surfaces in R* have been pursued by Asperti[10] and
Fomenko [47], among others.

The global generic structure of the axial principal and mean cur-
vature lines, along which the second fundamental form points in the
direction of the extremes of large and the small axes of the Ellipse of
Curvature, is the object of study of this chapter.

The structure around the generic axiumbilic points (for which
the ellipse degenerates to a circle) will be established for surfaces
immersed with class C”, r > 4, in R*. See Fig. 8.2 Section 8.4, for an
illustration of the three generic types: E3, E4, E5. An independent
previous study of these patterns in the smooth category were can be
seen in [24].

The axiumbilic points studied in this chapter must be regarded as
the analogues of the Darbouxian umbilics: D1, D2, Ds, [37], [71, 75].

In both cases, the subindexes refer to the number of separatrices
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approaching the singularity.

For an immersion « of a surface M into R*, the axiumbilic singu-
larities U, and the lines of axial curvature are assembled into two ax-
ial configurations: the principal azial configuration: P, = {U,, X,}
and the mean axial configuration: Qu = {Ua, Ya}.

Here, P,= {U,, X,} is defined by the axiumbilics U, and the field
of orthogonal tangent lines X,,, on M\U,, on which the immersion is
curved along the extremes of the large axis of the curvature ellipse.
The reason for the name given to this object is that for surfaces in
R3, P, reduces to the classical principal configuration defined by the
two principal curvature direction fields {Xq1,Xq2}, [71, 75]. Also, in
Qo = {Ua, Y.}, Y, is the field of orthogonal tangent lines Y, on
MN\Uy,, on which the immersion is curved along the extremes of the
small axis of the curvature ellipse.

For surfaces in R3 the curvature ellipse reduces to a segment
and the crossing Y, splits into the two mean curvature line fields
{Ya1,Ya2}. In this case Q, reduces to the mean configuration de-
fined by umbilic points and line fields along which the normal curva-
ture is equal to the Mean Curvature H and they make an angle of
7 /4 with the principal line fields.

These line fields agree with the asymptotic line fields for minimal
surfaces.

In this chapter, the notion of principal structural stability of im-
mersions of surfaces into R? is extended to the axial configurations
in the case of R%.

Call J" = J"(M?,R*) the space of C" immersions of M? into R*.

An immersion « € J" is said to be Principal Axial Stable if it has

a C", neighborhood V(«), such that for any 3 € V(«) there exist a
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homeomorphism h : M2 — M? mapping U, onto Ug and mapping
the integral net of X, onto that of X3. Analogous definition is given
for Mean Axial Stability.

Sufficient conditions are provided to extend to the present setting
the Theorem on Structural Stability for Principal Configurations due
to Gutierrez and Sotomayor [75]. The local stability around axium-
bilics for smooth immersions, has been carried out in [24].

Two local cases are essential for this extension: the axiumbilic
points with their separatrix structure and the axial cycles. Both are
treated in detail here.

This chapter is organized as follows:

Section 8.2 is devoted to the analysis of the differential equation
of lines of axial curvature, in an arbitrary local chart. It is shown
that, for surfaces in R3, this equation factors into the product of the
equations of principal and mean curvature lines.

In Section 8.3 the equation of lines of axial curvature is written in a
Monge chart. The umbilic condition is explicitly stated in terms of the
coefficients of second order jet of the two functions which represent
the immersion in a Monge chart.

In Section 8.4 the condition of stability at axiumbilic points is
expressed in invariant form involving the third order jets. The lo-
cal axial configurations at stable axiumbilics is established for C*
immersions.

In Section 8.5 the derivative of first return map along an axial
cycle is established. It consists of an integral expression involving
the geometric functions (curvatures, normal and geodesic torsions)
along the axial cycle. This expression extends that of R? case given

in [71, 75].
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In Section 8.6 the results presented in Sections 8.4 and 8.5 are put

together to provide sufficient conditions for Axial Stability.

In Section 8.7 the axial configurations of the ellipsoid and of the

torus of revolution are discussed.

8.2 Differential equation for lines of axial

curvature

Let o : M? — R* be a C", r > 4, immersion of an oriented
smooth surface M into R*. This last space is oriented by a once for
all fixed orientation and endowed with the Euclidean inner product
(,). Let N7 and N3 be a frame of vector fields orthonormal to «.
Assume that (u,v) is a positive chart and that {ow,, o, N1, Na} is a

positive frame.

In a chart (u,v), the first fundamental form of « is given by:

I, =(Da, Do) = Edu® + 2Fdudv + Gdv?, with

E =({ay, o), F={(ay,a,) and G = (a,,a,).
The second fundamental form is given by:

Ila :Ill,aNl + 11270(]\[2, where
II o =(N1, D%*a) = e;du® + 2 fidudv + gidv® and

115, =(Na, D?a) = eydu® + 2 fodudv + gadv?.

The normal curvature vector at a point p in a tangent direction



196 [CAP. 8: LINES OF AXIAL CURVATURE

v € T,M is given by:

I, (v,v
kn = kn(p,v) = ﬁ

Denote by TM the tangent bundle of M and by NM the normal
bundle of a. The image of the unitary circle of T,M by k,(p) :
T,M — N,M, being a quadratic map is either an ellipse, a point or
a segment. In any case, to unify the notation, will be refereed to as

the ellipse of curvature of a and will be denoted by E,. See Fig. 8.1.

A
N

Figure 8.1: Ellipse of curvature E,

The mean curvature vector H is defined by:

E91 + €1G — 2f1FN + Egg + €2G — 2f2F
2(EG—F?) ! 2(EG — F?)

H =hiNi + haNg = Na.

Therefore, the ellipse of curvature E, is given by the image of:

The tangent directions for which the normal curvature are the axes,

or vertices, of the ellipse of curvature E, are characterized by the
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following quartic form given by the Jacobian of the pair of forms

below, the first being quartic and the second quadratic:
Jac(||kn — H||*, In) =0,
where

[ [e1du2 + 2 f1dudv + g1dv? _ (Bgi+eG— 2f1F)]2
" Edu? 4 2Fdudv + Gdv? 2(EG — F?)

eadu?® + 2 fodudv + gadv?  (Egs + e2G — 2f2F)}2

[ Edu? + 2Fdudv + Gdv? 2(EG — F?)

Expanding the equation above, it follows that the differential equa-
tion for the corresponding tangent directions, which define the azial

curvature lines, is given by:
asdv* + agdvddu + asdv®du® + ardvdu® + apdu® = 0, (8.1)
where,

ay = —4F(EG — 2F?)(¢} + g3) + AG(EG — 4F?)(fig1 + f292)

+8FG?(ff + f3) + AFG?(e1g1 + e2g2) — 4G>(e1 f1 + eaf2),

az = —4E(EG — AF?)(g] + g3) — 32EFG(f191 + f292)

+16EG?(f7 + f5) — 4GP (e] + €3) + 8EG? (e1g1 + eaga),

as = — 12FG2(e? + €2) + 12E%F (g% + ¢2)

+24EG?(e1 f1 + e2f2) — 24E*G(f191 + f292),
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ay =4E3(g3 + g3) + AG(EG — 4F%)(e? + €3) + 32EFG(e1 f1 + eafo)
—16E°G(f} + f3) — 8E*G(e191 + e2g2),
ap = 4F(EG — 2F?)(e3 + €3) — 4E(EG — 4F?)(e1f1 + eaf2)

—8E°F(ff + f3) — 4E°F(e191 + €292) + 4E*(f191 + f292).

Lemma 8.2.1. The following relations hold:

FEay = — 6Gag + 3Fay, E*a3 = (4F? — EG)a; — 8FGay,
(8.2)
F?ay =G(EG — 4F%)ag + F(2F? — EG)a;.

Proof. Combining and simplifying the expressions above for a;, i =

0,...,4, it can be verified that the following relations hold:
Fas = —6Gag + 3Fa1, 3Eas = —3Ga1 + 4Faz, 6Fas = —Gas + 3Fas.

Further substitution leads to the result. O

We have established the following proposition.

Proposition 8.2.1. Let o : M — R* be a C™ immersion of a smooth
and oriented surface. Denote the first fundamental form by I, =

Edu? + 2Fdudv + Gdv? and the second fundamental form by
I, = (erdu® + 2 fidudv + g1dv?) Ny + (eadu® + 2 fadudv + godv?) Na,

where { N1, N2} is an orthonormal frame.

i) The differential equation of azial curvature lines is given by:
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A =[apG(EG — 4F?) + a, F(2F? — EG)]dv*
+[~8agEFG + a1 E(4F? — EG)|dv3du
+[—6a0GE? + 3a; FE?|dv?du®
+ay E2dvdu® + aOESdu4 =0,

where,
a1 = 4G(EG — 4F?)(e] + €3) + 32EFG(e1f1 + e2f2)
+4E® (g7 + g3) — 8E*Glerg + e292) — 16E°G(f7 + f3);
ao = AF(EG — 2F?)(e] + €3) —4E(EG — 4F?)(e1f1 + eaf2)

—8E’F(f} + f3) —AE*F(e1g1 + e292) + 4E° (fig1 + f292).

it) The aziumbilic points of « are given by: ag = a1 = 0.

Remark 8.2.1. The last expression for the differential equation shows that
when the (u,v) coordinates are isothermic, i. e. E = G and F = 0, it holds
that:

a1 = —az = B’} + €3 + gf + 93 — 4(f7 + [3) — 2(e191 + e292)],

a0 = a4 = —az/6 = 4E3[fig1 + faga — (e1f1 + e2f2)],

and the differential equation reduces to:
ao(u, v)(dv* — 6du’dv® + du®) + a1 (u, v)(du® — dv®)dudv = 0.
Also this equation can be written as Im [(% + iao)dz"] = 0.

Proposition 8.2.2. Suppose that the surface M is contained into R3
with ea = fo = go = 0. Then the differential equation (8.3) is the
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product of the differential equation of its principal curvature lines and
the differential equation of its mean curvature lines, i.e., the quartic

differential equation (8.3) is given by
Jac(Ily, 1) Jac(Jac(I1y, I1,), In) = 0. (8.4)

Proof. From the differential equation (8.3) it is obtained:

as = —AF(EG — 2F%)g} + AG(EG — 4F?) fig1 4+ 8FG*f} +4FG?e1g1 —
4G3e4 fi;

a3 = —4E(EG — 4F?)g? — 4G®e? — 32EFG fig1 + 16EG? f2 4+ 8EG?e1 g1;
az = —12FG?e3 + 12E°Fg? + 24EG?e1 fi — 24E°G f1g1;

a1 = 4E%¢? + 4G(EG — 4F?)e? 4+ 32EFGe fi — 16E>Gff — 8E*Geigi;
a0 = AF(EG — 2F?)e? — AE(EG — 4F%)eif1 — S8E*Ff} —AF*Feigi +
4F3 fig1. Therefore the quartic differential equation

A = asdv* + agdvddu + asdudv® + ajdvdu® + apdu* = 0 can be

factored as the product of two quadratic forms A; and As, where:
A1 = (Ef) — Fey)du® + (Egy — e1G)dudv + (Fg, — f1G)dv?

and

Ay =[e1(EG — 2F%) + 2EF f, — E%g]du?
+(4fLEG —2EF ¢ — 2FGey)dudv
+(g1(EG — 2F?) + 2f1FG — e1G?)dv?.

The second quadratic differential equation above is given by the

equivalent quadratic equation:

erdu? + 2 f1dudv + g dv? _1Eg + e1G —2F fy
Edu? + 2Fdudv + Gdv? 2 EG — F?

=0.

The equation above is also equivalent to Jac(Jac(I1a, 1), 1o) =0. O
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Remark 8.2.2. The geodesic torsion at a point p in a tangent direction

[du : dv] of a curve in M C R? is given by:

_ (Fg—Gf)dv® + (BEg — Ge)dudv + (Ef — Fe)du®
g = 3 )

(EG — F?)2 (Edu® + 2Fdudv + Gdv?)

The extremal values of T4 are given £v/H? — K and they are attained in
the mean normal curvature directions. So, the mean curvature lines are
also curves of mazximal (minimal) geodesic torsion. In a minimal surface

they coincide with the asymptotic lines, [166].

8.3 Differential equations of lines of axial

curvature in Monge Charts

Take a surface in Monge form: z = R(z,y), w= S(x,y).
The tangent plane at the point over (z,y) is generated by {¢1, t2},
where t; = (1,0,R;,S;) and to = (0,1, Ry, S,).

The normal plane at the point (x,y, R(x,y), S(x,y)) is generated
by {]\71, NQ}, where N; = (—Ry;,—R,,1,0) and Ny = t1 Ata ANj.
Here A means the exterior product of three vectors in R* and is

defined by the equation
det(tl, to, Nl,’l)) = <N2, ’U>, NS R%.

Calculation leads to

Ny = (—=Su(14 R})+ RoRy Sy, —Sy(1+R3)+ RoRy Sy, —SyRo—RySy, 1+
R2 + RY).

Consider also the vectors, t11 = (0,0, Rz, Spz), t12 = (0,0, Ray, Szy)
and a2 = (0,0, Ry, Syy)-
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Therefore the coefficients of the first fundamental form are given
by:
E = <t1,t1>, F = <t1,t2> and G = <t2,t2>.

Also, those of the second fundamental form are:

er =(t11, N1), f1 = (tiz, N1), g1 = (22, N1),

€2 :<t117N2>7 f2: <t127N2>a 92:<t225N2>7

where N1 = N1/|N1| and N2 = N2/|N2|

Write
R(z )—@wQ—i—r zy + 12 2—}—91’3—1—(—1372 —|—ém2+£ ® 4+ hot
7y—2 112y 23/ G 2y2y 6y
_ 520 2 502 2 é 3 2 2 E 2 Q 3
S(z,y) = 5 T + suxy + 5 Y + 6% + 5 % Y+ 5 Y + GV + h.o.t.
(8.5)
Direct calculation shows that:
e1 =10 + ax + dy + O(2) €2 = s20 + Az + Dy + O(2)
fi=ri+dx+by+ O(2) fo=s11+Dx+ By+ 0(2)
(8.6)

g1 =102 +bx + cy + O(2) g2 = So2 + Bx + Cy + O(2)
E=1+0(2) F=0(2) G=1+0(2)

From the differential equation (8.3) the condition for (0,0) to be an

axiumbilic point is that:

r11 (720 — ro2) + s11(820 — S02) =0,
(8.7)

4(r3; + s31) — (rao — r02)? — (520 — 502)? = 0.
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If 0 is an axiumbilic point, then the differential equation of lines

of axial curvature is given by:
(ap+ Ao) (dy* —6dy*da® +da*) + (a1 + Ay ) dady(dz® — dy?®) = 0, (8.8)
where ag(z,y) = éx + dy, a;(x,y) = ax + by and

c= 4d(7‘02 — 7“20) + 4(b - a)?"ll + 4(B +D — A)Sn;

S

= 4b(ro2 — 120) + 4(c — d)r11 + 4(B + D)(s02 — s20) + 4Cr11;
(8.9)
a= 4(b — a)(?"og — 7’20) — 32dr11 + S(B +D — A)(SOQ — 520);

b

8(6 - d)(?“og - 7"20) — 32br11 + 80(802 - 820) - 32(3 + D)S11.

In the differential equation (8.8) the functions Ay and A; are of type
0(2), that is:

%:2(0,0) = 551(0,0) = F52(0,0) = F5+(0,0) = 0.

Define: @ = ad—bé # 0 , b= a+d, ¢ = b+¢, extensive calculation,
confirmed by Computer Algebra, shows that these expressions are in-
variant under positive rotations on the tangent and normal frames.

By appropriate choice on the rotation in the plane {z,y} and a ho-

motety in R?, it is possible to make ¢ = 0 and, when a@ # 0, also
d=1.
So, dropping the bar in the coefficients, the differential equation

(8.8) reduces to:
[y+0(2)|(dy* — 6dy*dx? +dz*) + [az+ by +O(2)]dzdy(dz* — dy*) = 0,

provided the invariant a doesn’t vanish.
This last condition amounts to the transversality of the curves

ap = 0, a; = 0. Axiumbilics satisfying it will be referred to as
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transversal axiumbilic points. Therefore, the proposition below is
established.

Proposition 8.3.1. Let p be a transversal aziumbilic point (a # 0),
then there exist a Monge chart (z,y) and a homotety in R* such that

the differential equation of the lines of axial curvature is given by:
[y+0(2)](dy* —6dy” dz”+dz* )+ |az+by+O0(2)|drdy(dz” —dy®) = 0, (8.10)

where a and b are expressed in terms of the third jet of the surface

at p and O(2) means terms of higher order.

Remark 8.3.1. Tuaking into account the invariants a , b and ¢ the co-
efficients a and b of (8.9) can be evaluated directly in any Monge chart.
Notice also that in (8.9) a and b are not the coefficients of 5> R(0) given in
(8.5).

8.4  Axial configurations near axiumbilic

points on surfaces of R*

In this section will be established the qualitative behavior of the
axial configurations P, and Q. in a neighborhood of an axiumbilic
point in terms of the parameters (a, b) in equation (8.10).

Let

A(a,b) = (a+1)*[I° = 27J°] where,
2 (®11)

b? _2a a b
16"

7 I =gl DA -5+

a
I_Qa(ﬂ +1)+4+
Theorem 8.4.1. Let o : M — R* be an immersion of class C", r >
4. Consider a transversal axiumbilic point, for which a # 0. Then

the following holds:



[SEC. 8.4:  AXIAL CONFIGURATIONS 205

i) If A(a,b) <0, then the azial configurations P, and Q. are of
type Es, with three axiumbilic separatrices, as shown in Fig. 8.2, top.
it) If A(a,b) >0 and a < 0, then the azial configurations P, and
Qq are of type Ey, with four aziumbilic separatrices and one parabolic
sector, as shown in Fig. 8.2, center.

iii) If A(a,b) >0 and a > 0, then the axial configurations Py, and
Qq are of type Es, with five axiumbilic separatrices, as shown in Fig.
8.2, bottom.

2 . &
. B

Figure 8.2: Axial Configurations near axiumbilic points Fs, Fy and
Es

Proof. Under the conditions above, a # 0, the implicit surface

dy

G(x,y,p) =y = 6p° + 1) + (az + by)p(1 = p*) + H(z,y,p), p= -,
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is regular of class C"~2 in a neighborhood of the axis p, which
represent the projective line. In fact, 3G/0x(0,0,p) = ap(l — p?),
9G/0y(0,0,p) = (p* — 6p* + 1) + bp(1 — p?) and the equations
0G/0x(0,0,p) = 9G/9y(0,0,p) = 0 have no common solution in p.
Therefore, by the Implicit Function Theorem G~1(0) is a regular sur-
face around the projective line.

Now consider the Lie-Cartan line field defined, in the coordinates
(x,y,p), by the vector field X , which is of class CT3:

0 0 0

The singular points of X located on the projective line are given by:

P(p) = pR(p) = pl(p* — 6p* + 1) + (1 — p)(a + bp)] = 0.

Consider the polynomial R(p) = (p* —6p*+1) + (1 —p?)(a+ bp) and
compute its discriminant Ag in terms of the resultant Res.(R, R'):
Ar = Res.(R,R') = (a —1)*[16a° + (4b> + 272)a* + (2304 + 16b%)a® —
8(b + 16)(b* — 80)a® + 96(b* + 16)%a + 4(b* + 16)3].

Notice that Ar = A(a,b) is given by equation (8.11). It holds
that R(+1) = —4 and limp—+R(p) = co. Therefore R has always
two real roots, one bigger than +1 and other smaller than —1.

Therefore, for any pair (a,b) with A(a,b) # 0, the polynomial R
has either four real simple roots in the case A > 0 or two real simple
roots in the case Ar <0 .

This follows from the more general fact about quartic polynomials,

[21, Ch. VI, page 145], formulated here as a Lemma.
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Lemma 8.4.1. Let R be a quartic real polynomial and Apg its dis-
criminant. Then the equation Ar = 0 gives the coefficients for which

multiple roots arise. Furthermore,

i) If Agp < 0, R has two real simple and two complex conjugate

ro0ts;

i) If Ar > 0, R has either four real simple roots or all the roots

have mon-zero imaginary parts.

The linear part of X at a singular point (0,0, p) is given by:

a(l—3p?)  4p® +b(1 —3p?) —12p 0
DX(0,0,p) = | a(1—-3p*)p pldp®> +b(1-3p*) —12p] 0
0 0 —P'(p)

The eigenvalues of DX (0,0, p) are given by:
M(p) = a(1=3p°)+pdp® +b(1-3p*) —12p], Xa(p) = —P'(p), A3 =0.

Now observe that the value of A\i(p) at a root p of R is given by:
—(* + 1%/ (* = 1)

In fact, writing R=0asa = ) and substituting

(6p° —p*—1)+bp(p*—1
1—p2

into Aq, the result follows from algebraic simplification.

Therefore, at each singular point of X,
detD(X|(g=0}(0,0,p) = Aa(p)M1(p) = P'(p)(p* +1)°/(p* — 1), p # 0,
det(DX (g0} (0,0,0)) = —a(a+1)

The possibilities for the real roots of P and their implications on the

types of singularities of X are listed below:
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Three real roots p; < —1 < pg = 0 < 1 < p2, which occurs
when A(a,b) < 0, implying that all singular points of X are
hyperbolic saddles.

Five real roots p1 < —1 < ps < po =0 < p3 < 1 < pg, which
occurs when A(a, b) > 0, implying for X that all singular points
are hyperbolic saddles, in the case a > 0, and that there are

four hyperbolic saddles and one hyperbolic node if a < 0.

Five real roots p; < —1 < p2 < p3 < pp =0 < 1 < py, which
occurs when A(a,b) > 0 and a < 0, implying for X that only
one of po and p3 is a hyperbolic node and all the other singular

points are hyperbolic saddles.

Five real roots p1 < —1 < pg =0 < p2 < p3 < 1 < pg, which
occurs when A(a,b) > 0 and a < 0, implying for X that only
one of po and p3 is a hyperbolic node and all the other singular

points are hyperbolic saddles.

The classification above follows from the saddle and node analysis

of the hyperbolic singularities contained in the projective line of the

vector field X in terms of the sign of det(DX|;g—0;(0,0,p;)). The

axiumbilic separatrices are the projections of the saddle separatrices

of the vector field X |;g—o}.

Direct calculation shows that in the chart (u,v,du/dv = q) the
Lie-Cartan line field is regular in a neighborhood of (0,0,0). The

behavior of X |{g:0} near the projective line is as shown in the Fig.

8.3. This ends the proof.

O
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Figure 8.3: Behavior of X|{g:0} near the projective line

Remark 8.4.2. The theorem above was proved for smooth surfaces, using
isothermic coordinates, in [24]. The use of Monge coordinates makes it

more elementary and allows to check its hypothesis by simpler calculations.

Theorem 8.4.3. Let p be an axiumbilic point of an immersion o €
J", r > 4. Then « is locally principal and mean axial stable at p if

only if p is one of the types E3, E4 or E5 shown in Fig 8.2.

Proof. The construction of the homeomorphism is done using the
method of canonical regions, [71], also outlined in global setting in
Section 8.6.

The conditions which characterize the axiumbilic points of types
E;,i=1,2,3 and their axial configuration (Theorem 8.4.1), are semi-
algebraic in the space of coeflicients of the third jet of o at p. These
conditions amount to the hyperbolicity of singularities of vector fields
on surfaces. It is easy to see that the violation of any of them implies

in a qualitative change by a small perturbation in the coefficients.

For instance, if @ = 0, in general, the axiumbilic splits into two
(E5 and Ey) or disappears. Also, if A(a,b) = 0 and a # 0 the type
changes into F5 or E4. This ends the proof. |
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8.5 Axial cycles on surfaces immersed in
R4

In terms of geometric invariants, here is established the formula
of the first derivative of the return map of a periodic line of axial
curvature, called azial cycle. Recall that the return map associated
to a cycle is a local diffeomorphism with a fixed point, defined on
a cross section normal to the cycle by following the integral curves
through this section until they meet again the section. This map is
called holonomy in Foliation Theory and Poincaré Map in Dynamical
Systems. See [25] and [128].

An axial cycle is called hyperbolic if the first derivative of the
return map at the fixed point is different from one. The characteri-
zation of hyperbolicity of axial cycles is given in Proposition 8.5.1 of

this section.

Lemma 8.5.1. Let c: I — M? be an azial cycle parametrized by arc
length s. Then an orthonormal positive Darboux frame {T1,T>, N1, N2},
where T1(s) = '(s), {N1, Na} is an orthonormal frame of the nor-
mal bundle associated to ellipse of curvature and No = T1 AT A Ny,

verifies the following equations:
T| = kyT> + (h1 + k1) N1 + haN»
T2I = —k'ng + Tg,lNl + Tg,gNQ
(8.12)
N{ = 7(}11 —+ kl)Tl — Tg’1T2 —+ TnNQ

Né = 7h2T1 — Tg’QTQ — Tan

Here, H = hiNi + haoNy is the mean curvature vector, T, =
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Tg,1N1+74,2N2 is the geodesic torsion vector, k,—H = k1 N1, ki >0,
is the principal azis of the ellipse of curvature and 1, = (N7, Na2) is

the normal torsion of the frame { Ny, Na}.

Proof. The result follows by direct differentiation of the equations
<,_TZ',N]'> = 0, <TZ,T]> = 5@‘ and <NZ,N]> = 51']', Z,j = 1,2 D

Remark 8.5.1. An azial cycle ¢ of a principal or mean azial configuration
is not necessarily a simple regular curve; it can be immersed with transver-
sal crossings. Recall that each axial configuration is a met consisting of

orthogonal curves and umbilic points.

The next lemma shows that Tg,l(s) = (0 for a line of axial curva-

ture.

Lemma 8.5.2. Let ¢ be an axial cycle, of the axial configuration P,
parametrized by arc length s and of length L, and the orthonormal
positive Darboux frame {T1, T, N1, N2} along c. Then the expression,

(h1 — k1) f]

a(s,v) =c(s) +vTa(s) + | 5 v? 4 a(s,v)—]Ni(s)

) (8.13)
h2 2 1)3
+[—=v” + b(s,v)—]|Na(s),
2 6
where a(s,0) = A(s), b(s,0) = B(s) and 74,1(s) = 0, defines a local
chart, L periodic in s, of class C"~° in a neighborhood of c.

Moreover, [k3 — T;Q] is the difference between the squares of the

two azes of the ellipse of curvature E,,.

Proof. The assertion about the chart (s,v) follows from the Inverse

Function Theorem applied to the map

a(s,v,wy,wa) = c(s) + vTa(s) + wi N1(s) + waNa(s),
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which is of class C"~! and defines a tubular neighborhood of c.

At the point ¢(s), the intersection of the surface with the hyper-
plane generated by {75, N1, N2} is a curve I'y tangent to Ts of class
crL.

Then the curve I'y can be parametrized by v — Wi (s,v)Ni(s) +
Wa(s,v)Na(s) and its curvature is &y, (c(s), Ta(s)). Now, as the func-
tion ky(p) : T,M — N,M, defined by

11, (p)(u,u)
kn(p,u) = W,

is a twice covering map it follows that ky(c(s),T2) = (h1 — k1)N1 +
hoNs. So, applying Hadamard’s Lemma to the functions W7 and Ws

the local chart is obtained as stated.

Next will be proved that Tg,l(s) = 0 for an axial line of curvature.
Differentiation of the equation (8.13), evaluated at (s,0) gives
that:

E(S,O) =1 F(S,O) =0 G(S,O) =1
61(8, O) =h1+ k1 fl(S, O) =Tg,1 gl(S,O) =h; —k (814)

62(8, O) = hg fQ(S, O) =Tg,2 gg(S,O) = hg

Now, by the differential equation (8.3) of lines of axial curvature,
the curve {v = 0} is a line of axial curvature if ag(s,0) = 0 and
a1(s,0) # 0.

Substituting equation (8.14) in ay given by equation (8.3) it fol-
lows that ag(s,0) = —8k1741. As ki is the principal axis of the

ellipse of curvature E, it follows that 74, = 0.
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Also, using equation (8.14) and evaluating a1, it results that
ai(s,0) = 16[k? — 372].
In a direction T' = cos 0T} + sin 0715,

kn(c(s), T) =[e1 cos? § + 2f; cos@sin 6 + g; sin® ] Ny
+[ea cos® O + 2fa cos O sin§ + gy sin? O] N.
So, it follows that:
kn(c(s),8) =kn(c(s),T) = [h1 + 74,1 sin 20 + k1 cos 26] Ny
+[ha + 74,2 sin 20| Ny

The normal curvature in the direction of the other axis of the ellipse
of curvature is ky(7/4) = (h1 + 74,1)N1 + (ha + 74,2)Na. Therefore
Tg,2 is the other axis of the curvature ellipse E,.

This allows the interpretation of the coefficient a;(s,0)/16 =
(k2 — 7'372] of the differential equation of lines of axial curvature, equa-
tion(8.3) as the difference between the square of the two axis of the

ellipse of curvature. O

Remark 8.5.2. The local chart (s,v) defined by equation (8.13) is similar

to that of [71] for principal cycles on surfaces immersed in R®.

Lemma 8.5.3. Let ¢ be an azxial line of curvature and consider the
chart (s,v) given in equation (8.13). Then the orthonormal frame

{N1, N2} of the normal bundle satisfies the following equations:

ON;
ov
ON,

W(& 0) = —Tg72T1(S) — hQTQ(S) — q2N1 (S)

(S, 0) = —(hl — kl)TQ(S) + QQNQ(S)
(8.15)
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where qa2(s) = (86NU1 (5,0), Na(s)) is the normal torsion of the axial

line of curvature orthogonal to ¢ at the point c(s).

Proof. In a chart (u,v) the following relations hold:

_ 91F—f1Ga L [HF —gFE
o EG-—F2 " EG — F?

92F—f2Ga foF — g2 F
- EG-F2 ¢ EG — F?

y + qaNo

ay — q2N>2

Therefore, using equation (8.14) and making the substitutions the

result follows. O

Lemma 8.5.4. Let ¢ be an azial cycle , then the functions A and B

introduced in the chart (s,v) are given by:

oh
A= 28—1]1 — 2]139]171 -+ Tg,2Tn

o (8.16)
B = 28—1)2 — ;72 + 2g2h1

Proof. Direct calculation, using that 7,1 = 0 and equations (8.13),

(8.14), and (8.15), shows that the following relations hold:

Bu(5,0) = —2k,  Fy(s,00=0  Gy(5,0)=0 (8.17)
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e1,0(8,0) = —2kgh1 — 74270 + hage

e2,0(8,0) = —2kgho + T;’Q —(h1+q1)g2

J1.0(8,0) = (h1 — k1) — Toho + 27y 2 (8.18)
f2.0(8,0) = (h1 — k1)Tn + hy + kgTy 2

91,0(8,0) = A+ hagz, g2.(5,0) = B — q2(h1 — k1)
In the coordinates (s,v) the mean curvature vector H is given by:

H(s,v) =h1(s,v)N1(s,v) + ha(s,v)Na(s,v),

hs = 2(EG — F?)

Therefore, differentiating hy and he, using (8.17) and (8.18), the

result follows. O

Proposition 8.5.1. Let ¢ be an axial cycle of the axial configuration
P, parametrized by arc length s and of length L. Then the derivative
of the first return map, denoted by m, is given by:

ds (8.20)
2 kf =129 ki =7y,

1 /L lklh’l + Ty 092 N hak1Ty + q2h17y.0
0

Proof. As {v = 0} is an axial cycle it follows that f1(s,0) = 741 =
0. Direct calculation gives that the derivative of the Poincaré map

satisfies the following linear differential equation:
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d , dv 1 dag dv
Sy 220 7 8.21
ds " dvg a1 Ov duvg ( )

From the expression of ag, (8.3), using (8.13) and (8.15), it follows
that:

0 0
8%'(57 0) =4f1E,(3g1 — 2e1) + 4f2E, (392 — 2e2) + 4(g1 — 61)—f1
v ov
agl dey 8f2 892 )
Hafi(5 o = 5 0) Halg2 —e2) 5 =+ 4fa(5 0~ 55)

Now, using (8.16), (8.17) and (8.18), it follows that:

da Oh
8—1)0 = 87972[8—1)2 + q2h1 — T_(',,g] + 8k1[raha + ki - h’1] (8:22)

Therefore using that a1 (s, 0) = 16[k? — 72,] it follows that,

dag — kB 4T Ohs k h h 1
v 1% 9,2 v 1Tn2 + Tg,2q211 2 2

= —d[ln(k] —
a2k —12,) 207 2,y )]

Using the expression above and performing the integration of the

linear differential equation (8.21) ends the proof. O

Remark 8.5.3. In the Proposition 8.5.1 it was assumed that c is an axial
cycle of the axial configuration Po. The corresponding formula for the first
derivative of the first return map is the same when c is a cycle of the mean

configuration Q.

Corollary 8.5.4. Let ¢ be a cycle of P, such that o(M) C R3 para-
metrized by arc length s and of total length L. Then the derivative of

the first return map is given by:
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1 [P n 1 (" dH
Int'(0)== [ Hds==| ——— 2
nr(0) 2/0 BT 200 VISR 8:29)

Here hy = H is the mean curvature and K is the Gaussian curvature.

Proof. As a(M) C R? and c is a principal curvature line it follows
that 741 = 742 = T, = g2 = 0. By the equation (8.20) of the
derivative of the return map the result follows observing that ki is

one half of the difference between the principal curvatures and so

ki =VvH? - K. O

Corollary 8.5.5. Let ¢ be an axial cycle of the axial configuration
Qo such that a(M) C R3 parametrized by arc length s and of total
length L. Then the derivative of the first return map is given by:

o) — & /L (ha)o . _ 1 " H,
Inz'(0) 2 )y ros ds 5/, mds (8.24)

Here ho = H is the mean curvature and K is the Gaussian curvature.

Proof. As a(M) C R? and c is a mean curvature line it follows that
k1 =1Tg1 =Ty, = g2 = 0 and 7,7 is one half of the difference between
the principal curvatures. From the equation (8.20) for derivative of

the first return map the result follows. O

Remark 8.5.6. The formula obtained in the Corollary 8.5.4 (resp. Corol-
lary 8.5.5) agrees with that of [71, 75], for principal curvature lines, (resp.
with that of [58], for mean curvature lines). See equation (3.8) in page 77.

Notice also that the sign in the integral expressions (8.23) and (8.24)

depend of on the orientation on M and on the cycle.
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Theorem 8.5.7. Let ¢ be an axial cycle of an immersion «. Then c

18 locally axial stable if and only if it is hyperbolic.

Proof. Tt follows from standard perturbation analysis, [75] and [128],

and is similar to that of vector fields on surfaces. O

8.6 Axial Structural Stability

Let M? be a compact, smooth and oriented surface. Denote by
J" be the space of C" immersions of M into the Euclidean space R*,
endowed with the C" topology. Consider the subsets P (resp. Q")

of immersions a defined by the following conditions:
a) all axiumbilic points are of types: Es3, F4 or Es5, Section 8.4;

b) all principal (resp. mean) axial cycles are hyperbolic, Section
8.5;

¢) the limit set of every axial line of curvature is contained in the
set of axiumbilic points and principal (resp. mean) axial cycles

of a;

d) all axiumbilic separatrices are associated to a single axiumbilic
point; this means that there are no connections or self connec-

tions of axiumbilic separatrices, Section 8.4.

Theorem 8.6.1. Let k > 5. The following holds:
i) The subsets P" and Q" are open in J";

ii) Every o € P" is Principal Axzial Stable;
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iii) Bvery a € Q" is Mean Axial Stable.

Proof. Outline of Proof.

On the Tangent Projective Bundle PM = {TM\0}/{v = rw,r #
0} of M, consider the submanifold {G, = 0} defined by the axial
directions. In coordinates (u,v; p = dv/du), this surface is defined by
the implicit differential equation (8.3). The submanifold {G, = 0}
is regular, under the axiumbilic hypothesis. The restriction of the
projection 7 : PM — M to {G, = 0} is a four-fold covering outside
the preimage of the axiumbilic set U,. The surface {G, = 0} is the
union of two regular surfaces P, and Q, with common boundary
along 71 (U,). These surfaces consist on the liftings to PM of the
crossings X, and Y,. The restriction of 7 to P, (resp. Q) will be
denoted by mp, (resp. mg, ). Therefore mp, (resp. mg, ) is a double
regular covering outside 7~ 1(U,).

On PM is defined the involution I(u,v,[du : dv]) = (u,v,[dv :
—du]) which amounts to a rotation of lines by an angle w/2. The
surfaces P, and Q, are invariant under I. The restriction of I to
them will be denoted by Ip, and Ig,,.

On {G, = 0} the lifting of the crossings X,, and Y,, define a single
line field £, on {G, = 0}\71(U,). In a local chart (u,v,p) this
line field is defined by the Lie-Cartan vector field X, = (Qa)p% +
p(ga)p% — ((Ga)u + p(ga)v)a% and has a unique regular extension
to 771 (Uy).

Considering the induced line field (Ip, )X, (respec. (Ig, )«Xa),
it is obtained a transversal pair {X,, (Ip, )« Xa} on P \7m "1 (U,) (re-
spectively {Xa, (Ig,)«Xa} on Q,\7m (Uy,)). This procedure defines
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a net outside 7~(U,) on P, (resp. Q). This net is invariant under
I and by 7 projects to the integral nets of P, (respectively Q).

At this point one should acknowledge the similarity of the struc-
ture on P, with the situation of two principal line fields and their
canonical regions, dealt with in [71, 75]. In fact, here the construc-
tion and continuation to a small neighborhood V(«) of « of canonical
regions follow also from the openness and unique continuation, for (8
near «a, of singularities (and their separatrices and parabolic sectors)
and of cycles (and their local invariant manifolds) due to the hy-
perbolicity of these elements in the fields of the pair { X, (Ip, )+ Xa}-
This leads to the openness of P” and gives uniquely a correspondence
between axiumbilics, separatrices, cycles and their intersections for
{Xa,(Ip,)«Xa} and {Xgs,(Ip,)«Xp}. The extension of this corre-
spondence so as to define a topological equivalence H : P, — Pg
between { X, (Ip, )«Xo} and {X3, (Ip,)«Xp} which commutes with
the involution I and gives, by projection, a topological equivalence
h : M — M between P, = {X,,U,} and Pg = {X3,U,} is carried
out as in the case of nets of asymptotic lines on surfaces immersed in
R3, [140].

Similar considerations hold for the Mean Axial Stability. O

Remark 8.6.2. [t can be proved, by transversality methods, that condi-
tions a), b) and d) are dense in the C" topology. However, the density of
condition c¢) presents new difficulties (yet unsolved) related to the ”Closing
Lemma” for nets. In [75] and [58], this has been proved for the C* topology,
for Principal and Mean Curvature nets on surfaces in R>. In these cases
the nets actually split into pairs of singular foliations. This simplification

does not hold in general for the nets considered in this chapter.
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8.7 Examples of Axial Configurations

In this section is made a preliminary comparative study of Princi-
pal and Mean curvature configurations for surfaces in R3. Also, two
examples about the global behavior of mean curvature lines will be

analyzed.

Analogy and discrepancy with two classical results

Proposition 8.7.1. Let I : R3 — {0} — R3 — {0} be the inversion
with respect to the unitary sphere S? |, I(x,y,2) = m(m’, Yy, z) =
%2(:5, y,z). Then the umbilics, mean curvature and the principal cur-

vature lines are of a surface M are mapped in the same by the inver-

sion, exchanging minimal and mazximal in both cases.

Proof. As the inversion is a conformal map and the principal direc-
tions are preserved, it follows that the mean curvature directions are
also preserved.

O

Proposition 8.7.2. Let a be an immersion of a surface M into R3
and consider the displacement ae = oo+ €Ny, where N, is the normal
map of a. Then the principal lines are preserved along a. while the
mean curvature lines are not. In fact, the mean curvature lines are

locally rotated by a monzero angle.

Proof. Let (u,v) be a principal chart on the surface M.

The coefficients of the fundamental forms of o and of a, in the
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principal chart (u,v) are related by:

E=(1-¢k)’E, e=(1—cki)e
F=r=0, f=f=0
G =(1-eko)’G, g=(1—cka)g

So, the differential equation of mean curvature lines for the immer-

sion a is given by:

(1—ek1)? Edu®—(1—e€k2)?Gdv? = 0. Therefore, g—z =4 g }::Z;

It follows that ££(%2)| () = /B (ks — k1) # 0. 0

Mean curvature lines on the Torus of Revolution

Proposition 8.7.3. Consider a torus of revolution T(r, R). Define
the function

R 1 [ d
o=oy =0 s
r 0

T o £ 4 cos(s)’

Then the mean curvature lines on T (r, R) are all closed or all recur-

rent according to d € Q or d € R\ Q and both cases occur.

Proof. The torus of revolution T'(r, R) is parametrized by
a(s,0) = ((R + rcos(s)) cos(6), (R + rcos(s)) sin(f), rsin(s))
Direct calculation shows that £ = 72, F =0, G = [R+

2 and f =0. Clearly (s,0) is a principal chart.

r cos(s)]

The differential equation of the mean curvature lines, in the prin-
cipal chart (s,0), is given by E(s,0)ds®> — G(s,0)d6? = 0. This is
equivalent to r?ds? = [R + r cos(s)]?d6?.

Solving the equation above it is follows that,



[SEC. 8.7: EXAMPLES OF AXIAL CONFIGURATIONS 223

0(2m) = 6o + 2nd(£) = 6y + fo% E,++Zs(s)' So the two Poincaré

maps, 7+ : {s = 0} — {s = 2}, defined by 74 (6p) = 6o + 2md(Z)
have rotation number equal to +d. The function d(%) is strictly

decreasing and its image is the interval (0, 00), both the rational and

irrational cases occur. This ends the proof. O

Remark 8.7.1. All the principal curvature lines are closed in the torus of

revolution T'(r, R)

Proposition 8.7.4. Consider an ellipsoid E, p . with three azes a >
b>c>0. Then E,p, have four umbilic points located in the plane
of symmetry orthogonal to middle axis; they are of the type Dy for
the principal curvature lines. The mean curvature configuration is
topologically equivalent to the principal configuration near the umbilic

points which are D1.

Proof. Without lost of generality suppose that E,p . is defined by

2
the equation & + % + % = 1, with ¢ = 1, and write A = % and

B = b%. Consider the parametrization of the ellipsoid «a(z,y) =

(z,y,h(z,y)) = (x,y,/1 — Az? — By?). Calculation shows that:

_ ABuxy

1Az — 14 (BYy
E=1+(5-) F==7 G=1+(57)
AW _A%W ABay BB
- B T 9= E

So, L=Fg—Gf, M = Eg— Ge and N = Ef — Fe are given by:

AB(1 - B)zy AB(A—1)zy
L(a.y) = 20Dy e S0 N (a,y) = ABAZ DTy B )

(A—B)+ AB(1 — A)z® + AB(B — 1)y?

M(z,y) = e
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As A < B < 1 it follows that the four umbilic points are:

B—A A(1-B
(£20,0,%20) = (i\/ asa-a) V) Ty BEI—Ag )-

In a neighborhood of the umbilic point (z¢,0, zg) it follows that

the first order jet of the differential equation Ldy?+ M dxdy+ Ndz? =

0 of principal curvature lines is given by:

[AB(l—B)gy]dyQ—i-[QAB(l—A)g(m—mo)]dmdy—i—[AB(A—l)gy]dmg =0.
0 0 0

Performing a change of coordinates x = x¢g + 2, y = ,/%g the

following equation is obtained: #(dy)? + 2zdzdy — y(dz)? = 0.
Therefore this umbilic point is topologically a Darbouxian of type
Dy (see Theorem 3.2.4, page 73) and the same holds for the all
the other umbilic points. In a neighborhood of the umbilic point
(20,0, z0) the first order jet of the differential equation of the mean

curvature lines is given by:
(1= A)(x — z0)]dy® + [2(A — Dyldady + [~ =4~ (x — zo)ld2® = 0.
In the differential equation above perform the change of coordinates
rT=x0+2T, Y= \/gg to obtain: z(dy)? — 2ydzdy — #(dz)? = 0.
The implicit equation above has an unique real separatrix which is
Z = 0 and the behavior of the integral curves near 0 is the same of
an umbilic point of type D;.

Therefore it follows that the mean curvature configuration near an
umbilic point of the ellipsoid with three distinct axes is topologically

equivalent to the configuration of principal lines near a Darbouxian

umbilic point D1. O
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Proposition 8.7.5. Consider an ellipsoid Eq p, . with three azes a >
b>c>0. On the ellipse ¥ C Eqpc, containing the four umbilic
points, pi, i =1,--- 4, counterclockwise oriented, denote by s1 (resp.
s ) the elliptic distance between the adjacent umbilic points p1 and py

( resp. p1 and p2). Define d = =,

Then if d € R\ Q (resp. d € Q) all the mean curvature lines
are recurrent ( resp. all, with the exception of the mean curvature

umbilic separatrices, are closed). See Fig. 8.4

b2 p1 p1

yZ D4 p3 P4

Figure 8.4: Mean curvature lines on the ellipsoid Eg p. .

Proof. The ellipsoid E, ;. belongs to the triple orthogonal system of

surfaces defined by the one parameter family of quadrics,

afj_/\ + bfj/\ + ij_)\ =1 with a >b>c >0, see also [164] and[166].
The following parametrization a(u,v) = (x(u,v),y(u,v), z(u,v)) of

Eq.b,c, where
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_ et te) L Rt ) (0 b?)
m(u,v)—:t\/(b2_a2)(62_a2)7 y(u,v) i\/(b2—a2)(b2—62)7

) — (u+c?)(v+c?)
(w,v) jE\/(c2a2)(c2b2)’

defines the ellipsoidal coordinates (u, v) on E, p ., with u € (—b%, —c?)
and v € (—a?, —b?).
The first fundamental form of E, 4 . is given by:

(u—v)u u? (v—u)v 2

21 1 v
Rl prprae iy 3 ey S pYOrae oepry ) e

The four umbilic points are given by:

(ixo,O iZQ ”az 2270 +c \/Zi Zi

On the ellipse ¥ = {(z,0 z)|{ 62 = 1} the distance between

the umbilic points p1 = (0,0, z9) and ps = (x0,0, —2zp) is given by
_ 2
1= sz mdu and that between the umbilic points p; =

(20,0, 20) and pa2 = (—x0,0, z0) is given by so = f::; mdv.

It is obvious that the ellipse X is the union of four umbilic points
and four principal umbilical separatrices for the principal foliations.
So YX\{p1,p2,ps3,pa} is a transversal section of both mean curvature
foliations. The differential equation of the mean curvature lines in the
principal chart (u,v) is given by Edu?—Gdv? = 0, which is equivalent
to (vVEdu)?> = (v/Gdv)?, which amounts to ds; = +ds,. Therefore

near the umbilic point p; the mean curvature lines with a mean cur-

vature umbilic separatrix contained in the region {y > 0} define a
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the return map o : ¥ — ¥ which is an isometry, reverting the orien-
tation, with oy (p1) = p1. This follows because in the principal chart
(u,v) this return map is defined by o, : {u = —b?} — {v = —b?}

which satisfies the differential equation g—ij = —1. By analytic con-

tinuation it results that o4 is a isometry reverting orientation with
two fixed points {p1, ps}. The geometric reflection o_, defined in
the region y < 0 have the two umbilic {p2, ps} as fixed points. So
the Poincaré return map 71 : ¥ — ¥ (composition of two isometries

o+ and o_) is a rotation with rotation number given by s2/s.
Analogously for the other mean curvature configuration, with the
Poincaré return map given by mo = 74 o 7— where 74 and 7_ are two
isometries having respectively {p2,ps} and {p1,ps} as fixed points.
O

8.8 Exercises and Problems

8.8.1. Let «(u,v) = h(u)(cosucosv,cosusinv,sinu cos v, sin usinv),

where h is a smooth function.

i) Compute the first and second fundamental form of o.

ii) Find h such that the mean curvature vector is zero.

8.8.2. Consider an immersed surface o : M? — R* and the associated
mean curvature vector H. Let Iy = exdu® + 2fxndudv + grdv?, where
(u,v) is alocal chart and ey = (@uu, H), fr = (Quv, H) and gr = (o, H).
a) Define the configuration of « relative to H, i.e., relative to the pair of
quadratic forms I, = Edu® + 2Fdudv + Gdv® and Iy by the equation
Jac(IIn,Io) = 0.

b) Analyze the types of singularities of this configuration and show that

in the generic case they are topologically equivalent to the Darbouxian
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umbilic points of surfaces in R? or S®.
c) Analyze the closed leaves and obtain an integral formula to express the

hyperbolicity of the Poincaré return map. See [65] and [145].

8.8.3. Consider an immersed surface o : M? — R* and the associated
mean curvature vector H.

a) Consider the implicit differential equation DN (p)v = A(p)H(p). See
Fig. 8.5. Geometrically the directions v1 and vz in the tangent plane T, M
are the preimages of the vectors \i’H and A2H (intersection of the ellipse
of curvature with the straight line passing through 0 € N,M with vector
direction H). Show that this differential equation is a binary differential
equation.

b) Define the configuration of « in relation to the differential equation
obtained in a).

c) Analyze the singularities of this configuration.

d) Analyze the closed leaves and gives a characterization of the hyperbolic

ones. See [110].
L

Ny 2 N,M

T,M

U1
(%) —

Ny

Figure 8.5: Ellipse of curvature E,, and the mean curvature vector H

8.8.4. Let a : M? — R* be an immersion of class C". Consider the

implicit differential equation DN (p)v; = AL;. See Fig. 8.5. Geometrically
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the directions v; and vz in the tangent plane T,M are the preimages of
the directions L1 and Lo (intersection of the ellipse of curvature with the
straight line passing through 0 € N,M which are tangent to the ellipse).
The directions v1 and vz are called asymptotic directions.

a) Show that DN (p)v; = AL; defined above is a binary differential equa-

tion.

b) Write the differential equation above when the surface is parametrized
by a graph (u,v) — (u,v, f(u,v),g(u,v)).

c) Define the configuration of « in relation to the equation obtained in a).
d) Analyze the singularities of this configuration.

e) Analyze the closed leaves and give a characterization of the hyperbolic
ones. For items a) and b) see [143]. The analysis of the other items do not

appear in the literature.

8.8.5. Consider the quadrics (a > b > ¢ > 0) Q(a,b,¢) = {(z,y,2z,w) :
Z—z + Z_j + i—z =1, w = 0} as surfaces of R*.

a) Write the differential equation of the mean (mean axial) curvature lines
of Q(a,b,c).
b) Show that the singularities of mean (mean axial) configuration of the

quadrics are topologically equivalent to the Darbouxian umbilic points D;.

c) Give explicit examples of ellipsoids such that all mean curvature lines

are dense.

d) Give examples of ellipsoids such that all mean curvature lines are pe-
riodic with the exception of the umbilic separatrices.
e) Draw pictures illustrating the mean and the principal axial configura-

tions of the quadrics Q(a, b, ¢). See [58] and Section 8.7.

8.8.6. Consider a surface a(u,v) = (u,v, h(u,v)) in R* having a Darboux-

ian umbilic Dy, (i=1,2,3), at 0. Let ae = (u, v, h(u,v), er(u,v)).
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a) Give examples of deformations a. such that a. have two axiumbilic

points E; 12, (i=1,2,3), in a neighborhood of 0.

b) Draw pictures illustrating the mean and the principal axial configura-

tions of ..

8.8.7. Let av: M? — R™, n > 5 be an immersion.

a) Develop the theory of the ellipse of curvature for immersions a of
codimension greater than or equal to 3 and analyze all the possibilities for
this ellipse (point, segment, circle, etc.).

b) Develop the theory of mean and principal axial configurations of im-
mersions of codimension greater or equal to 3.

c) Analyze the behavior of the mean and principal axial configurations

near the axiumbilic points.

8.8.8. Consider the rotation R : R* — R* defined by

cosv sinv 0 0
R, — —sinv  cosv 0 ‘0 (8.25)
0 0 cosv sin v
0 0 —sinv  cosv

and the regular curve v(s) = (z(s),y(s), z(s),w(s)) parametrized by arc

length s.

Let a(s,v) = Ryy(s), s € Dom(y), v € [0, 2x].
a) Compute the first and second fundamental forms of «.
b) Calculate the mean curvature vector H of a.

c) Analyze the global behavior of mean and principal axial configurations

of a in special cases, for example, when = is a circle or a straight line.
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8.8.9. Consider the maps o, 8 :S? — R* defined by

a . 9 a . o . . . .
a(u,v) =(= sin cos2u,§sm usin 2u, a sinu cos v, a sin u sin v)

B(u, v) :(4_a cos® E, da sin® E,asinucos v, asinusin v)
3 273 2

where, 0 < u < m, 0 < v < 27. The unitary sphere S? is parametrized
by x = asinucosv, y = asinusinv, z = acosu and its first fundamental
form is given by ds? = a*du® + a? sin® udv®.
a) Compute the first fundamental form of o and f.
b) Show that a(S?) and B(S?) are not contained in any hyperplane of R*.
c) Show that a and § are isometric immersions of S* C R? into R*.
d) Calculate the mean curvature vector H of o and 3.

e) Show that there is no homeomorphism FR* — R* such that F(a(S?)) =
B(S?). See [125].

8.8.10. Let v : R — R* be a closed regular curve parametrized by arc
length s. Analyze the geometric conditions for:
i) 7 to be a mean axial cycle.

ii) 7 to be a principal axial cycle. See exercise 2.5.16, page 63.

8.8.11. Consider the ruled surface a(s,v) = ¢(s) + vea(s).
Here {e1, €2, €3, €4} is the Frenet frame of a closed curve ¢ supposed parame-

trized by arc length s, i. e.
/ / /
¢ =e1, €] =kea, ey = —kier + kaes,
/ /
es = — kaea + kseq, ey = —kses.

i) Compute the first and second fundamental forms of o.
Suggestion: Take N1 = (as Aea Aea)/|(as Aez Aes)| and No = eq.

ii) Show that ¢ is an axial curvature line (mean) of o when ko # 0.
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iii) Analyze the axial configuration of « near the curve c.

8.8.12. Consider the space R* with canonical base {e1,e2,e3,eq}. Let T
be a regular, smooth, nontrivial, knot of R® x {0} € R*. This means that I'
does not bound a topological disk in R*. For each point p € T' consider the
segments [ (p) =tp+ (1 —t)es and I_(p) =tp — (1 —t)eq with 0 <t < 1.
Define S = (Uperl+(p)) U (Uper I-(p))=S4+US_.

i) Show that S+ is homeomorphic to a closed disk and so S is homeomor-
phic to the unit sphere S? C R3.

ii) Show that S is knotted in R?, i.e., show that the first fundamental
group of R*\ S is isomorph to the fundamental group of R® \ " and so is
different of Z.

iii) Show that a(s,v) = oI'(s) + (1 — v)es, 0 < v < 1, is a regular

parametrization of St \ {e4}. Analyze the axial configuration of a.

8.8.13. Let v : S'(r) — S* be a smooth knot parametrized by arc length
s. Define the conical surface a(s,v) = vy(s), v € R.

i) Compute the first and second fundamental forms of o.

ii) Characterize the axial umbilic set of a.

iii) Analyze the axial configuration of « near 0.

iv) Analyze the axial configuration of a near v = fo0.
8.8.14. Let o : S? — R* defined by
a(u,v,w) = (u2 — 0%, uwv, uw, vw), v’ +v° +w® = 1.

i) Show that « is an immersion and compute the first and second funda-
mental forms of a.

ii) Characterize the axial umbilic set of o

iii) Show that «(S?) is homeomorphic to the projective plane PaR.
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8.8.15. Show that there are compact oriented surfaces in R? having no

regular normal vector field globally defined. See [2, pages 124-131].

8.8.16. Write the fundamental equations of compatibility of Gauss-Codazzi-

Ricci for surfaces in R* and enunciate the Bonnet’s theorem.

8.8.17. Let v : [0,{] — R* be a curve parametrized by arc length s with
associated Frenet frame e} = kies, e = —kiey + koes, €5 = —koes +
kses, €4 = —kses. The curvatures of v are k1 > 0, ko > 0 and ks.

Consider the tubes defined by
a(s,v) = v(s) + rcosves + rsinves, B(s,v) =y(s)+ rcosves + rsinvey.

i) Compute the first and second fundamental forms of o and S.

ii) Analyze the axial configurations of o and 3.

8.8.18. Consider the sphere S* as the unit quaternions {¢ € H : ¢ = 1}.
Recall that H = {¢ = a + bi +cj + dk, i* = j> = k> = —1,ij = k, jk =
i,ki = j, (a,b,¢,d) € R*} is a non commutative ring and § = a—bi—cj—dk.
Let v : [0,1] — R® be a regular curve parametrized by arc length s and
define the map a(s, ) = e"%y(s).

i) Show that « is an immersion (Hopf cylinder) and compute the first and
second fundamental forms of a.

ii) Analyze the axial configuration of o when 7 is closed.

iii) Consider the stereographic projection I : S*\ {po} — R® and define
[ = Iloa. Give various examples of closed curves « and visualize the shape

of the image of 8. See [133].
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